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ABSTRACT 

The study of barotropic wind-driven, ocean circulation by means of a Fourier series 
expansion is extended in this paper to include systems with up to  six components in 
each of the horizontal directions. The results agree with the qualitative results deduced 
from the 2 x 2 study reported earlier. The principal new result which is derived here 
is that a fluctuating wind (whose time-average vanishes) superimposed on a mean 
wind can significantly increase the mass transport of the mean circulation. The max- 
imum increase derived here is 30 % of the mean circulation in the absence of a fluc- 
tuating wind. It is also shown that mean circulations arise from purely fluctuating 
winds. 

1. Introduction 

The present study has two purposes. One is 
to test a general physical hypothesis, the other 
is to extend the results of an earlier study 
(VERONIS, 1963) and to apply the hypothesis 
to a specific oceanographic problem. I n  this sec- 
tion the general physical hypothesis will be dis- 
cussed first and the oceanographic application 
follows. 

Three years ago in an unpublished study of 
the equatorial acceleration of the sun the author 
tried to answer the following question: Given 
a rotating spherical shell of fluid which is uni- 
formly heated a t  the radius r = R, and uni- 
formly cooled a t  a radius r z  R, so that con- 
vection ensues. Because the sphere is rotating 
and because the component of rotation in the 
direction of gravity varies with latitude, being 
a maximum at the poles and vanishing a t  the 
equator, the inhibiting effect of this component 
on convection varies with latitude. Will such a 
variation in the inhibition of convection order 
the small-scale convective processes so that a 
net circulation results? 

The investigation showed that a net circula- 
tion (with an accelerated flow at the equator) 
did, in fact, exist. However, because of our in- 
adequate knowledge of turbulent convection, 
in general, and of convection on a rotating 
sphere, in particular, it  was necessary to treat 
a thin shell of fluid and to apply second-order 
perturbation results of convection to the pro- 
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blem. The approach was inadequate for obtain- 
ing quantitative results. It was decided to try 
the same general idea on wind-driven ocean 
circulation since our (or at least the author’s) 
knowledge of the physical processes involved is 
more advanced. The subsequent part of this 
paper is a discussion of the attempt to apply the 
idea to ocean circulation. 

The process that is proposed to provide a 
mean circulation from a fluctuating force is 
based on the effects of an externally imposed 
ordering mechanism, viz., the rotation of the 
earth. It is also possible to generate mean, or 
ordered, circulations by resonant interactions of 
different scales of motion so that a flux of energy, 
momentum or vorticity to certain scales is 
selected by internal interaction. Such is the 
mechanism proposed by HASSELMANN (1961) in 
a study of waves in deep water. The latter is a 
weakly interacting non-linear system and the 
approach is made through perturbation theory. 

Although the present problem can also be 
approached through perturbation theory, there 
is less r m o n  to do so than in Hasselmann’s 
study. I n  the first place the mechanism which 
provides the ordering is clear in our problem. 
It is a simple matter to show (by perturbation 
theory) that an ocean basin on a uniformly 
rotating plane system has no ordered response 
of the type which ia characteristic of a basin 
on a /I-plane or on a sphere. Secondly, a t  least 
some of the fluctuating motions in the real 
ocean are driven by winds with amplitudes con- 
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siderably larger than that of the mean wind. 
Hence, amplitude considerations alone indicate 
a preference for a fully non-linear study. Fi- 
nally, in paper A it was found that the response 
of a /?-plane ocean is qualitatively different for 
different ranges of the Rossby number. Here, 
the Rossby number measures the degree of non- 
linearity. Hence, a perturbation approach must 
necessarily exclude systems whose response is 
essentially non-linear. The drawback to the 
fully non-linear study is that it must be carried 
out by numerical methods of some sort and the 
general parametric dependence must be explo- 
red through special cases. 

The results of A are reviewed here briefly in 
order to set the stage for the present study. In  A 
the non-linear, two-dimensional vorticity equa- 
tion which described the flow of a barotropic 
fluid on a /?-plane ocean of constant depth and 
driven by a constant (in time) windstress curl 
of the form, -sinx siny, was analysed by a 
truncated Fourier representation. Two Fourier 
components in the directions x (for west-east) 
and y (for south-north) were retained and the 
truncated system was studied for different sets 
of values of the Rossby number, R, and the 
frictional parameter, E. It was found that qua- 
litatively different solutions occurred for dif- 
ferent ranges of the parameters. 

For sufficiently large values of E the ocean 
responded to the driving wind by developing a 
single anti-cyclonic gyre which was nearly sym- 
metric about the mid-point of the basin. Essen- 
tially this means that the frictional control was 
so strong that non-linearities and the /?-effect 
were masked by the effect of friction. 

For smaller values of E three types of circula- 
tion resulted, depending on the value of R. 
When R was small (weak non-linear response), 
the steady circulation which resulted showed a 
strong westward intensification. The solution 
was described as being of the Sverdrup type 
because the essential balance was between the 
term due to the variation of Coriolis parameter 
with latitude (the so-called p-term) and the curl 
of the wind-stress. Such a balance was first 
described by SVERDRUP (1947). When R was 
sufficiently large, the non-linear response domi- 
nated the behavior of the system and the /?-ef- 
fect was very slight. For an intermediate value 
of R the ocean responded to the steady wind by 
fluctuating between states which were descri- 
bed by larger and smaller values of R. The 

cyclic response was very well-ordered and uni- 
form but it was a function of the initial condi- 
tions. When the system was started off with 
values close to those of the Sverdrup solution, 
a steady-state Sverdrup solution was achieved. 

The range of values of R for which a limit 
cycle appeared is an interesting one to explore 
further. In  the real ocean the Rossby number 
based on the smallest-scale motions (i.e., Gulf 
Stream scales) is close to unity. The range of R 
for which the limit cycle behavior appeared in 
the 2 x 2 study and defined on the basis of the 
smallest scale of motions also borders on values 
close to unity. Hence it appears that a possible 
transient response of the ocean may be explored 
through a study using a more detailed represen- 
tation than that of A. It is also apparent that, 
if the value of the Rossby number is close to 
the values required for limit-cycle behavior, 
then a fluctuating wind-stress superimposed on 
the mean stress could give rise to a response 
which is a t  least partially controlled by the 
dynamics of the limit cycle. Results of such an 
investigation are described below. 

2. Statement of the problem 

The non-dimensional form for the vorticity 
equation in terms of the stream function, y,  of 
a barotropic, two-dimensional flow in a square 
oceanic basin on a B-plane is (cf. A for the deri- 
vation) 

where y is the dimensionless stream function, 
subscripts correspond to partial derivatives, t 
is the dimensionless time, x and y are horizontal 
coordinates which are positive to the east and 
north respectively, and  curl,'^ is the vertical 
component of the curl of the wind-stress. The 
Rossby number, R, and the (bottom) frictional 
parameter, E ,  are defined by 

where W is the amplitude of the wind-stress, 
D is some appropriate depth, @ is the measure 
of the north-south variation of the vertical 
component of the Coriolis parameter, L is the 
horizontal length scale of the basin and K is 
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the bottom frictional coefficient. The boundary 
conditions are 

y = O  on x = O , x  and y=O,n. (3) 

The values of R and E which would prevail if 
the observed Gulf Stream were respectively 
controlled by non-linearities and by friction are 

R M 10-4, & % 10-2 .  

I n  the present problem the values of R and E 

will be chosen so that 

(4) 

where 1 is the minimum scale describable by 
the representation used. Thus for the system 
with four Fourier components in x, IIL = 114. I f  
this system is to be dominated by friction, then 
it is necessary that ~*11/4. For dominance of 
non-linear terms, R GX 1/16 (see Veronis (1964)l 
for a detailed discussion of these points). 

The analysis is straightforward. A form for 
 curl,^ is chosen and the stream function is 
expanded in a double Fourier series 

M N  

v =  2 2 amnsinmxsinny, ( 5 )  
m - 1  n = l  

where the am,, are generally functions of time. 
This form satisfies the boundary conditions (3).  
The integers, M and LN, are some finite integers 
which determine the degree of representation. 
It is a straightforward though lengthy proce- 
dure to verify that the following equations govern 
the Fourier coefficients: 

x [ms - nr] 
M N  .. 

+ 2 a,,,, n+s  [2mr +ra  - 2sn - n2] 
m = 1  n = l  

x [ms + r (s  + n)] 

M N  

- C Z: amnar+m,s+n[nr-msI 
m = 1  n-1 

x [2mr + ns) + r2 + s*] 

Hereafter referred to as B. 
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4r 
n(r' + a*) 

+-z:'E?!?L Ears + Drivingterm. 
ra - m2 

where there are M x N such equations and C' 
means summing over odd m for even r and even 
m for odd r.  

The method of solution is to express equations 
(6) in finite difference form and to integrate 
them numerically using an implicit integration 
scheme (as described in A). The system is inte- 
grated in time from some initial state to a final 
steady state or, if the response is periodic, 
through several periods, or, for the case of a 
fluctuating wind, through a preassigned number 
of oscillations of the latter. 

The principal obstacle in integrating this 
system is that the number of non-linear terms 
(those in curly brackets) increase somewhat 
faster than M x N so that the system quickly 
becomes unmanageable because of the largenum- 
ber of terms. Hence, cases with a maximum of 
6 x 6 components were integrated. Details of 
only the 4 x 4  results are reported here since 
the computing time required for 6 x 6 was much 
longer and fewer runs with 6 x 6 components 
were made. Since only qualitative results are 
sought the 4 x 4 case suffices. 

3. Specific cases 
(A) STEADY SOLUTIONS 

Figure 1 shows the steady solution for the 
stream function for the case E =0.1, R =0.01 
with the representations of 4 x 4 and 6 x 6 and 
an anti-cyclonic wind-stress of the form -sin z 
sin y. It is seen that in each case an anti-cyclonic 
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FIG. l a .  Streamline pattern for the 4 x 4 case with E =0.1, R =0.01  and with a mean wind-stress of the 
form - sinxsiny. The pattern is normalized and ymax = 1.73. 

FIG. 1 b .  Same as Fig. l a  but with 6 x 6 components. Here ymax = 1.77. 

gyre exists in the western part of the basin and 
a cyclonic cell exists in the eastern part. The 
latter is a result of the inadequacy of the re- 
presentation because the actual solution which 
should change smoothly from a peak value 
near the western boundary to zero at the 
eastern boundary cannot be represented smoothly 
by as little as six components in the z-direc- 
tion.1 This case represents an essentially linear 
solution with a rather large value for the fric- 
tional parameter, E .  (Cf. B for a more detailed 
discussion of the linear problem.) A noticeable 
feature in Fig. 1 is that the spurious cyclonic 
cell in the eastern part of the basin becomes 
weaker as the representation is improved. It 
was shown in B that this cyclonic cell vanishes 
when the representation is sufficiently detailed 
to represent the linear solution well. 

The steady solution for the case E =0.03, 
R = 0.01 exhibits another feature peculiar to the 
Fourier representation. It was pointed out in 

1 This point is not pertinent in what follows. Our 
concern here is to recognize the different types of 
solutions as frictional, Sverdrup or non-linear, whe- 
ther or not the representation admits spurious oscil- 
latory behaviour. We confine our attention to qua- 
litative integral features in the flow patterns and in 
the time fluctuating case in part (c) of this section. 

B for the linear problem that, if the value of the 
frictional parameter, E ,  determines a scale which 
is smaller than that which can be represented 
by the number of components available, a spa- 
tial oscillation of the stream function results. 
An equivalent phenomenon occurs here, viz., 
if both E and R determine scales which are 
smaller than can be represented, then a spatial 
oscillation will occur. It is seen that Fig. 2 
exhibits a north-south asymmetry with a 
stronger spatial oscillation in the northern half 
than in the southern half of the basin. This is 
the manifestation of non-linear behavior which 
results from the representation. The point can 
be made clearer by noting (cf. B) that E can be 
interpreted as the ratio of the smallest scale 
controlled by friction to the scale of the basin. 
If the system were to be frictionally controlled, 
then it  would be necessary that E m 1/N where 
N is the number of Fourier components. The 
Rossby number, R, is interpreted as the square 
of the ratio of the smallest scale to the scale of 
the basin. Thus, if R w l/Nz the system would 
have strong non-linear behavior. Hence, for the 
4 x 4 case, if E m0.25 (R w0.06) the system would 
exhibit strong frictional (non-linear) effects. 
Since, in fact, E =0.03 and R =0.01 for the case 
shown in Fig. 2, neither of the above conditions 
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FIQ. 2a. SameasFig. la  but withE=0.03, R=0.01. ymax=1.56. 
FIG. 2 b. Same 8s Fig. 1 b but with E = 0.03, R = 0.01. ymax = 1.68. 

is satisfied. Now, the oscillations acquire an 
amplitude sufficiently large so that a t  least one 
of the two processes is balanced. In  the present 
case the Rossby number is closer (since it varies 
inversely as the square of the wave number) to 
the value required for dominance of non-linear 
processes ( R  0.06) than is the value of E which 
would be required for frictional processes to 
dominate ( E  ~ 0 . 2 5 ) .  Thus non-linear effects are 
exaggerated. Figure 1 shows an example of 
frictional control. In  any pattern which we call 
the Sverdrup solution and in which the repre- 
sentation is inadequate either non-linear terms 
or frictional terms will be exaggerated. 

The 4 x 4 and 6 x 6 cases reproduce the quali- 
tative behavior exhibited by the 2 x 2 case. 
The solutions are again divided into frictionally 
controlled ones (large E ) ,  Sverdrup types (small 
E and small R),  non-linear ones (small E and 
large R )  and limit cycles (small E and interme- 
diate R ) .  These particular types are not all 
shown. Figures 1 and 2 show Sverdrup solutions 
which differ in the manner described in the 
preceding paragraphs. 

(B) LIMIT CYCLE SOLUTIONS 

A typical limit cycle solution for the 4 x 4 
case is shown in Fig. 3 with the coefficient of 
sinxsiny plotted against the coefficient of 
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sin2rsiny for the case E =0.03, R =0.06. The 
cycle, sho& in three parts for a range of values 
of t ,  is repeated after approximately 1200 units 
in t (about one year in real time). It differs 
from the 2 x 2 case in that the oscillations occur 
between values in phase space which are much 
closer together than were the corresponding 
values in the 2 x 2  case. Thus the amplitude of 
sinzsiny varies between values of 1 and 2 
whereas in the 2 x 2  case it varied between 
values of - 1  and 30. This verifies a second 
conjecture put forth in A, viz., that as the rep- 
resentation is increased oscillations would take 
place over a much more confined region of 
phase space. Furthermore, the values of the 
Rossby number for which the oscillatory solu- 
tions occur decrease with increasing representa- 
tion. I n  the 2 x 2 case the oscillatory solutions 
occurred for values of R centering about 0.25 
( = l/Na, where N is the maximum wave num- 
ber of the representation). In  the 4 x 4 case the 
oscillations take place around R = 0.06. It should 
be kept in mind that in a continuum the oscil- 
latory behavior could conceivably disappear. 
This possibility can be partially tested by going 
to a system with many more degrees of freedom. 

An additional result of A which has been 
verified here is that the occurrence of a limit 
cycle depends on the initial conditions. Thus 
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FIG. 3. Part of the limit cycle which occurs for the 
4 x 4 case with E = 0.03, R = 0.06. The three figures 
show the portions which occur in the ranges 
2400 4 t 4 2600, 2600 < t < 2800, 2800 < t < 3000 rcs- 
pectively. The pattern i 3  repeated after approxima- 
tely 1200 units in t. 

consider the 4 x 4 case shown in Fig. 3, i.e., 
E =0.03 and R =0.06. When R is reduced to 
0.05 and the system is started from rest with 
a windstress of the form -sinxsiny, the steady 
flow pattern shown in Fig. 4a results. If this 
pattern is taken as the initial condition for the 
case E =0.03 and R =0.06 the steady flow pat- 
tern shown in Fig. 4b is produced. If the case 
E = 0.03, R = 0.06 is started from rest, the limit 
cycle shown in Fig. 3 occurs. A time average 
of the limit cycle circulation produces the mean 
circulation shown in Fig. 4c. This circulation is 
much more intense than the steady one in 
Fig. 46. The maximum transport has increased 
from 1.85 for the steady case to 4.85 for the 
average periodic flow. The point of maximum 

transport is shifted to the north and east. This 
is characteristic of the circulations with stronger 
non-linear effects. 

(c) FLUCTUATING WINDS 

To test the hypothesis of generating a mean 
circulation by fluctuating winds several types 
of computations were carried out. These com- 
putations are discussed for the 4 x 4 case with 
E =0.03, R =0.05 since it is helpful to keep a 
particular case in mind. 

For the first type of computation the follow- 
ing procedure was adopted. The steady solution 
(shown in Fig. 4 a )  for E =0.03 and R =0.05 
with a wind-stress curl of the form -sinzsiny 
is taken as an initial condition. Then a wind- 
stress curl of the form Asin4zsin4ysiny.f ( A  is 
the amplitude of the fluctuating wind-stress 
relative to the steady wind-stress and y is the 
frequency) is superimposed on the steady wind 
and the time integration is begun. It was ob- 
served that aft)er ten periods of the fluctuating 
wind, the time-averaged solution settled down 
to a fairly steady value. This average solution 
was plotted and the value of the maximum 
transport was determined. 

It was found that the results depend very 
strongly on both the frequency, y ,  and ampli- 
tude, A ,  of the fluctuating wind. For example, 
when A = 1 (the amplitudes of steady and fluc- 
tuating wind-stresses were equal) there is little 
effect on the transport. When A =2,  the maxi- 
mum transport, ymX, is increased by as much as 
30 "/b over the steady value for some values of 
the frequency, y. For other values of y there 
is a slight decrease in the transport and for still 
others there is no change. The results are shown 
in Fig. 5 where the maximum transport is 
plotted as a function of y for the case E =0.03, 
R =0.05 and A = 2, and in Fig. 6 where the 
mean circulation pattern is shown for the case 
where y = 0.17. Also shown in Fig. 5 are points 
giving the value of ymX for a few values of y 
when A = 1. 

The range of values of y correspond to periods 
of between one and two weeks for the fluctating 
wind. The graph in Fig. 5 shows a strong depen- 
dence of the transport on the frequency with 
maxima for A = 2 occurring for y = 0.17 (cor- 
responding to a period of about 12 days) and 
y =0.205 (corresponding to a period of about 
10 days). These results are for the specific form 
of the fluctuating wind-stress ( = Asin4zsin4y 
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FIG. 4a. The streamline pattern for the 4 x 4 case with E = 0.03, R = 0.05, and driven by a steady wind- 
stress of the form -sinxsiny. ymax=1.57. 

FIQ. 46. The steady streamline pattern for the 4 x 4 case with E = 0.03. R = 0.06 when the initial conditions 
are given by the pattern of Fig. 4a. ymax = 1.85. 

X Y 

sinyt) and as can be seen from the figure, are 
strongly dependent on the amplitude, A .  

The amplitude and frequency of the fluctuat- 
ing wind which have been used here are realistic 
values for storms. However, the distribution in 
space and time is not realistic. It would be more 
appropriate to use a moving wind system with 
some randomness in both the time and space 

scales. This can be treated more easily by 
finite - dif f erence methods. 

By comparing Figs. 4a and 6 one sees that 
the addition of the fluctuating wind leads to a 
mean circulation which does not appear t o  be 

n 
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C 
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FIQ. 4c. The time-averaged streamline pattern of 
the limit cycle for the 4 x 4 case E = 0.03, R = 0.06 
which is obtained when the system is started from 
rest. The flow is very intense in the north-western 
corner of the basin. ymax = 4.85. 
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FIG. 5. The maximum value of the transport func- 
tion, ymsx, for the 4 x 4 case with E = 0.03, R = 0.05 
and with 8 fluctuating wind of the form Asin4x 
sin4ysinyt superimposed on the mean wind is plot- 
ted ae a function of y for the cases A = 2 (solid line) 
and A = l  (points). The light horizontal line at 
yTax = 1.57 is the value of ymax when only the mean 
wind-stress acts on the system. 
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FIG. 6. The time-averaged streamline pattern cor- 
responding to Fig. 5 when y = 0.17. 

significantly different from that which exists 
with the steady wind alone. Some smoothing of 
the pattern of Fig. 4a has appeared as a result 
of the fluctuating winds. 

It will be interest,ing to see the effect of fluc- 
tuating stresses on the circulation when many 
more degrees of freedom (in a finite-difference 
calculation) are included. The mean square 
amplitudes and some other statistical feature 
of the transient circulation should yield useful 

u1 I I 

0 T 
k 

Cl 

information. With the present truncated system 
the results have been confined to those which 
exhibit qualitative effects such as the change 
in the transport through the “Gulf Stream”. 

A second calculation was made to test in a 
mild way the dependence of the result on the 
fact that there is total reflection of the waves in 
this truncated system, i.e., no “window” is 
available to allow smaller-scale motions to dis- 
sipate their energy to even smaller scales. To 
allow smaller-scale motions to dissipate more 
rapidly the following test was made. 

In  the equation for the Fourier coefficient of 
the term sin4zsin4y the value of friction (6) is 
doubled. The system is driven as before by a 
steady wind of the form -sinxsiny. When it 
has attained a steady state a fluctuating wind 
of the form A sin 42 sin 3y sin yl  is superimposed 
and the system is averaged over ten periods of 
the fluctuating wind-stress. The results are 
compared in Table 1 to the same case with the 
normal form of friction in all of the equations. 
The conclusion is that doubling the frictional 
dissipation in the highest-order equation can 
change the average transport, in some cases in- 
creasing it, in some decreasing it. Hence intro- 
ducing a “window” in the smaller scales provides 
no consistent change in the generation of mean 
circulation by a fluctuating wind. 

A final calculation was made with only fluc- 
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FIQ. 7a. The time-averaged streamline pattern for the 4 x 4  case with ~=0.03, R=0.05 which results 
from a fluctuating wind-stress (no mean) of the form 2sin4z(sin3y fsin4y)siny.t with y =0.1625. 
ymx = 0.75. 

FIG. 7 b.  Same as Fig. 7a but with y = 0.2.  ymax = 0.45. 
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TABLE 1 

"max "max 
(2 in sin 4 s  sin 4y 

(normal friction) component) 

0.1626 2.08 3.57 
0.2 2.11 2.01 
0.25 1.70 2.0 

Table 1 shows the effect of doubling E in the 
equation for the Fourier amplitude of sin4xsin4y. 
With no fluctuating wind and a mean wind in the 
sin4xsin3y equation ymrtx= 1.57 with normal fric- 
tion and y,,=l.Sl with 2.5 in the sin4xsin4y 
equation. When a fluctuating stress in the sin 4xsin 3y 
equation is superimposed on the system, the values 
of vmax are those recorded above. 

tuating wind-stresses in the 4 x 4 system. Here 
a fluctuating wind-stress of the form1 2(sin4z 
sin 4y + sin 4zsin 3y)sin yt is imposed on a system 
initially a t  rest. The calculation is carried on 
until the time-averaged system settles down to 
more or leas steady values. The results for E = 

0.03, R = 0.05 are shown in Fig. 7 for two values 

A considerable amount of small-scale struc- 
ture is apparent in both figures. The north- 
south asymmetry with stronger spatial varia- 
tions in the northern half of the basin reflects 
the non-linearity of the flow. It is interesting 
that the two cases which differ only in the value 
of the frequency of the oscillating wind, should 
show such large differences in their mean cir- 
culations. Of course, in the absence of a mean 
wind the flows show no similarity to the ob- 
served circulation in, say, the North Atlantic. 
The maximum transport in the two cases is 
one half (for y =0.1625) and one third (for 
y = 0.2) of that which results from a single gyre, 
steady wind with the same value of the Rossby 
number. The maximum value of the stream 
function occurs at different locations in the 
two cases and both are different from the loca- 
tion of ymax in Fig. 4a. 

The ramifications and some speculations ba- 
sed on the present results are included in the 
final section of the paper. 

of y. 

This form is taken because a single component 
would always produce a circulation with nodal lines 
in the same locations as those of the wind. In the 
/?-plane model it is not possible to  eliminate imposed 
nodal lines in y because the non-linear terms gene- 
rate only harmonics of the basic wind-stress. 
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4. Conclusions and speculations 

This investigation has shown an increase in 
the mean oceanic transport as a result of fluc- 
tuating winds. Since the actual wind systems 
acting on the oceans are made up of mean winds 
with fluctuations which are larger than the 
mean there is some justification for pursuing 
the model further. Certainly one cannot simply 
ignore the fluctuating winds nor is it clear how 
one can parameterize the effect in terms of a 
steady model. However, the foregoing investi- 
gation raises several questions. 

Will the results be verified in systems with 
a considerably more detailed representation or 
are these results essentially due to the high 
truncation of the system? The latter is certainly 
a possibility because it is well known that 
systems with a discrete number of modes can 
behave in a manner which is qualitatively diffe- 
rent from the behavior of a continuum. 

Would a system with a more random fluc- 
tuating wind-stress be selective in ordering those 
fluctuations which tend to increase the transport 
or would the mean behavior also be more ran- 
dom in its response? Can a barotropic ocean 
select preferably those moving storm systems 
which tend to increase the transport through 
the Gulf Stream? How does the ocean filter out 
most of the transient behavior in its interior 
and maintain a Gulf-Stream transport which is 
relatively constant? And finally, would the 
added degrees of freedom in a baroclinic system 
enhance the present result or is it essentially a 
barotropic phenomenon? 

The questions listed above refer to the large- 
scale circulation. There are also questions which 
deal with mechanism on a smaller scale and the 
influence of such mechanisms on the large-scale 
flow. In  our basic model we have incorporated 
a viscosity coefficient, K ,  which is supposed to 
parameterize the effects of some of the smaller- 
scale motions on the large-scale flow. We also 
treated explicitly some of the smaller-scale mo- 
tions, those which are driven by a fluctuating 
wind. What does such a separation of small- 
scale effects imply? 

Ordinarily, an eddy viscosity coefficient (or a 
bottom drag coefficient as we have used) is 
meant to incorporate the effects of smaller-scale 
motions which are not in themselves critical in 
determining the large-scale flow. The implica- 
tion is that instabilities of the large-scale flow 
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result in small-scale turbulence near boundaries 
or in local regions of high shear. The resultant 
turbulent eddies act to brake the flow and even- 
tually dissipate themselves into motions of 
smaller scales until molecular viscosity damps 
out the very smallest scales which are generated. 
Throughout such a process the assumption is, 
of course, that the small scales act as a sink for 
such properties as the momentum and vorticity 
of the large-scale flow. 

However, when some ordering mechanism 
exists in the system, it is possible that smaller- 
scale motions which are forced or which can be 
generated locally may feed energy, momentum 
or vorticity into larger-scale motions so that 
significant changes take place in the large-scale 
flow as a result. In  such a case it is obviously 
not possible to parameterize the effect by an 
eddy viscosity since the transfer of properties 
takes place in a direction opposite to that which 
is implied by an eddy viscosity. Yet the use of 
an austausch coefficient for those transient 
motions which are caused by, say, instabilities 
of the Gulf Stream or of the interior flow of the 
ocean niay be appropriate and worthwhile- 
especially since there is no obvious or tractable 
way of accounting for such motions in a general 
circulation model. 

The dilemma is a real one but there is some 
hope of arriving at an answer if there is an 
appropriate separation of scales. In  particular, 
if the scales of the parameterized processes are 
smaller than those of the transient processes 
which can send energy to larger scales, then 
there is some hope for parameterizing the first 
and treating the second explicitly. If on the 
other hand the scales are of the same order, 
there seems to be no obvious way of treating 
one and parameterizing the other. A good deal 
of effort, both theoretical and observational, will 
be necessary to settle the issue. 
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