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Introduction 
In  a recent paper (Wiin-Nielsen, 1965), an 

investigation was made of the propagation of 
gravity waves in a hydrostatic, compressible 
fluid with a vertical wind shear. The perturba- 
tions were assumed to be independent of the 
coordinate (y) perpendicular to the direction 
of the basic flow. It was found that the speed 
of propagation in this case is determined entirely 
by the Richardson number (Ri) but is indepen- 
dent of the wave number. 

The purpose of this note is to investigate the 
case in which the perturbatione may depend on 
the y-coordinate, and where the fluid is bounded 
by vertical walls in the lateral direction. The 
basic state will still be characterized by a geo- 
potential @ = @ ( p )  and a flow U = U ( p ) .  

The perturbation analysis 

may be written as follows: 
The linearized equations for our poroblem 

au au dU a+ - - + U - - f w - - '  -- 
at ax d p  ax' (1)  

(4) 
au av am 
ax ay ap ' 
- + - + - = o  
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in which u, v and o are the components of the 
perturbation velocity and 4 the perturbation 
geopotential, while 8 - - (@) (a8/ap) is a para- 
meter measuring the static stability in the basic 
state. In comparison with the earlier cam (Wiin- 
Nielsen, 1965), we note the addition of equation 
(2) and the addition of the term avl2-y in the 
continuity equation (a), while the other equa- 
tions are unchanged. 

We consider perturbations of the form: 

a(x, y, p ,  t )  = ~ ( y ,  p)euc(r-ct) ,  ( 5 )  

in which k =(2n/L) is the wave number, L the 
wave length and c the phase speed. 

When ( 5 )  is introduced in (1)-(4) we obtain 
four new equations from which we can eliminate 
all dependent variables except 6(y, p). The 
final equation in 6 can be written in the form: 

in which we have introduced the notation 

The problem is now to solve the equation (6) 
under proper boundary conditions. We notice 
that (6) reduces to the earlier frequency equa- 
tion if we neglect the y-dependence. The 
boundary condition on 6 is 6 = 0 at p = 0 and 
p = p ,  = 100 cb when we restrict our attention 
to internal gravity waves. The lateral boundary 
condition is v = 0 at y = & D assuming that the 
vertical walls are placed at the positions y = f D 
while y = 0 is the middle of the channel. It is 
seen from ( 2 )  that v = 0 at y = D implies 
that a+/@ = 0 at the same positions. By differen- 
tiating (3) with respect to y, it  is seen that the 
boundary condition w = 0 at y = f D is equiva- 

E = U - c .  
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Fig. 1. c - 0 in m sec-1 as a function of L/  W ;  L is 
the wave length and W the width of the channel. 

Parameters: m = 1, d = 1.2 and B = 80 m sec-l. 

lent to the condition a&/ay = O  at y = D .  ( 6 )  
must therefore be solved under the conditions: 

& = O  a t p = O a n d p = p , ,  1 

The latter boundary condition is automati- 
cally satisfied i f  we assume &(y, p )  to have the 
form 

An expression containing sin (nny /ZD)  where 
n is an integer can naturally also be used but 
the various values of n are equivalent to varia- 
tions in the width of the channel and can there- 
fore be disregarded. 

Introducing (8)  in (6) we obtain the following 
equation for R ( p ) :  

in which we have changed the independent 
variable to the nondimensional value p* = p / p o ,  
and where we have made the assumption that U 
is a linear function of p ,  i.e. d g E / d p 8  = 0. Compar- 
ing ( 9 )  with the previous frequency equation 
we note that the only change is that d d  in the 
last term has been replaced by dpz(1 +d/ 
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Fig. 2. Regions of stability in a diagram with L/W 
as abscissa and the Richardson number as ordinate. 

(4k'D')). We can therefore adopt the previous 
solution when we make the replacement men- 
tioned above assuming as before that the basic 
current has the form 

U = D +5(1/2 -p* ) .  (10) 

The solution for the phase speed may be 
written: 

C =  O +  - 5  coth (=) ( m = r t l , F z ,  ... ), ( 1 1 )  
2 

where 1 = (9' - 1/4)l'* and qa = (dpp"o/sa )( 1 +d/ 
( 4 k f D z ) ) .  We note in particular that Ri = (dpi)/8' 
as shown by Wiin-Nielsen (1965) .  

Discussion of the solution 

The only difference between the present and 
previous solution is in the definition of qg which 
in the present case contains an additional factor: 
1 + 4 L'/W' where L is the wave length and 
W = 2 D  is the width of the channel. The intro- 
duction of the y-dependence of the perturba- 
tions thus makes the phase speed dependent 
on the wave length while this was not the case 
in the previous investigation. In  view of the 
fact that a detailed investigation was made 
of the dependence of c on the parameters Ri 
and m in the previous paper (Wiin-Nielsen, 
1965), we shall here restrict ourselves to illu- 
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strate the wave length dependence. Selecting 
a value of 8 = 80 m sec-l which corresponds to a 
value of the windshear of approximately 4 m 
sec-l km-1, setting m = 1 and uo = 1.2 MTS- 
units we have tabulated c - 0 as a function of 
the ratio L/W. The results are shown in Fig. 1 
which shows that the speed of internal gravity 
increases when Ll W increases. The previous 
solution applies for LIW = 0. We notice that 
the value of c - 0 increases by a factor of 1.5, 
when L / W  goes from 0 to 3. The previous 
estimates of c - 0 are therefore too small by a 
significant factor when applied to atmospheric 
motions. 

In the previous investigation we found for a 
general wind profile U = U ( p )  that a sufficient 

criterion for stability is that Ri>  114. By 
applying the same methada we get in this case 
that a sufficient criterion for stability is 

This relation is illustrated in Fig. 2 where the 
horizontal line Ri = 1/4 is the critical curve for 
the previous case above which the disturbances 
are stable. The second curve corresponds to the 
right hand side of (12). The area above this 
curve represents a region of stability in the 
present investigation. We find therefore that the 
introduction of the y-dependence of the disturb- 
ances expands the region of stability. 
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