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ABSTRACT 
Most geophysical phenomena have typical interrelations in time and space. But these 
restrictions are frequently forgotten by investigators processing data in order to verify, 
or to detect, the laws of nature. For example, the claimed relations between geophysical 
events and cosmical data are numerous, but rather few such relationships survive the 
next decade. One main reason for this is certainly the use of random sampling tech- 
niques when investigating geophysical data, in spite of the fact that statistics of re- 
lated terms were studied by Markov half a century ago. 

If long series of records are available, the sampling complications due to serial cor- 
relation can be removed by selecting dates separated by a proper interval of time. 
But in most cases we have data only for relatively short intervals, and we are there- 
fore forced to use all data to get optimum determination of the statistical parameters. 
The significance of these parameters then depend very much on the serial correlations 
involved. 

The purpose of this paper is to derive tests of significance, which may be applicable 
to a variety of such investigations when serial correlations are present in the data. 

List of symbols 

regression coefficient in the autoregres- 
sion equation of ~ ( t ) ,  see eq. (26) 
sample regression coefficient in eq. (1) 
constant defined by eq. (29) 
sample regression coefficient defined by 
eq. ( 9 4  
transformation constant defined by 
eq. (6) 
transformation constant defined by 
eq. (8) 

+ r s p )  

+ rs,) 

regression coefficient of q ( t )  =sin 

regression coefficient of xu@) = cos 

sample residual at time t 
a constant, usually equal to one 
independent variable number i 

apt + 

apt + 

spectral amplitude of sin(apt +p,), de- 
fined by eq. (48) 
subscript 
subscript 
subscript 
amplitude of the or,-component in the 
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autoregression correlation of a spectral 
band, see eq. (49) 
subscript 
number of sets of data per sample 
subscript 
subscript 
coefficient of multiple correlation re- 
ferring t o  eq. (1) 
coefficient of multiple correlation re- 
ferring to  eq. (26) 
autocorrelation of a spectral band at T 
lags, see eq. (49) 
correlation coefficient, defined below 
eq. (22) 
sample “correlation” coefficient defined 
by eq. (35) 
root of algebraic equation, see eq. (29) 
expectation value defined by eq. (22) 
correlation of e( t )  and e(t + k) 
correlation of e ( u )  and E ( V )  

correlation of e( t )  and e( t  +k) 
number of independent variables in the 
regression equation 
time variable, except in relation (52) 
time variable 
time variable 
independent variable, first introduced 

independent variable, defined aa a finite 
sum of harmonics by eq. (48) 

by eq. (6) 
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dependent variable 
variable 
frequency, see eq. (44) 
frequency first used in eq. (43a) 
phase angle first used in eq. (43a) 
universe regression coefficient in eq. ( 5 )  
universe regression coefficient in eq. (lo) 
residual a t  time t ,  see eq. (26) 
discrete constant defined in connection 
with eq. (7) 
partial differentiation symbol 
residual of the universe regression equa- 
tion 
function of ai and z ,  see eq. (37) 
a variance quantity referring to resi- 
dual variance, see eq. (39a) 
a variance quantity referring to all re- 
gression coefficients, see eq. (39b) 
a variance quantity referring to the i’th 
regression coefficient, see eq. (39b) 
as above, but referring specifically to 
the p’th regression coefficient 
value of x; if random sampling 
value of x ; ~  if random sampling 
value of ,yf if random sampling 
degrees of freedom, subscripts as above 
for x 2  
(a bar) denotes sample mean 
(dotted rule) denotes universe mean 
(dotted rule plus n) denotes universe 
mean for all samples of size n 

recognized and have been extended and applied 
to several fields of science. G. WALKER (1931) 
has discussed the relative significance of perio- 
dicities in series of related terms. Our contri- 
butions to the field are given by the following 
references, NORD0 (1953, 1959, 1960). In  this 
report we shall present a tentative approach to 
the problem of testing significance of statistical 
estimates based on non-random data samples. 

Before we proceed to a more involved analysis, 
we may consider the following relation: 

6 

yW= 2 b c f i ( t ) + e ( t ) .  (1) 
4-11 

Our dependent variable y ( t )  and our independent 
variables f,(t), i = l ,  ..., 8,  may be either pre- 
specified analytic functions of time or stochastic 
variables, perhaps describing some physical proc- 
ess; for convenience, however, f,,(t) will denote 
a prespecified constant. Let us suppose that the 
constants bi have been derived by the least 
squares procedure, and that e ( t )  is the residual, 
or that part of y ( t )  which cannot be explained 
by the functions f o  through f,(t). As a special 
application we may e.g. consider the case when 
y ( t )  is the precipitation at a given station, and 
f,(t) the surface pressure a t  gridpoint i. 

Denoting a sample average by a bar, the 
equations determining bi may be written as fol- 
lows: 

1. Introduction 

Although the limitations of random sampling 
are well described in almost any textbook on 
statistics, the restrictions are frequently neg- 
lected when statistical methods are applied to 
geophysical data, which normally possess pro- 
nounced interrelations in time and space. I f  we 
derive statistical estimates from such data, a 
result which would appear highly significant if 
the data were random, may very well be insig- 
nificant in view of the interrelations. The best 
way of avoiding such misuse of statistics is prob- 
ably to postpone the random sampling theory 
until the laws of interrelated data are more 
thoroughly understood by the investigator. The 
random sampling theory is only a limiting case 
at best. 

Some of the most significant contributions to 
the theory of related terms are given by MARKOV 
(see DYNKIN, 1961). Markov’s theories are well 

f , ( t ) e ( t )  = 0 ,  i =0, 1, 2 ,..., s. (2) 
- 

As f o  is a constant, we notice that e ( t )  = O .  Con- 
sequent,ly the sample residual is not correlated 
with the independent variables, but this does 
not imply that e ( t )  is independent of f , ( t ) .  A 
certain nonlinear combination of the f , ( t )  func- 
tions, e.g. a term occurring in the nonlinear dy- 
namic equations, might very well be a quantity 
to which y ( t )  is related. 

The ”goodness” of relation (1) is generally 
measured by the fraction of var y which is 
explained by I : = o  b i f i ( t ) .  This fraction is by defi- 
nition equal to the square of the coefficient of 
multiple correlation, R. Using this notation, the 
residual variance becomes 

vare = (1 - Rz)vary. (3) 

In samples of moderate size it is quite pos- 
sible to obtain high values of R2 just by chance. 
In  most cases we will be disappointed if we 
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apply the derived relations to another set of 
data. To prevent scientists from spending their 
time explaining such sporadic relationships, 
various theories of sampling evaluations have 
been developed. The random sample procedures 
are explained in most textbooks, see e.g. KEN- 
DALL (1946). But the random sample theories 
are based on the assumption that the residuals 
e ( t ) ,  t = 1, 2, . . . ,n are uncorrelated and mutually 
independent quantities. These restrictions are 
rarely fulfilled when physical data are used. We 
shall later on see that the mere presence of a 
moderate yearly trend, or a diurnal variation, 
may cause considerable deviations from the 
random sample theories. It is therefore highly 
desirable to make an attempt to analyze the 
general case when all variables, including e( t ) ,  
have various scales in time, as e.g. diurnal and 
yearly variations. 

2. Some theorems concerning expectation 
of sample residual variances, and reduc- 
t ion of degrees of freedom due to serial 
correlations 

Let us return to relation (l) ,  and assume that 
it is established from a particular sample con- 
sisting of 12 consecutive observations of each 
variable. Then f J t )  denotes the sample mean of 
f ,( t) .  Let f , ( t )  be defined as the universe mean of 
f,(t). Such a mean may be assumed to exist, 
even though the available data do not determine 
it when f,(t) is stochastic. The constant fo is 
conveniently put equal to one. The sample con- 
stants b, are derived from the equations mini- 
mizing the squares of the residuals, 

- 

...... 

a "  
- Z: ( e ( t ) } ' = o ,  i = o ,  1,2 ,  ..., 8, (4) 
abi , = 1  

which are equivalent to the relations (2).  

derive a similar regression equation, 
For the universe we may correspondingly 

I 

Yft) = 2 Prft(t) +Eft), (51 

the constants PI being defined by f , ( t ) ~ ( t )  = 0 ,  
whence ~ ( t )  = O .  So far we have put no restric- 
tions on the functions f l ( t ) , f , ( t ) ,  ...,f,( t ) .  But the 

i = o  

.--- ........ 

..... 

procedure is much simplified if we transform 
the functions f,(t) into a set of orthogonal func- 
tions q ( t ) ,  where (i 2 1) 

i 

= 2 c i A f r ( t ) - f r ( t ) ) .  (6) 
.= l  

We shall especially choose xo = f o  = 1. Then we 
notice that the &s(s + 1 )  constants cir(i > 1) are 
uniquely determined by the following sets of 
equations: 

9 (4  x, 0)  = s,,, (7) 

where a,, = 1, and dI, = 0 when i =kj. Repeated 
use of eq. (6) will relate all lag correlations of 
z,(t) to similar lag and cross-lag correlations of 
the functions f , ( t ) .  Inverting eq. (6) we may 
express f ,( t)  - f r ( t )  as a function of the orthogo- 
nal functions x,( t ) ,  

" 
f 3  ( t )  - fi ( t )  = Z: d Z r  (4 ,  i 1. (8) 

,=1  

Introducing relation (8) for the independent 
variables of the sample regression eq. (l), we 
derive that 

For the universe regression equation we derive 
correspondingly that 

where yc =2@rc; i ,  i >  1, (11) 
,=l 

and Yo = P o .  

From eqs. (9a)  and (10) we may deduce the 
following relation: 

Tellus XVIII (1966), 1 
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AS the normal equations, determining bi and 
pi, may be written as f i ( t )  e ( t )  = 0 and f i ( t )  &( t )  = 0, 
we deduce from eq. (6) that 

and 

x i ( t )  e ( t )  = 0 ,  (14) 

xi ( t )  & ( t )  = 0. (15) 

Squaring relations (12) and (15), then aver- 
aging and using eqs. (7),  (14) and (15), we derive 
the following relations when neglecting the term 

2L=j(ci-yi) (Cj-J'j) x i ( t )  xj(t): 

Multiplying (12) by xi ( t )  and averaging, we notice 
that with a similar approximation 

~ _ _ _  
ci - yi - xi ( t )  E ( t )  [{xi (t)}'] - 1 *  (18) 

This relation permits us to eliminate the em- 
pirical constants from eqs. (16) and (17), i.c. 

" - -  
(E(t))a&$+ i - 0  2 { a ( t ) & ( t ) } a [ { x ~ , ( t ) } Z ] - l  

(19) 
and 

Let us expand the second term on the right 
hand side of eq. (19), 

The magnitude of this multiple sum depends 
on the product of the quantities 

Zcr(U)Zi(W) 

{x i  ( t )} '  
_~ 

and E(u)E(w) .  We shall replace the product by 
its expectation value, i.e. by 

We notice that f z i , u - l l  = 0 if XI (u) xi ( v ) / { z i  ( t ) }*  
and ~ ( u )  ~ ( w )  are independent quantities. We 
may proceed by replacing 

where R+. is the universe correlation coeffzcient 
of values of xi ( t )  separated by (u - v) uni ts  of t ime. 
In  a similar way we may replace E ( U ) E ( W )  by 
rU-" { & ( t ) } * ,  where ru-o ia the universe correlation 
coefficient of residuals at (u -v )  lags.  

Introducing these definitions in (2 l) ,  we derive 

(23) 

In  the general case there is no reason a priori 
to neglect the second term within the square 
brackets. But in most applications it seems fair 
to assume that there should not be much pref- 
erence of E ( U ) E ( W )  for a given value zi (u)zi (v) .  
We shall therefore proceed with our analysis, 
assuming that the integrated contributions of 
Ri,u-v may be neglected in comparison to the 
remaining terms. If we in eq. (20) replace 
[ {x , ( t ) }* ] -*  by [ { x t ( t ) } * ] - l  and perform the same 
procedure m above, we derive the following 
approximate relations: 

and 
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Eq. (24) gives a relation between the expec- 

ted sample variance {+)}a and the variance of 
the universe. 

Eq. (25a) defines a relation between the ex- 
pected sample variance and the variance to be 
expected, if we apply the constants of eq. (9) 
(or eq. (1))  when deriving y(t) from an indepen- 
dent sample of data. 

The formula (24) indicates that the estimated 
degrees of freedom of the residual variance is 
approximately equal to 

vI - n - n-l 2 2 r,+-* R,,u-u= n - v I I .  

n 
~ 

6 1 1  

d=O I4.u-1 

We shall later on apply this estimate in con- 
nection with the evaluation of the sampling 
distributions defined by the relations (40) 
through (42). 

If s =0, the residual is just the deviation of 
y(t) from its mean value: 

e(t)=y(t)-y(t)=y(t) - Y W  -{y(t)-y(t)) 

- E ( t )  - {Y% - Y(t) 1 9  

This relation corresponds to (24) if we put Ro, u-v 

equal to one. 
We shall illustrate the theorems (24) and (25a) 

by some simple cases. First of all, let us consider 
the random sampling case, i.e. ru-v = O  when 
u +v. Then vI - n  -s - 1, and relation (24) re- 
duces to Gauss' theorem on residuals (see K E N -  
DALL, 1946). The following random sampling 
versions of relations (24) and (25a) are also 
derived by LORENZ (1956), 

When 8 = 0, vI  = n - 1,  which is the degrees of 
freedom usually given to the sample variance. 

Next we will consider the simple Markov case 
when R,, u--v = R;-' and ru-v =rU-'. Introducing 
these amumptions, we observe that the sum- 
mations in eqs. (24) and (25a) become truncated 
geometric series, so that these equations then 
reduce to 

var E {e(t)}' 
_ _ _ _ _ _ _  n ___ 

n 
X (25 b) 1 - R;rn 

' l + R i r  2 1 - R;r" 
n + C -  -- 1 Rir-- 

l - R i r  n i = ,  (l-Rcr): 

n - 2  - +- zRIr---- 
1 -Rir  n i = o  (1-Rir)* 

X l + R l r  2 ' l - R ; r n '  

I f  R,r is not close to one, and n is moderately 
large, we may neglect the final summations in 
the denominators and numerator, i.e., we may 
treat the geometric series as infinite in length. 
If we put r =0,  we derive the random sample 
relations discussed above. 

The first order Markov process is a fairly good 
approximation to the statistical behavior of 
many atmospheric phenomena, especially when 
we have properly eliminated very short (e.g. 
diurnal) periodic time scales, and also very long 
periods, as e.g. the annual variation. But if we 
intend to detect a very weak, say external, in- 
fluence in our data, the higher order Markov 
schemes must be taken into account, see e.g. 
BATJR (1944) and N O R D ~  (1953). The serial cor- 
relation of surface pressure has been studied by 
STW~PFF (1936) and HISDAL et al. (1956). Serial 
correlation of temperature involves certainly 
higher order Markov schemes, cf. NORD0 (1959) 
and GODSKE (1962). Other elements like preci- 
pitation, cloudiness and wind do all obey var- 
ious kinds of Markov schemes. Let us therefore 
conclude this part of our study by looking briefly 
into the case when 

J 

p = l  
2 Ci, R/;-"' 

and 
I 
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We may then verify that in this general case 
we have 

I .I 

l +R , ,R ,  2RipRp 1 - (RiR,)" _ _ _ _ _ _ ~ ~ -  
1 -RIP R, n ( 1  - Rip R,)' 

We shall later on apply this formula to some 
simple cases, as e.g. the case when zi(t) is a 
harmonic variable. 

3. Sampling distributions of statistical pa- 
rameters evaluated from non-random 
data samples 

The random sampling theories depend on the 
assumption that the residuals, E ( t ) ,  of eq. (10) 
are normally distributed, are uncorrelated, and 
even mutually independent. We shall now try 
to carry out an analysis of the more general case 
when successive values of ~ ( t )  satisfy the follow- 
ing auto-regression equation: 

E ( t  + i )  =a,E(t +i - 1 )  +... +ajs( t )  +at+, ,  (26) 

where 13,+~ is the residual. Multiplying (26) by 
(vare)-le(t - k )  and averaging over the universe, 
we derive 

r'f+k =a,rjik-, + ... +airk, ( 2 7 )  

assuming that 

The constants C, can be established from the 
values of rk a t  0, 1 ,  2,  ..., j - 1 lags. As a conse- 
quence of relation (28) we have 

for all values of k + O .  
We shall now assume that the residuals St+ j ,  

t = 1 ,  2 ,  ..., n are independent quantities. We shall 
also assume that i s  normally distributed. This 
second assumption is not really necessary, some 
other prescribed distributions might also be 
discussed. But the normal assumption is con- 
venient as we may compare our results with 
those of the classical random sample theory. 

If our assumptions of both independence and 
normal distribution are fulfilled, the combined 
frequency distribution of n consecutive residuals 
is proportional to 

exp [ - Z: (Bt+j) '  (2 var E (1 -E)}-'I n d(st+j), 

( 3 2 )  
{ ,Il 1 
where va,r &(I - Rl) is the universe variance of 

according to (26). Expanding the numerator 
of the exponent and assuming that j<n,  we have 

n 

- 2 (a, - a, a2 - . . . - a)- 1 U j )  Z: E ( t )  &(t + 1 )  

- 2 a f z  & ( t ) & ( t + j ) .  ( 3 3 )  

t = l  

... - 
R 

1=1 

Expanding xy=l ~ ( t )  ~ ( t  + 4) ;  1 G q< i, we obtain 
from eq. (12) that 

E ( t  - k )  = 0, ( 2 8 )  

neglecting the regression coefficients aj+,, aj+z, 
..., a,+k of E ( t  - 1 ) , E ( t  -2), ..., c( t  - k )  which could 
have appeared in eq. (26). 

The formal solution of (27) is known, see e.g. 
MILNE (1949), namely 

where the values of R, are equal to the roots of 
the algebraic equation 

zj =a,z'-l+ ... +ap (30) 
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when neglecting the third and the fourth term, 
which both are assumed to be small compared 
to the two remaining quadratic terms. We con- 
sider this assumption just as a first order ap- 
proximation, and the resulting sampling distri- 
bution should also be interpreted as an approxi- 
mation of the real distribution. 

We shall now introduce the sample "correla- 
tion" coefficient R;g, which is defined as fol- 
lows 

n " 
Rid={ c Xi(t)Xi(t+!I)} { 2 xi(t)xi(t)}-l. (35) 

Furthermore, r; shall denote the auto-corre- 
lation function at k lags for e ( t )  within the given 
sample. 

Using these definitions and the approxima- 
tions introduced in derivation of eq. (34), we 
derive the following relation: 

1-1 1-1 

It is easy to verify that 

Introducing spherical coordinates in the n-dimen- 
sional space, the volume element n:-l d(6,+,) 
will be proportional to 

compare e.g. the derivations of the X'-distribu- 
tion in KENDALL (1946). Let us define x; and 

by the following equations: 

and 

(39 a) 

The combined frequency distribution of the 
Gt+j, t = 1,2, . . . , n is then proportional to 

{exp - BCXT +%:I)> cx: + 4x;  +A)* (40) 

i.e. (2; + g1) has a 2'-distribution with ~lr degrees 
of freedom. Referring to the derivation of eq. 
(24), the expected degrees of freedom of ne' 
(vare1-l are 

vI=n-n- '  2 2 ru-vRi.u-v=n- I v i = n - v l I ,  

- 

8 "  8 

i = o  u , v = l  i = o  

(41) 

where v I I  is the expected degrees of freedom 
taken over by the statistical parameters derived 
for the sample regression equation. 

Relation (40) is fulfilled if: 

(1)  2; has a X'-distribution with vI  degrees of 
freedom and 

(2) x ; ~  has another X'-distribution (approxima- 
tely independent of the &distribution) with 
v I I  degrees of freedom, or 

( 2 a )  the x;, x:, . . . , ~ f  do all have x*-distributions 
(approximately independent of the Xf-dis- 
tribution) which are mutually independent. 

Introducing xT2 and v r  as the values of xf and 
vt when no serial correlations are present, eqs. 
(39a) and (41) show that 

n-n-'  i = o  u . v = l  2 r,-,,Ri,.-. 

n-8-  1 V I  = v:, ( 4 2 4  

Positive serial correlation will always lead 
to the result that v,<v: and v, ,>v;.  As the 
expectancy of the X'-distribution depends on v ,  
use of v* may cause serious errors, especially 
when there are rather few degrees of freedom. 

The factors p(ri)/p(r*) and p(&)/?(r*) re- 
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TABLE 1 

, ,  
T I ,  &,I  0.50 0.55 0.60 0.65 0.70 0.i5 0.80 0.85 0.90 0.95 

__ _- 'p(r') "(R'*) 1.86 1.69 1.51 1.34 1.17 1.00 0.83 0.66 0.49 0.31 
'p (?*) ' 'p ( r * )  

flect the influence due to sampling fluctuations 
of the auto-correlation functions of e ( t )  and z{( t )  
respectively. To clarify the importance of these 
two factors, we may consider the simple Markov 
case where RI,l = rl = 0.75, i.e. 

'p(r;) 1 + (0.75)*- 1.50ri  

d r * )  1 - (0.75)' 
= 1 - 3.43 ( r ;  - 0.75), -~ = 

Table 1 gives the size of the two factors for 
some sample values of the coefficients of cor- 
relation, when the population correlations R,, 
and rl are both 0.75. To illustrate relation (42a) 
we may consider residual variance in two sam- 
ples where v > 30, i.e. z = 1/% -1 2 v I  - 1 is ap- 
proximately a normal deviate with unit vari- 
ance. We shall further assume that the two 
samples have equal size, n =50, and that they 
consist of data from the same universe. The 
relations of successive observations correspond 
to those of the simple Markov case tabulated 
above. Introducing 8 = 0, Ro, u-u = 1 (see discus- 
sion between eq. (25a) and eq. (25b), rU-,,= 

f- 

- -0.751u--u1, we derive from eq. (42a) that 

50 

50-50-' 2 0.75'"-"I 
","=l 

49 
49-  50- 6.52=43.48. -~ VI = __ 

Suppose now that the first sample has fairly 
large time scale patterns with 2:' = 98.00 and 
r; = 0.90. Using Table 1 we notice that x; = 0.49 
2f2. As z* = 14.00 - 9.85 =4.15 (P  N 2 x and 
z = 9.80 - 9.27 = 0.53 ( P  -0.30), we have de- 
monstrat,ed that the difference (z* -2) may be- 
come relatively large for intercorrelated data. 
P denotes here the probability of having such 
a large deviation, or even a larger deviation 
with the same sign from the zero mean. Let us 
next consider a sample of data with smaller 
scale patterns where x:' =24.50 and r; =0.55, 
i.e. z* = 7.00 - 9.85 = - 2.85 (P - 2.2 x and 

z =9.10 -9.27 = -0.17 (P-0.43) .  Consequently 
we have just considered another case where the 
difference (z* -2) becomes too large to be neg- 
lected. 

These two illustrations are typical cases com- 
monly observed within geophysical data sam- 
ples. If the investigator however applies the 
X:2-distribution test to some serially correlated 
data where 2 0 and Ri, 2 0, he is likely to 
derive the following results for a great number 
of applications: 

(A) The number of degrees of freedom is too 
high (cf. relation 24). This may lead to the dis- 
covery of more "significant" deviations for law 
values of xfz than for high values of xf2, as the 
expectancy of x:2 increases with v*. 

(B) If the number of degrees of freedom is 
wrong by a fairly small fraction, one is still likely 
to find an amazingly high frequency of "signifi- 
cant" departures on both tails of the X:'-distri- 
bution, as was the case in the two examples 
described above. The factors v(r;)/'p(r,) and 
'p(Rl*)/'p(r*) may be interpreted as a kind of 
"scale" factors which adjust the observed $- 
distribution of related data back to a real ~ 3 -  
distribution. These two factors cannot be neg- 
lected even in fairly large samples where the 
degrees of freedom correction is rather small. 

4. Application of the ~2 test procedure to 
the case of harmonic variables 

Harmonic components are orthogonal func- 
tions if the sample size is a whole number of 
periods. The mean is also zero in this case, and 
it may be of interest to apply our theory to such 
functions. Suppose that for i = p  (1 < p  i s ) ,  the 
variable xp( t )  is a harmonic component, 

xJt)  =sin(a,t +B,), (43a) 

then Rp, u-u = cos ap(u - w). 

The function p(R,,) has a very simple form in 
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the case of xp( t )  being a harmonic component 
and rk satisfying relation (29). Making extensive 
use of the relations between the roots R, of 
eq. (30) and the constants al,az ,..., a,, we can 
show that 

i 
= n (exp up v-1- R,) (exp - up v-1- R,) 

m = l  

= {exp ia, 1-1- [exp (i - 1) up 1-11 2 R, 
m 

x 2 RmRmv- ...I 
m+m' 

- 1 +a;"+ . . . + a;- 2 (a, -a, a, - . . .) 
x cos u p - .  . . - 2ai cos iup 

- dRP*)* 

as 2 Rm=al, R, R,. = -a,, etc. 
m m+m' 

Consequently, for the harmonic case, we have 
shown that 

i 
p(Rp*) = n (1 - 2 R, cos up + Ri). (43 b) 

Introducing the relation (29) for ru-n, we derive 
for the p'th component of vvII in eq. (41): 

m = l  

" 

i 

m = l  
-2n-'2C,,,Rm 

cos ap-  2R,+ RL cos up-  R:{COS ( n +  1) 

x up - 2R, COB nup + R i  cos (n - 1) up)  
(1 - 2Rm cos up + Ri)' 

X 

(43 c) 

Consequently, the degrees of freedom taken 
over by the p'th component is in its asymptotic 
form the following: 
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i 1-R?, 
v p w ~ ~ c m  1 - 2R,, cos up + RL 

. ( 4 3 4  

The constants C,,, of rt = 2;" = C, R", can be estab - 
lished from the lag correlations ro through 
Splitting the denominator above into the pro- 
duct ( l - R m e x p a p v y )  (1-R,exp - a p l / - l ) ,  
we may write the right hand side of (43d) as 
follows: 

i n 
b m  = - 1 +  L: 

m - 1  l - R , n e x p u p l / ~  

We can now show that 

i 
= n ( l - R , e x p u p I / ~ )  

%i=l 

Then, by repeated use of the recurrence for- 
mula (27), we may demonstrate by elementary, 
but laborious computations that 

Cm(l -Ri )  
p(Rp*)21 1 - 2 R, cos up + R i  

-v(Rp) - 2 (a, - a, a2 - . . .) r1 - 2 

x (u2-ulu3- ...) r , - . .  . -2a,r, 

+ 2(a, - a, a, - . . .) cos up + 2 

x(a,-a,a,- ...) cos2up 

+...+ 2ajcos juP 

=&*). 

For the harmonic case, with no sampling of the 
function v( R,,), we have consequently found a 
relation between the scale function and the 
asymptotic value of the degrees of freedom, 
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(43 e) 

v is the mean (or expectancy) of the X2-distribu- 
tion, see e.g. KENDALL (1946). I f  y ,  = 0, expec- 
tation of c,” is directly proportional to v,, and a 
few cases shall be given as illustrations of eq. 
(43e). In  the first order Markov case vp = (1 - Rf)/ 
(1 - 2 R, cos ap + R;). If R, > 0 (“persistence”), 
we deduce that vp > 1 when 0 < up <arc cos R,, 
likewise vp < 1 when arccos R, < ap <n. “Per- 
sistence” will therefore tend to diminish ampli- 
tudes of short-periodic oscillations, and increase 
the relative importance of long-periodic oscilla- 
tions. This result was derived by G. WALKER 
(1931). In  the second order Markov case, the 
denominator of v p  is equal to (1  - 2R,cos a, + R:) 
x (1  -2R,cosu, + Ri). If both roots are po- 
sitive, the v,-distribution is qualitatively the 
same in the first order Markov case above. But if 
R, > 0 and R, < 0, the vp-distribution may have 
a minimum in the interval 0 < up <z,  The loca- 
tion of this minimum depends on the relative 
sizes of R, and R,. R, and R, may also be 
complex conjugate roots, and in this case the 
v,-distribution may have a maximum some- 
where in the given interval. This discussion 
may be carried on to still higher order Markov 
schemes, the roots R,, R,, ... completely deter- 
mining the relative shape of the expected ampli- 
tude response of a harmonic variable. 

If the values of ap are equally spaced in the 
interval from 0 to z, we may, to a good approxi- 
mation, replace a summation by a continuous 
integration. We can then show that the mean of 
the asymptotic values of vp is approximately 
one. I f  we in relation (43d) introduce z =eapyrl 

and integrate with respect to up, we derive that 

m = l  jz 

JZ(  _ _ _ _ ~ -  exp ap  1/17 -- + exp - a P 6  --) da,, 

a exp upl/T - R, exp - u p V X  - R, 
or 

= - 1 +  2 2 C m = l ,  (43f) 
m = l  

according to the t,heory of residues. This result 

is rather important, and should always be kept 
in mind. The ratio 

will generally differ much from unity, even for 
quite moderate values of R,. 

As the XE-values of the various harmonic 
components may not be statistically indepen- 
dent, it  is advisable to apply the X- test before 
focusing too much interest on individual details. 

Let us demonstrate relation (43b) for a spe- 
cial case when j = 3 and we have the following 
set of complex conjugate roots, 

rb = C, R: + C, ek cos uk. (44) 

Introducing this relation for rk we find that 

= (1 - 2R, cos a, + R;) 

i.e., q(Rp*) = (1  - 2R, cos ap + R:) 

x [ ( l -  e2)’ - 4@(1 +ez) cos a, cos a 

(45) + 4 < (COS’ a, + COS’ a ) ] .  

In case of trend, uw0,  ew 1, we recognize that 

q(R,,) w 4( 1 - 2R, cos a, + R:) (1 - cos up)’. 

We shall tabulate q(R,,) as a function of R, 
and Q when R,, Ic =cosZnk/14.765, i.e., when 
considering a semilunar harmonic as one of varia- 
bles, see BRIER & BRADLEY (1964). We shall 
further assume that the quantity y( t )  which we 
shall relate to zp(t ) ,  is a meteorological variable 
that is likely to have trend, i.e. cos uw 1. 

BRIER & BRADLEY (1964) have recently pub- 
lished a paper on the apparent correlation of 
a precipitation index for the United States with 
a semilunar harmonic. The day-to-day per- 
sistence correlation of the precipitation index is 
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TABLE 2. Tabulation of eq. (45 )  for the m e  a-0. 

e 0 0.30 0.36 0.50 0.70 1.00 

q(Rp,)  when R ,  = 0 1 0.294 0.225 0.114 0.046 0.032 
- - R,=0.36 0.473 0.139 0.106 0.055 0.022 0.015 
- - Rl-0.72 0.207 0.061 0.047 0.024 0.010 0.007 

0.36. As they did not consider the influence of 
a possible trend within the data, the discussion 
above may be applied to their case. There are 
18,250 days in their sample. I f  we put e-1, 
R, = 0.36, a-O,n = 18,250, we find that q(R,,) = 

0.015, and the %‘-contribution from the p’th 
harmonic components would be as follows: 

Subscripts p ,  and p a  refer to the semilunar 
sinus and semilunar cosinus respectively. We 
shall postulate no correlation in the universe, i.e. 
y,,, =yDn = O .  I f  we derive that the square of 
the “correlation” coefficient *(c,: + c,:) (var e)-l 
is equal to 0.001303 (cf. BRIER & BRADLEY 
(1964)) assuming {y ( t )  -y(t)}2wvarywvara), we 
find ~;-0.36/q(r,). As we should expect quite 
a considerable random component in the used 
precipitation index, q(r*) is probably not less 
than, say 0.36. x;w 1 is according to our theory 
a rather low, insignificant value even for one 
degree of freedom. We may therefore conclude 
that the “correlation” of 0.001303 is not sig- 
nificantly different from zero if there is a trend. 
Further statistical analysis of this study is not 
possible, aa there is no information about the 
persistence correlation a t  more than one lag. 
The precipitation index can vary from 0 to 40, 
but no frequency distribution (which may vary 
during the year) is given. 

We shall finally mention that our theory 
covers the case when we have a multiple-root 
solution, 

rt = (c, + ct k + . . . + cj k’-’) @. 
STUMPFF (1936) and HISDAL et al. (1956) have 
demonstrated that the serial correlation of 
hourly sea-level pressure records is well de- 
scribed by the double-root solution 

, 

rk = (cl + c&) &, 
in Germany as well as in Antarctica. 
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5. Sampling distributions of spectral bands 

We may also apply the formula (43b) to the 
case with variables each containing a spectral 
band of harmonics. We shall assume that the 
bands do not overlap, and define such a variable, 
xB(t) ,  by the following equation: 

where G ( p )  is any (finite) function of p in the 
spectral interval from p L  to pu. To avoid minor 
complications we shall just study samples where 
all harmonics with argument [(a5 a,)t + 
(Pr_+,9,)] have an integer number of periods 
from t = 1  to t =n. 

The serial correlation of x B ( t )  a t  t lags can 
then be computed using relation (48). We shall 
introduce k i -  ( G ( p ) ) a / ~ ~ p L ( G ( p ) ) ’  as a meas- 
ure of the influence due to the p’th harmonic, 
i.e., 

PII 

P - P L  
(49) R , , =  2 ki COB ap t. 

Using relation (43 b) we may deduce that 

PU 

d R B * ) =  2 k:’?(R~) 
P - P L  

p u  I - 2 k ~ ~ ( 1 - 2 R m c o s a , + R ~ ) .  (50) 
p - p L  m = l  

The asymptotic value of the degrees of freedom 
can next be derived from relation (43e). 

The case s = 0 (time series) 

It may be useful to repeat some of the derived 
results for the special case 8 = 0, as this case 
haa obtained much attention in the literature. 
I n  the discussion between relations (25a) and 
(26b) we derived the following simplified form 
of relation (24): 
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This relation corresponds to relation (24) if we 
put Ro,,-, equal to one. 

The expected degrees of freedom, vI, for the 
sample variance of e ( t ) ,  or y(t), is therefore 

2rI=n-n-' 2 ru-v=n-v,l;  (51b) 

vII=n  ~ : u , u . . l r u - v  is the expectation of the de- 
grees of freedom taken over by the sample mean 

"."-I 
-1 n 

y = co xo = c,. 

As 

it  is still very important to have a fairly good 
approximation to the autoregressive scheme of 
the universe, cf. relation (26). If we know the 
universe autocorrelations r,, 4(r,) is also known. 

6. The limiting case of random sampling 

Although the following relations are known 
from the theory of random sampling, see e.g. 
KENDALL (1946), we wish to demonstrate that 
similar formula may be derived from our rela- 
tions. 

If j = 0 in eq. (26), we find ru-u = 0 for u +v 
and 4(r*) ==+(R, , )  = 1, R, = 0. Introducing these 
values in relations (39a) and (40), we notice that 
the frequency distribution of (c, - y i )  is propor- 
tional to 

i.e. (c, -yL)  is normally distributed with zero 
mean and variance equal to var&(nz:)-l. The 
denominat.or of the variance is a sample esti- 
mate. We shall use eq. (24) to relate varc to the 
sample residual variance. It should then be 
proper to test the significance of (c, - y i )  by the 
"Student's'' t -test, 

- 

7. Serial correlations of data  having diurnal 
and annual trends 

If there are various trends in the data, the 
serial correlations may have some peculiar va- 
riations which may be misinterpreted as signifi- 
cant deviations from the general Markov scheme 
given by eq. (26). If we e.g. study temperature 
records from stations at middle latitudes, the 
annual trend is very strong within the months 
close to the equinoxes. The annual trend is most 
pronounced for the high temperatures observed 
from slightly before noon and into the late 
afternoon. The lowest annual trends are found 
for the temperatures observed during the night 
and the early morning. 

The way a trend influences a correlation has 
e.g. been described by N O R D ~  (1959), discussing 
linear and harmonic trends in the data. Close 
to the equinoxes the trend is almost linear 
within a given month. Let us therefore just 
study the linear trend, which according to 
NORD~ (1959, p. 5), gives the following relation 
for time to: 

Here rr(to) is the apparent serial correlation at 
t lags, and er is the serial correlation when the 
trend is removed. 

The trend factor ki. is given by the following 
relation: 

!Pi(t) is the mean value a t  time t of the month, 
pi (n)  and p i ( l )  are the mean values of the last 
and the first day of the month, respectively. 
A typical value for the monthly trend just 
beyond the equinoxes is 5-7°C for hourly tem- 
perature observations at noon and in the af- 
ternoon, and 1-2°C less for the temperature 
records late in the night. The maximum values 
of ki. should therefore be 0.2-0.4 a t  the equi- 

f-7- ( C i - y i )  % (n 8 -  1) 
noxes, and the highest values are likely to be 
found in the fall. Table 3 shows the apparent 
correlation at a lag of one day as 8 function of 
k i ,  when cell A = 0.70. Consequently we should 
expect that the correlation r,, shows a marked 
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(52)  t = -  ~f p 
with (n - 8  - 1) degrees of freedom. 
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TABLE 3. Influence of a monthly trend when 
e > d h = 0 . 7 0 .  

ki,i 0 0.10 0.20 0.30 0.40 0.60 0.80 1.00 
7 2 4 6  0.70 0.73 0.75 0.78 0.79 0.81 0.83 0.85 

diurnal variation during the spring and the fall 
months, and almost no diurnal variation a t  the 
midwinter and midsummer months. Our ana- 
lysis seems to be verified, at least partly, by 
some extensive serial correlations carried out by 
GODSKE (1962, see p. 168). Whether the appa- 
rent peaks at 07 a.m. to 10 a.m. in May and 
August may be caused by similar trend effects 
is questionable. 

The correlograms of the Oslo air temperature 
at hourly lags may be considered w another 
demonstration of the trend effects described by 
relation (53), see GODSKE (1962, p. 172). Accord- 
ing to our analysis, see formulae (53) and (54), 
rs(to) should have a 24-hour periodic component 
equal to kt,.c+7 (1 +k,,.,,)-* (1 +kt,+s,,,+T)F’. The 
Oslo correlograms referred to above, show in- 
deed a pronounced diurnal variation of rT(tO) 
for the month of April. 

Next we shall consider a diurnal variation of 
the variance caused by variations of tempera- 
ture on time scales less than a day. Variations 
of cloud cover over a station, showers etc. will 
e.g. during the summer season cause large 
temperature fluctuations at the ground in the 
day time when the solar heatingisstrong. I n  
the long winter night similar effects are present, 
w e.g. the infrared radiation loss from the sur- 
face which is much dependent on the cloud 
cover. 

Let us denote the temperature variation on 
the larger than a day time scale by T’(t), and 
the smaller scale variation by T ” ( t ) .  Intro- 
ducing these quantities in the relation (53), we 
derive (t 2 1 day) 

where 

, {T*(t)-T(t)}  { T ’ ( t + t )  - T ( t + t ) }  e7 = - = = = = = =  
[{ T’(t)  - q t ) } a  { T’ ( t  + t) - T( t  + r ) } 7 b  

and 
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15, = 1 and 
The “noise” term 2T;(t) Ti’@) + {T;’(t)}a is 

generally positive, although the first term may 
have quite pronounced annual variations and 
should be made topic of a special study. Con- 
sequently we should expect a pronounced maxi- 
mum of standard deviation of afternoon tem- 
peratures in summer. In  winter we should ex- 
pect a minimum in the afternoon, and a t  the 
equinoxes a semidiurnal variation with maxima 
in the late night and in the afternoon. Our con- 
siderations are nicely verified by the study of 
GODSICE (1962, Fig. 1, p. 164), although the 
curves of the spring and fall months should be 
corrected for the yearly temperature trend. 
The combined influence of trend and “noise” 
should therefore cause an apparent semidiurnal 
variation of r7(to) in spring and fall, see e.g. the 
April correlograms referred to above. 

I f  we by careful analysis eliminate most of 
the trend effects and “noise” effects, the inter- 
diurnal variation of r7(to) may become smaller 
and we may perhaps once again, from a statisti- 
cal point of view, consider the process to be 
approximately a Markov process without a diur- 
nal component. 

When our records cover prolonged intervals 
of the year, we should take the yearly variation 
of e: into account, see relation (44). 

= 0 for t + j .  

8. Verification by numerical experiments 
Although the preceding analysis seems to 

explain most of the variations observed in our 
meteorlogical data samples, another controlled 
verification may be performed on data gene- 
rated on a computer. LORENZ~ has lately carried 
out such experiments, tabulating the residual 
variances for 8 =0, 1, 2, 3, 4. Each of the ortho- 
gonal variables zl(t), z,(t), z&, z&), and the 
residual, obey all first order Markov schemes 
with r1 =0.75. There are altogether 66 samples 
of size n = 45 for 8 = 0, 1, 2, 3, 4. In Table 4 we 
shall present an extract of the results obtained. 
We have standardized some variances in order 
to simplify the table. 

Personal communication concerning unpub- 
lished study. 



52 JACK NORD0 

TABLE 4.  Residual variances obtained from numerical models. 

No. of variables ... 8 = 0  8 = 1  S-2 S = 3  8‘4 

Degrees of 
freedom 

Expected res. 
variance, 

n = 4 5  

Mean of 
computed 
variances 

* 
VI 
PI 

Universe 
Random sample 
Rel. (24) 

22 cases 
42 cases 
66 cases 

44 
38.53 

1.000 
0.978 
0.856 

0.854 
0.885 
0.866 

We notice that relation (24) gives fairly good 
estimates and that the  random sample estimates 
are way off. 

Inspecting the distributions of computed resi- 
dual variances for s =0,  1, 2, 3, 4, we find in 
34-35 % of all cases that x-~ is extending beyond 
the lower (left) 2.5 % limit. 6 5  % of the x : ~  is 
beyond the upper 2.5 % limit. If we correct the 
degrees of freedom according to the yI values 
listed in Table 4, we still find 8 % and 11 % 
beyond the respective 2.5 % confidence limits. 
The “scale” factors q(r‘)/&*) and p(&)/p(r*) 
were not  evaluated in these model experiments, 
b u t  later experiments1 with higher order Markov 
schemes reveal that they are of vital importance, 
as pointed out  elsewhere in this paper.2 

Personal communication from Mr. Carl Morey, 
M.I.T. 

Dr. Lorenz has lately computed 128 power 
spectra on data generated by a computer. The data 
obey a first order Markov scheme with R,  = 0.75. 
The experiments show a satisfactory agreement with 
our theoretical estimates. 

43 
35.10 

0.652 
0.623 
0.509 

0.487 
0.516 
0.518 

42 
31.66 

0.456 
0.426 
0.321 

0.278 
0.297 
0.314 

41 
28.22 

0.370 
0.337 
0.232 

0.215 
0.234 
0.239 

40 
24.78 

0.348 
0.309 
0.192 

0.193 
0.203 
0.212 

Conclusive remarks 

Our sampling analysis is based on  proper 
knowledge of the universe serial correlations of 
the  residuals. In  practice this assumption may 
present a serious problem to the investigator, 
when selecting the data. It becomes vitally 
important t o  use samples with very high degrees 
of freedom when establishing autoregression 
equations of the form (26). 
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