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ABSTRACT 

The problem of low frequency zonal vorticity waves in a symmetric polar basin is 
formulated in a plane projection tangent to the sphere at the pole. Eigensolutions 
are found when only first order curvature effects are retained in the plane of projec- 
tion. Comparison with the results of Longuet-Higgins (1964b) shows that such an 
approximation provides a reliable analogue, applicable to the polar regions, of the 
mid-latitude beta-plane. 

1. Introduction 
The oceanographic exploration of the Arctic 

has progressed rapidly in the last two decades, 
and enough information has been collected to 
provide a satisfactory picture of the main hyd- 
rographic and bathymetric features (COACHMAN, 
1961; GORDIENKO, 1961). The next logical step 
in Arctic oceanographic research should be a 
study of the dynamics of the Arctic Ocean. 
There are too few time series to investigate the 
situation from an observational point of view, 
but it may prove useful to have a preliminary 
estimate of the time scales of the motions to be 
encountered. It is the purpose of this paper to 
find theoretical estimates which can be useful 
as guides in future observational programmes, 
and also to give a firm basis to some analytical 
techniques applicable to the study of oceano- 
graphic phenomena in Arctic regions. 

Particular attention will be given to the long 
period planetary (or Rossby) waves which, 
because of their long period and large scale will 
be representative of Arctic conditions. The na- 
ture and properties of these waves will depend 
on the main bathymetric features of the Arctic 
basin; in this paper, however, we will consider 
only a basin in which the depth contours and 
the boundary are symmetrical about the pole. 

2. The model 
The Arctic Ocean is represented by a basin 

centered on the pole of rotation. Thedepthis 
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allowed to vary with latitude, but not with 
longitude, and the southern boundary is taken 
at a distance of 1500 km from the pole. It will 
be realised that this is a very gross model of 
the Arctic topography, and that some of the 
large scale asymmetries, like the Lomonosov 
Ridge, and the opening to the Atlantic Ocean 
will actually play an important role. How 
much of a role they do play can be later ascer- 
tained by comparing observations with the 
results of theoretical works such as this one. 
It is preferable in any case not to overburden a 
preliminary investigation with too many de- 
tails. The slight vertical stratification associa- 
ted with the seasonal surface phenomena (melt- 
ing of the ice cover) is not taken into account, 
and the Arctic waters are considered homo- 
geneous in density. 

The motions studied will be assumed to have 
time and distance scales large enough to ignore 
the effects of viscosity and to regard the pressure 
field as purely hydrostatic, as is usual with long 
waves. The constant total energy of the water 
contained in the basin is assumed to be small 
enough to allow linearization of the momentum 
equations; the Rossby number UILR, formed 
from the angular frequency of rotation of the 
Earth (a)  and from the horizontal velocity ( U )  
and length (L)  scales, will then be small. A small 
Rossby number also implies that the local 
vertical vorticity component of the fluid, of 
order UIL, will be small compared with the 
planetary vorticity. 

Under the above approximations the momen- 
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tum equations for an incompressible fluid take 
the form 

- 1  aP av 
- .t 2nu cos 0-2Rw sin 8 = ~ - 
at er’ sin e ail ’ (1) 

aP 
ar‘ 
- -  

- -es (3) 

and the continuity equation is 

The coordinates r‘, 8, 1 and the associated velo- 
cities w, u, v, correspond to directions along the 
radius, the co-latitude and the azimuth of the 
sphere. P is the hydrostatic pressure, R the 
angular frequency of rotation of the Earth 
(0.728 x sec-l), Q the density of the fluid 
(1.03 gm cm-*) and g the acceleration due to 
gravity (980 cm see-*). 

The depth of the ocean being very small 
compared with the radius of the Earth, r’ can 
be replaced by the constant terrestrial radius, 
R (6370 km), and a/&‘ by a/&, where z is 
measured upwards along the local vertical. 
Furthermore, since in long waves the horizontal 
velocities are in general much larger than the 
vertical velocities, and since we are now working 
near the pole, where 6 is small, it  is assumed 
that 

U cos 8 > W sin 8, 

( W being a vertical velocity scale) so that only 
one Coriolis parameter is retained in (1). 

Let q be a small vertical displacement from 
the equilibrium water surface (q t H ) ;  the pres- 
sure gradients can then be replaced by gradients 
of elevation. Integrating the pressure equation 
(3), and neglecting the constant atmospheric 
pressure one has 

Surface displacements will then replace pressure 
in the momentum equations. 

The momentum and continuity equations are 
now integrated from the bottom (z  = - H )  to 
the surface ( z  = q )  of the ocean. The velocity 

component perpendicular to the bottom vani- 
shes at the bottom itself: 

u aH 
R ae w + - - = 0  a t  z = - H .  (6) 

At the surface, a linear boundary condition is 
used: 

w = -  a t  z = q .  
at (7) 

Since viscous effects have been neglected 
altogether, slippage is allowed to occur at the 
boundaries. Because the density is constant, 
the horizontal velocities are independent of the 
depth, and integration does not change the 
form of the momentum equations. The con- 
tinuity equation, however, transforms, using 
conditions (6) and (7) into (10) below. 

In spherical coordinates, the integrated equa- 
tions governing the motions are then 

1 [- aaH + auH -1 sin 8 + aq - = 0. (10) 

R sin 0 ail ae at 

3. The polar plane approximation 

The surface of the sphere is projected, in a 
simple orthographic manner (Fig. l), on to a 
plane tangent to the sphere at the pole. This is 
done mostly to simplify the mathematics, but 
also with the aim of establishing in polar regions 
an approximation technique comparable to the 
mid-latitude beta-plane. 

Plane polar coordinates r and + in the plane of 
projection are related to the spherical coordi- 
nates as follows: 

dr = R cos 0 do, d+ =dl .  (11) 

Equations (8)-(10) become in the plane of pro- 
jection 

(12) - av + ~ R U C O S  e -  -gar]  -- 
at r a+’ 
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1 avH COB 0 aurH a' 
r a4 r ar at 

+---- + - = 0. (14) 

The variables u, v, and 7 retain their previous 
significance. 

The working approximation, to be introdu- 
ced in the analysis after all differentiations have 
been performed, will consist of neglecting the 
second and higher powers of rlR with respect 
to unity: (r/R)s<l. The influence of the ter- 
restrial curvature is then retained only to first 
order in r/R. The polar plane approximation 
will differ from the mid-latitude beta-plane 
approximation in that the derivative of the 
Coriolis parameter will be a linear function of r: 

-_ 

1 f 2: 2R, 

This approximation should be valid over the 
entire Arctic Ocean, since ( r /R)*  is less than 0.1 
even in the southernmost corner of the basin 
(Beaufort Sea, 72' N). 

4. Zonal waves 

Let us now look for solutions of (12)-(14) 
which have the form of zonally propagating 
waves for which the displacement from the 
equilibrium surface can be written as 

rl = F(r)e'@-*+) (16) 

w is the frequency of t,he wave, 8 its constant 
azimuthal wave number and F(r)  an amplitude 
function to be determined. The following will 
hold for the derivatives of the displacement (16): 

The velocities u and v must have a similar 
tamporal and azimuthal dependence, so that 
they can be eliminated from (12) and (13): 
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FIG. 1.  The orthogonal polar projection. 

Substitution of the expressions (18) and (19) 
for the velocities in the continuity equation 
(14), together with the subsequent application 
of the approximation ( r / R ) * < l ,  yields a dif- 
ferential equation for u: 

Substituting in (20) for u in terms of F(r)  (17), 
the amplitude equation follows: 

C F  + -  dF [1 -+--+.-- (4n2+w2)r  1 d H ]  
dr' dr r (4n2-o' )R2 H dr 

1 (4n2-  w 2 )  dH 
gH wrH dr 

+-+.-- - 0 .  

(21) 

The description of the problem is completed 
by the following boundary conditions. First, 
the amplitude F ( r )  must remain finite every- 
where within the basin and its boundaries; 
secondly, the velocity component perpendicular 
to the boundary a t  r = rl must vanish: u(rl)  = 0. 
This last condition is expressed in t e r n  of F(r)  
through (18): 
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To simplify the notation, the following non- 
dimensional variables and abbreviations will be 
introduced: 

w 
@‘ = - 

2Q’ 

S& 

u 
6 -  , +  

Gravitational effects are represented by M ,  
curvature effects by E ;  the relative magnitudes 
of expressions containing these quantities will 
decide which of the two, gravity or curvature 
of the Earth, is most influential in a particular 
type of motion. The amplitude equation toge- 
ther with the boundary conditions are then 
reformulated in terms of (23). 

d 2 F  d F (  ;,:I) 
d x  d x  

x 2 y + x -  1+&X 3- -- 

s 2 + 6 x 2 +  (24) 

F ( z )  is finite for O < z <  1, ( 2 5 )  

d F  sP 
d x  u’ 

a t  x = 1 .  __ - 

5. Types of solutions 

An analysis of the solutions of (24) using the 
Method of Signatures (LEBLOND, 1964) shows 
that the solut’ions satisfying the boundary con- 
ditions (25) and (26) can be divided into two 
classes: gravity waves, of period shorter than 
a half pendulum day (w’ > 1, M term dominant 
in 6), and long period vorticity waves ( ~ ’ ( 1 ,  
E term dominant in 6). It is already well known 
that such gravity waves on a rotating sphere 

are modified by the bottom topography and 
the beta-effect and can propagate in either zonal 
direction. The influence of bottom topography 
on the long period vorticity waves is most easily 
understood through the conservation of poten- 
tial vorticity theorem (VERONIS, 1963) 

constant. f + E  
H + 7 )  
- =  (27) 

In an open ocean with a flat bottom, Rossby 
waves propagate only towards the west (ROSSBY, 
1939); similarly, in a closed polar basin, only 
eigensolutions with 8 < 0 will exist when 
H =constant. This will also be true when there 
is a depth variation working in the same direc- 
tion as the beta-effect (the depth increasing 
away from the pole) or in the opposite direction 
but with less influence than the beta-effect. I n  
the first instance the frequency of the wave is 
increased by the presence of a depth gradient, 
in the second it is decreased. 

If, however, the depth variation counteracts 
and overbalances the variation of Coriolis para- 
meter, so that the net influence of both is like 
a negative beta-effect, then Rossby waves will 
propagate towards the eaat only (s > O ) .  The 
steeper the depth gradient, the higher the 
frequency of such waves will be. 

For any given analytical bottom configura- 
tion H ’ ( x ) ,  the Method of Signatures allows one 
to determine whether the net effect of bottom 
slopes will impose eigensolutions of the western 
or the eastern propagating type. However, only 
in very simple cases, such as the ones studied 
below, can explicit analytical expressions be 
obtained for the eigenfrequencies in which the 
influence of the parameters of the problem can 
be readily apprehended. 

We are not interested here in gravity waves 
and will consider only long period vorticity 
waves in basins with simple bottom topo- 
graphy. 

6. Flat Bottom solutions 

In a basin with a flat bottom, planetary 
waves can propagate only towards the west 
(LEBLOND, 1964). For such low frequencies as 
we expect to find, we can neglect &xa with 
respect to unity and, in the absence of depth 
gradients, the amplitude equation reduces to 
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TABLE 1. Eigenfrequencies (w ' )  of zolzalphnetary 
wavea in a symmetrical polar ocean with a flat 
bottom, a8 calculated with the help of the polar 

plane approximation. 

8 =  - 1  - 2  - 3  - 5  -8  

n= 1 .00324 .00360 .00359 .00320 .00261 
2 .00099 .00139 .00155 .00163 .00152 
3 .00048 .00073 .00088 .00101 
4 .00028 .00045 .00057 .00069 
5 .00018 .00031 .00040 .00051 

daF dF 
dx2 dx 

x2 ~ t- x- - F(a2 + 62') = 0.  (28) 

For w' i 1, 8 < O ,  the constant 6 is negative and 
the  solution which is regular at the pole is the 
Bessel function 

F(x)  = J k ( v m  2). (29) 

k will henceforth denote 1s 1, and assumes here 
the values 1, 2, 3, .. . Using (29), the boundary 
condition (26) becomes 

For small w', the right hand side of (30) is 
considerably larger than unity, and one finds 
that the value of 6 which satisfies the boundary 
condition differs from the root of the denomina- 
tor of the left hand side only in the third signi- 
ficant figure (JAHNKE & EMDE, 1945). The 
eigenfrequencies will then be approximated by 

The constant /?k,n is the nth root of the Bessel 
function Jk. The ratio (R2/rT) takes the value 
20 for a basin of 1500 km radius. Some eigen- 
frequencies calculated from (31) are listed in 
Table 1. 

Substitution of (29) into (16), (18) and (19) 
gives for the amplitude and the horizontal velo- 
cities of the waves 

s= - I ,  n =  0. 

s=-2,n= I :  

s=-2,n=0. 

s= -3,n = 2 ,  

FIQ. 2. Contours of surface displacement for zonal 
planetary waves in a basin with a flat bottom. The 
patterns rotate clockwise with angular velocity 
1 1  
0s. n. 

a) v .  b) U: 

C) 

FIQ. 3. (a) and (b) The zonal (v) and radial (u) 
components of the velocity field for 8 = - 2, n = 1. 
The, patterns rotate clockwise with angular velocity 

w2.1. (c) The direction in which the local velocity 
vector rotates: -for clockwise, +for counterclock- 
wise rotation. 

Tellus XVI (1964), 4 

34 - 842899 



508 P. H. LEBLOND 

In  the above expressions, the constant c has 
the dimensions of a length, and is determined 
by the total energy of the system. Sketches of 
amplitude and velocity contours are found in 
Figs. 2 and 3. There is a node of velocity and 
amplitude at the pole, n nodal circles of ampli- 
tude and zonal velocity (v), but only n - 1 
nodal circles of radial velocity (u); there are 
also k nodal diameters. 

At a fixed point, the tip of the velocity vector 
traces an ellipse over a cycle, the ellipticity 
being given by 

IUI 
l - w  

1-u' x 

The direc 

d 
- d x  J,(r/m 2 )  - $ J k ( v m  2 )  

on in which the ellipse is 

(35) 

raced 
varies radially, and, as one progresses from the 
pole, bands where the velocity vector rotates 
clockwise alternate with bands where it rotates 
counterclockwise (Fig. 3c). 

The vertical vorticity component, 6, defined 
bv 

becomes, when u and w are expressed in terms 
of (33) and (34), 

The vorticity then has the same functional 
dependence as the surface displacement, but is 
180' out of phase with it; the energy fluctuates 
between the forms of kinetic energy of rotation 

and gravitational potential energy. Note that 
although we have neglected viscosity altogether, 
there does not arise any singularity in vorticity 
a t  z = 0, as sometimes happens when such a simp- 
lification is made. 

To first order, when the pressure is hydro- 
static and the velocities independent of depth, 
the average rate of energy transfer due to the 
wave across a vertical plane of unit width is 

<egHrlv). (38) 

The brackets indicate time averaging over a 
cycle. The average radial energy transport 
vanishes. The zonal component is proportional 
to 

l d F 2  sw'F2 
2 d x  x * 

(39) 

The total energy transport is then proportional 
to the integral of (39) from the pole to the 
boundary: 

F2 
Fz (1) - 80' I. ;- dz. (40) 

At the boundary, the amplitude is very small; 
as a matter of fact, we have approximated the 
eigenfrequencies by those values of frequency 
which make the amplitude vanish a t  x = 1. The 
second term of (40) will then dominate, and the 
net average energy transport will be towards 
the east, in a direction oppposite to that of 
phase propagation. This agrees with LONGUET- 
HIGGINS' ( 1 9 6 4 4  general results on energy 
transport in planetary waves. 

We have just described the planetary wave 
eigensolutions of a symmetric polar basin with 
a flat bottom. These results are, however, sub- 
ject to the approximation @/,.# < 1, which will 
be referred to as the "polar plane approxima- 
tion". It is interesting to compare the above 
results with similar results derived entirely in 
the spherical geometry, so as to provide an 
a posteriori vindication of the analyses perfor- 
med with the help of the polar plane approxima- 
tion. Such a comparison can be made with the 
results obtained by LONCWET-HIGWINS (19643) 
in which a completely different approach was 
used. 

7. Comparison with results on the sphere 
By assuming that the surface displacements 

have a negligible influence on the vorticity ba- 
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lance, LONQUET-HIQQINS (19643) has formula- 
ted the problem of planetary waves in two di- 
mensions, and has solved it in terms of a stream 
function. This approximation of nearly two- 
dimensional flow will be very good provided the 
wave length is not comparable to the radius of 
the Earth. In our notation, the stream function, 
y, characterizing eastward travelling zonal pla- 
netary waves in a polar basin on a sphere is 
given by Longuet-Higgins as 

=P,” (COS 8 ) .  (41) 

P t  (cos 0) is the Legendre function of argument 
cos 8. The constant v is a positive real number 
satisfying the boundary condition 

PF (COS 0,) = 0, = sin-’r,/R. (42) 

The frequency of the planetary wave is then 
given by 

, k 
y = -__ 

v(v + 1). 
(43) 

This relation is not unlike (31), but v is not as 
easily evaluated as Pk, n. The Legendre function 
P,! ( c o s ~ ) ,  when z is real and k (but not v)  is an 
integer, can be expressed in terms of gamma 
functions and the hypergeometric series, *F1 : 
P,! (COS 0) = 

(1 -COS e)k‘2 ( - 2)k r(v+ k +  1) 
k! r ( v - k + l )  

, F , [ l + k + v , k - v ;  k + l ;  $ - $ c o s ~ ] .  (44) 

The expression (44) will have roots in v only 
when the hypergeometric series vanishes. It is 
clear from the behaviour of such series (ERDELYI 
et al., 1953, ch. 111) that there is an infinity of 
progressively larger values of v which make the 
series vanish for constant k and cos 8 .  The same 
multiplicity of solutions then exists as found in 
the polar plane. The first root was calculated 
for a few values of k by computing the sum of 
the first 20 terms of the series for increasing 
values of v until a change of sign occurred 
(Table 2, Column 2). 

The eigenfrequencies thus calculated differ 
from their equivalents in the polar plane (Table 
2, Column 1) by small but appreciable amounts, 
especially a t  low wave numbers. Since both 
sets of results are only estimates of the exact 
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TABLE 2.  Comparison of eigenfrequencies (0‘) of 
zonal planetary waves in  a symmetrical polar 
ocean with a flat bottom, aa calculated from the 
polar plane approximation (P-P) and Longuet- 

Higgins’ approximation (L.-H.) .  

Qs,1 
8 P - ~ P  L.-H. P-P and L.-H. 

- 1  .00324 .00314 .00342 
- 2  .00366 .00378 .00380 
- 3  .00359 .00369 .00369 
- 5  .00320 .00324 .00326 
- 8  .00261 .00268 .00268 
- 12 .00222 .00224 .00224 
- 16 .00179 .00179 .00179 

eigenfrequencies, departing from the true values 
because of the approximations used in solving 
the problem, we can discover the relativedis- 
torting effects of the two fundamental approxi- 
mations (Longuet-Higgins’ or the polar plane) 
by applying them both to the problem simul- 
taneously. Longuet-Higgins’ approximation 
that the surface displacements can be neglected 
will then be superimposed on the polar plane 
approximation used in this work. 

For a two-dimensional problem in spherical 
coordinates, the velocities can be expressed in 
terms of a stream function, \r: 

1 aY 
u=.- R sin 0 a;l’ 

(45) 

Taking the curl of the momentum equations 
(8) and (9), and using the continuity equation 
(10) with the depth now treated as constant, we 
have the vorticity equation 

This is the equation solved by Longuet-Higgins. 
Transforming to the polar plane through the 
relations ( l l ) ,  (47) becomes 
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(48) 
2Q aY 
R’ a+ 

+ -cos e- = 0. 

Let us look for vorticity waves of the form 

y = y  @ ) p - S + ) .  (49) 

We can now substitute (49) into (48); with 
x =r/rl and (r/R)a (1, the following amplitude 
equation in ‘yo is obtained 

d a y o  d Y 0  
dx’ d x  

2’- + 2- - Y O ( B z  2) = 0. (50)  

Equation (50) resembles (28) very much; in 
fact,  the two differ only in the definition of the 
constant 6. Putting now 

we recover the fact that in the two-dimensional 
flow hypothesis there are no gravity influences 
(no M term in S*). This is of course a direct 
consequence of neglecting the surface elevation, 
there being no departures from the equilibrium 
surface on which gravity can act. 

With B < 0, (50) has for solution 

Y o ( x )  =&(1/16*x) .  (52) 

The boundary condition is now 

so that the eigenfrequencies are given by 

(54) 

Some of the eigenvalues (54) are listed in 
Table 2, Column 3. These frequencies, calcula- 
ted using both basic approximations, differ 
little from those computed with the aid of Lon- 
guet-Higgins’ approximation alone. We must 
then conclude that the application of the polar 
plane approximation results only in a small 
distortion and that it will yield the best estimates 
of the eigenfrequencies. As one can see from 
Table 2, the distorting effect of the two approxi- 

mations is strongest at low wave numbers and 
diminishes rapidly as k increases. 

It then appears that the eigenfrequencies cal- 
culated from (31) differ only in the third signi- 
ficant figure from the results which could be 
obtained through much labour from a stricter 
analysis. Moreover, since the planetary waves 
here studied, which, because of their intimate 
dependence on the Earth’s curvature, are most 
likely to be distorted by any departures from the 
strict spherical shape, are found to suffer only 
minor distortions, then all other types of wave 
motion, which are less dependent on the ter- 
restrial curvature, will be correspondingly less 
affected by the polar plane approximation. This 
approximation will then provide results depart#- 
ing very little from those computed on the 
sphere, and can be applied with confidence to 
the study of oceanographic phenomena in the 
polar ocean. It then provides a reliable ana- 
logue of Rossby’s beta-plane in high latitudes. 

8. Sloping bottom 

Albhough the type of possible solutions in the 
presence of radial slopes can be ascertained by 
using the Method of Signatures, explicit analy- 
tical solutions of (24) together with its boundary 
conditions (25) and (26) can be obtained only 
for very simple bottom topographies. A parti- 
cularly simple and instructive bottom profile is 

(55) 

where p / 2  < 1. The functional dependence of 
the depth is then the same as that of the Coriolis 
parameter, and the influence of the two can be 
directly compared. For very low frequencies 
and small p ,  the amplitude equation (24) is 
approximated by 

This is of the same form as (28) and will have 
planetary wave solutions of the type (29) for 
negative (6 +ps/o’): 

More explicitly, the constant (6 +palm’) can 
be expanded as 

Tellus XVI (1964), 4 
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TABLE 3. Some eigenfrequencie.8 of zonal plune- 
tary wavea for a eymmetrical polar ocean with 

bottom profib H' = 1 +px'/,. 

p = 0.1 p =  -0.1 
8 < 0  8>  0 

# 

k Us, 1 
1 0.0095 0.00318 
2 0.01100 0.00366 
5 0.00963 0.00321 

We can then see the role played by a bottom 
configuration of the form (55): if p is positive, 
so that the depth increases towards the boun- 
dary, then 8 must be negative and propagation 
to the west in order to keep (58 )  negative. If 
p is negative, so that the depth decreases with 
x, and large enough to make (p +r?/p)  negative 
also, then the wave number, 8, will have to be 
positive to make (58 )  negative. This is exactly 
the behaviour expected from considerations of 
conservation of potential vorticity and also 
predicted by the Method of Signatures. 

The boundary condition is now 

and, as in the flat bottom case, the eigenfre- 
quency is closely approximated by the root of 
the denominator of the left hand side. This 
gives for the eigenvalues 

A few of the eigenfrequencies are listed in 
Table 3. 

This simple example illustrates the influence 
of depth variations on long vorticity waves. 
The case of symmetric bottom slopes can be 
considered solved in principle, since it is always 
possible to ascertain the existence and the type 
of solutions. The evaluation of the eigenfre- 
quencies may, however have to be done by 
numerical methods. 

9. Conclusions 
We have here studied the problem of long 

zonal waves in a symmetrical polar ocean. The 
analysis has been performed in a plane polar 
projection of the sphere, and only first order 
t e r n  in the terrestrial curvature have been 
kept. Choosing for particular scrutiny the low 
frequency planetary eigensolutions, we have 
described these waves for a besin with a flat 
bottom. Comparison of these results with their 
equivalents on the sphere, emanating from a 
different approach due to LONQIJET-HIQQINS 
(1964b), leads to the conclusion that the polar 
plane approximation used here is a very good 
one indeed and can be employed in the study of 
polar oceanographic phenomena with the same 
confidence that is bestowed upon the beta- 
plane approximation in the study of mid-lati- 
tude phenomena. 
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