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ABSTRACT
Existing oceanic studies on either data reconstruction or dynamics often used 
2-dimensional empirical orthogonal functions (EOF) for sea surface temperature 
(SST) and for deep layers. However, large-scale oceanic dynamics, such as equatorial 
ocean upwelling and arctic ocean ventilation, imply the existence of strong covariance 
among the temperatures and other parameters between different layers. These 
ocean dynamics are not best represented in the isolated 2-dimensional layer-by-layer 
calculations, while the 3-dimensional EOFs have a clear advantage. The purpose of 
this paper is to demonstrate 3D EOF calculations based on the NASA Jet Propulsion 
Laboratory (JPL) ocean general circulation model (OGCM) from surface to 5,500 meters 
depth, with 33 depth layers, 1-degree latitude and longitude spatial resolution, and 
monthly temporal resolution. We also present visualizations of the 3D EOFs and make 
physical interpretations of the first two EOFs. Our 3D EOF results demonstrate that (i) 
the 3D spatial pattern of equatorial ocean upwelling is mainly reflected in the first 
EOF mode and has its most variabilities within the depth layer between 100 and 400 
meters, (ii) the 3D El Niño Southern Oscillation (ENSO) dynamic pattern is mainly 
reflected in the second EOF mode and is mostly confined from surface to the depth 
of 150 meters, and (iii) the lead eigenvalue from the 3D EOF calculation appears to 
contain some signal of oceanic warming. Additionally, our method of weighted 3D 
EOF computation and our 3D visualization Python code may be useful tools for both 
climate professionals and students.
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1 INTRODUCTION

Empirical orthogonal functions (EOFs), or spatial modes, 
are often used to analyze general climate model (GCM) 
output to explore spatial patterns of climate variability 
or for reconstructing historical climate data (Zhang and 
Moore (2015), Houser et al (2020)). EOFs show which 
spatial patterns explain the most variance in the data, 
and can consequently give insight into how our data 
behaves. Although GCMs and climate dynamics are 
3-dimensional in space and 1-dimensional in time, EOF 
analyses have often been performed in 2D layers in 
space (Shen et al. (2017), Meyers et al. (1999), Mu et al. 
(2018)). The primary purposes of our paper are twofold: 
(a) to show a computational algorithm of 3D EOFs, and 
(b)to interpret the climate dynamics of the first two EOFs. 
We do so by using the output data of a NASA JPL ocean 
general circulation model (OGCM).

Numerically, EOFs can be computed by finding the 
eigenvectors of the spatial covariance matrix from the 
weighted anomalies. This spatial covariance method 
often has convenient physical interpretations for 
leading modes. Most EOF calculations in recent years 
use singular value decomposition (SVD) with packages 
available in different computer languages, e.g., Python, 
R, and MatLab, when the size of the SVD matrix is not too 
big, say less than half of your computer memory (Shen 
and Somerville (2019)). Our 1-degree spatial resolution 
dataset is not very big and SVD computing can be done. 
However, we also use temporal covariance in this paper 
which can address the issue of memory limitations for 
future datasets of higher resolutions. This memory 
limitation is perhaps one of many reasons that EOFs were 
used to be computed layer-by-layer. Our method details 
in this paper are presented in the way of covariance.

Papers such as Shen et al. (2017), Meyers et al. 
(1999), and Mu et al. (2018) calculated 2D EOFs, and 
indicated that the strongest signal was El Niño Southern 
Oscillation (ENSO). ENSO is an ocean-atmosphere climate 
phenomenon characterized by the warming of sea 
surface temperatures in the central and/or east-central 
equatorial Pacific (NOAA CPC (2005)). The pattern is often 
described as a warm tongue in the eastern pacific. Despite 
its aforementioned clear spatial pattern in sea surface 
temperature (SST), ENSO is a phenomenon involving 
not only the surface but also the deep ocean, up to 150 
meters, to be discussed later in this paper. Therefore, 2D 
EOFs lack the ability to describe the interactions between 
surface and deeper ocean layers. The need to consider 
such significant deep ocean dynamics motivated the idea 
of computing EOFs for all layers at once. The resulting 3D 
EOFs show that ENSO accounts for a smaller fraction of 
variability than equatorial upwelling. This validates the 
significance of calculating 3D EOFs.

Our paper will demonstrate 3D EOF calculations based 
on the NASA JPL ocean general circulation model (OGCM) 

from surface to 5,500 meters depth, with 32 depth layers, 
1-degree latitude and longitude spatial resolution, and 
monthly temporal resolution. Our mode visualization and 
physical interpretation will focus on the first two EOFs. 
Our 3D EOF results demonstrate that (i) the 3D spatial 
pattern of equatorial ocean upwelling is mainly reflected 
in the first EOF mode and has its most variabilities within 
the depth layer between 100 and 400 meters, (ii) the 3D 
El Niño Southern Oscillation (ENSO) dynamic pattern is 
mainly reflected in the second EOF mode and is mostly 
confined from surface to the depth of 150 meters, and 
(iii) the lead eigenvalue from the 3D EOF calculation 
appears to contain some signal of oceanic warming.

Relevant literature already exists on (i) multiway table 
data analysis theory, e.g, Structuration des Tableaux A 
Trois Indices de la Statistique (STATIS) (Acar and Yener 
(2009), Vallejo-Arboleda et al. (2007), Sabatier and 
Traissac (1994)), and (ii) computational algorithms for 
big data EOFs (Gittens et al. (2016)). A special case of 
multiway table is a 3-way table that includes locations, 
parameters, and time (Stanimirova et al. (2004)). In our 
case, we only look at only one parameter: temperature; 
our locations are three-dimensional; and our time is 
indexed for monthly data from the NASA JPL OGCM.

In principle, multiway data analysis algorithms such 
as STATIS should be able to deliver the results of PCs 
and EOFs when the multiway data table is properly non-
dimensionalized. In practice, the problem is much more 
complex, such as the large size of the multiway data 
table, and the physical meanings of the PCs and EOFs. 
For example Gittens et al. (2016) contributed to the 
development of innovative computational algorithms to 
handle multi-terabytes of data for 3D EOF computing. 
Their paper considered the cases: (a) Climate Forecast 
System Reanalysis (CFSR) data with a 1/2-degree, 41 
layers, and 6-hour resolution; (b) Community Atmosphere 
Model 5.0 (CAM5) data with 1/4-degree, 30 layers, and 
6-hour resolution. Their CFSR dataset has 2.2 TB and their 
CAM5 dataset has 16 TB. They concluded that most of the 
run time was spent on In/Out process. Their EOFs from 
their multi-hour data by default have no clear physical 
interpretations. Accordingly, their paper included neither 
EOF figures nor physics interpretations. Our paper shows 
both the successful application of our 3D EOF algorithm 
that utilizes a temporal covariance matrix designed for 
future applications on multi-terabytes of data, and physics 
interpretations of the 3D EOFs from the NASA JPL OGCM. 
Therefore, our study has a modest purpose to show the 
feasibility of (i) computing 3D EOFs from a climate model 
output, and (ii) making physics interpretations from the 
point of view of ocean dynamics.

The remainder of this paper is organized as follows: 
Section 2 describes the data set, Section 3 describes 
the proposed method, section 4 includes results of 
performing the method on OGCM data, and section 5 
contains the conclusion. Our method of weighted 3D EOF 
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computation and our 3D graphics Python code may be 
useful tools for both climate professionals and students. 
The comprehensive code can be accessed at https://
github.com/dlafarga/calc_3D_EOFs.

2 DATA

2.1 TEMPERATURE DATA FROM THE NASA JPL 
OGCM
We use the monthly temperature data from the NASA 
JPL non-Boussinesq ocean general circulation model 
(OGCM) from January 1950 to December 2003 (Song and 
Hou (2006), Song et al. (2010)). The horizontal resolution 
of the JPL OGCM is –degree latitude-longitude and was 
later aggregated to 1-degree as in Shen et al. (2017). 
After aggregating the data, the files were separated 
into MatLab files according to their month and year. 
Figure 1 shows one file of 3D ocean temperature data for 
January 1950.

The data encompasses the entire global ocean with 
land represented by a nonnumber (NaN) grid cell and 
temperatures as a °C grid cell. There are a total of 32 
depth layers whose depth boundaries are given in Table 1. 
As an example take the first boundary from Table 1 as 
5. This means the top layer extends from 0 to 5 meters. 
Similarly, the second layer is from 5 to 10 meters, etc.

This paper uses the JPL non-Boussinesq (mass 
conserving) OGCM as it well portrays ocean dynamics. 
The model was based on both the S-Coordinate 
Rutgers University Model (Song and Haidvogel (1994)), 
and the Regional Ocean Model System (Shchepetkin 
and McWilliams (2003), Haidvogel et al. (2000)). The 
JPL non-Boussineq OGCM served as a resolution to 
the uncertainties in altimetry sea-surface-height 
(SSH) and ocean bottom pressure (OBP) in Boussineq 
approximations (Song and Hou (2006), Song et al. (2010)) 
identified by Huang and Jin (2002). Both SSH and OBP’s 
consistency within the model have been validated by 
Moon et al. (2013) and Song and Colberg (2011). Because 
the OGCM output is dependable in its representation of 
ocean dynamics, we find it appropriate for our EOFs.

2.2 FORMULATION OF THE SPACE-TIME DATA 
MATRIX
The OGCM output is an array written in 3D space grid 
boxes separated monthly for each year. Our time spans 
from January 1950 to December 2003. If we take January 
as an example it will have 54 years from 1950 to 2003; 
the same can be said for February, March, ……, December. 
Because of seasonal variation, we compute EOFs for each 
month from January, February, ……, December therefore 
we will compute 12 sets of EOFs. Let us first consider the 
data on a single layer with a given depth and time. We 
use January in the following description.

Denote the data matrix of one year and layer by 
Tyear,layer and the final space-time data matrix by X. The 
gridded temperature data (Tlongitude,latitude) for the first year 
(Y1950) and first layer (l1) form a 360 × 180 matrix shown 
below:

1950 1

0, 89.5 0, 88.5 0,89.5

1, 89.5 1, 88.5 1,89.5

2, 89.5 2, 88.5 2,89.5,

359, 89.5 359, 88.5 359,89.5 360 180

...

...

...

... ... ... ...

...

Y l

T T T

T T T

T T T

T T T

− −

− −

− −

− − ×

 
 
 
 =
 
 
 
 

T � (1)

The row data of the matrix are ordered from south 
to north starting at latitude –89.5° and ending at 
latitude 89.5° totaling 180 columns. The column data 
are ordered according to longitude from east to west 
starting at longitude 0° ending at longitude 359° totaling 
360 rows. Namely, the first 180 points in the first row of 
the matrix represent 89.5°S to 89.5°N for a longitude 0° 
as shown by the first row of the matrix. The next row 
will show the same latitudes, 89.5°S to 89.5°N, for the 
next longitude 1°. This continues until longitude reaches 
359°, the last row of the data matrix. Flattening this 
matrix by rows gives us a row vector of length 360 × 180 
= 64,800.

1950 1 0, 89.5 0, 88.5 359,89.5 1 64800, ( ... )  Y lT T T T− − ×=


� (2)

We transpose this row vector 
1950 1,Y lT


 to a column vector 

1 1950,l YT


 and aggregate all the column vectors from 1950 to 
2003 to form a space-time data matrix for the first layer 
of January. The 2D space-time data matrix for a single 
layer, denoted by 

2DJanX , looks like the following:

Figure 1 Ocean water temperature from the NASA JPL OGCM 
output for January 1950. A movable version of the figure can 
be found at https://ogcm-3d-visualization.herokuapp.com/ 
where the figure can be rotated and resized.

5 10 20 30 50 75 100

125 150 200 250 300 400 500

600 700 800 900 1000 1100 1200

1300 1400 1500 1750 2000 2500 3000

3500 4000 5000 5500

Table 1 Depths of 32 layers of the NASA JPL OGCM.

Note: All depths are in meters.

https://github.com/dlafarga/calc_3D_EOFs
https://github.com/dlafarga/calc_3D_EOFs
https://ogcm-3d-visualization.herokuapp.com/
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( )2 1 1950 1 1951 1 1952 1 2003, , , , 64800 54
   

DJan l Y l Y l Y l YT T T T
×

=
   

X � (3)

Anomalies can be computed from this matrix and 
multiplied by the area weight of the grid box i depending 
on its latitude in radians ϕi. These area weights reflect 
the geometric sizes of their corresponding grid boxes.

		  cosi iarea φ= � (4)

The result of the multiplication is the area-weighted 
space-time anomaly matrix. Conveniently the structure 
of this matrix allows for the removal of land/NaN data 
by removing rows as every year contains the same grid 
point of land data. For example, if January of 1950 
had a land point at T0,–89.5, then January 1951–2003 
will have the same land point at T0,–89.5. Only after the 
removal of land data can the area-weighted space-
time anomaly matrix be fed into SVD, or any other 
method of computing EOFs, and produce the 2D EOFs 
layer by layer.

We can build on the idea of computing 2D EOFs to 
compute 3D EOFs by stacking 32 layers on top of each 
other as shown below.

1 1950 1 1951 1 1952 1 2003

2 1950 2 1951 2 1952 2 2003

3

3 1950 3 1951 3 1952 3 2003

32 1950 32 1951 32 1952

1950 1951 1952 2003

, , , ,1

, , , ,2

3 , , , ,

32
, , ,

D

l Y l Y l Y l Y

l Y l Y l Y l Y
Jan

l Y l Y l Y l Y

l Y l Y l Y

Y Y Y Y

T T T Tl
T T T Tl

l T T T T

l T T T

=



   



   



   





    

  



X

32 2003, 2,073,600 54l YT
×

 
 
 
 
 
 
 
 
 



�

(5)

Here,

		
2,073,600 64,800 32= × � (6)

is the total number of 3D grid boxes for the OGCM output. 
Following the same way, we formulate our February 
space-time data matrix, and so on, since our EOFs are 
computed for each month from January to December. 
This space-time data matrix for January is one of the 
12 matrices used to compute 3D EOFs as outlined in the 
next section (see equation 7).

3 METHODOLOGY

There are two methods described in this section: SVD 
and temporal covariance. We will first describe the SVD 
method to better understand the relationship between 
each method. We start by calculating our climatology. 
We use the entire data history from 1950 to 2003 as our 
climatology period. Let us use the following simple space-
time data matrix notation [Tit] to explain our calculation 
of climatology and anomalies:

		
[ ]N YitX T ×= � (7)

where i is a grid box simplified from the previous 
latitude-longitude notation, t is time, N is the total 
number of grid boxes, and Y is the total number of years. 
Specifically, N = 2,073,600, and Y = 54. This X can be the 
space-time data matrix for a particular month, January, 
February, or another month.

The climatology is computed as the time means of 
the data matrix, i.e., the mean for each row:

		  1

1 Y

i it
t

T T
Y =

= ∑ � (8)

We compute the climatology for each month: January, 
February, ……, December. Thus, 12 sets of climatology 
are computed. Figure 2 shows the climatology of January 
and that of August.

Our anomalies are computed as follows:

	 [ ] [ ]N Y N Yit it iA a T T× ×= = − � (9)

These anomalies are multiplied by their spatial weights 
to, as mentioned previously, better reflect the geometric 
sizes of their corresponding grid boxes. A 3D grid box in 
the equator region is much larger than one in the polar 
region. In 2D the weight is related to the area of a grid 
box (see equation 4). Naturally, in our 3D case the weight 
for a 3D grid box i should be related to the volume of the 
grid box:

		  cosi i iw d φ= ∆ � (10)

Figure 2 Climatology for January and August computed using the equation above from the NASA JPL OGCM data. Movable figures 
can be viewed at the website https://climatology-3d-vis.herokuapp.com/apps/clim_Jan_plot.

https://climatology-3d-vis.herokuapp.com/apps/clim_Jan_plot
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where Δdi is the thickness of the layer for the grid box i and 
ϕi is the latitude of the grid box i in radians. The square 
root is needed due to the symmetry of the formulation 
of the eigenvalue problem of a covariance matrix (Shen 
et al.(2017)).

Often, anomalies are standardized by dividing by the 
standard deviation. However, in the deeper ocean layers, 
temperature has a very small standard deviation. Dividing 
by the very small standard deviation would only amplify 
noise and cause large errors for the EOFs in the top layers. 
To avoid such errors, we simply use non-standardized 
volume-weighted anomalies. Up to now, the NaN missing 
data are still in the anomaly data matrix. We remove the 
rows of NaN and produce a volume-weighted space-time 
anomaly matrix without missing data. We denote this 
weighted anomaly matrix without missing data by

		  jt N Y
B b

′×
 =   � (11)

where N′ is the number of grid boxes with data. Then, we 
can feed this space-time data matrix to SVD to generate 
EOFs to demonstrate spatial patterns and principal 
components (PCs) to show temporal patterns. The SVD 
decomposition of B is as follows:
		  TB UDV= � (12)

where the superscript T indicates the transpose of a 
matrix. In this SVD formula, U is an N′ × Y (N′ > Y) spatial 
matrix. Each column vector of U is an EOF. Matrix V has 
dimension Y × Y and is the temporal matrix. Each column 
is a PC. Matrix D is a diagonal matrix, whose elements 
dk(k = 1, 2, …, Y) correspond to the standard deviations 
of the EOFs and PCs. The next sections will explain these 
EOF and PC patterns in U and V, as well as the standard 
deviations in D.

Although SVD is a convenient way to compute EOFs 
and PCs, the covariance matrix method is often helpful in 
interpreting the meaning of EOFs and PCs from the point 
of view of variance and covariance in climate dynamics. 
Further, this method was traditionally used in the EOF 
calculations before using SVD in recent years. The 
traditional method often uses the eigenvalue problem for 
a spatial covariance matrix to compute EOFs. However, in 
our case, the temporal dimension Y is much smaller than 
the spatial dimension N′, hence the temporal covariance 
matrix is much smaller than the spatial covariance 
matrix. It is preferred to solve the eigenvalue problem 
for the temporal covariance matrix which is much 
smaller than the spatial covariance matrix. The resulting 
eigenvectors of the temporal covariance matrix are PCs: 

1 2, , , Yv v v
  

 . The EOFs can be obtained by the projection of 
the weighted anomaly matrix B to the PCs:

		
,  1,2, ,k

k
k

Bv
u k Y

Bv
= =







 � (13)

where kBv


 is the Euclidean norm of the vector kBv


.
The temporal covariance matrix, denoted as [ ]tt Y Y′ ×Σ , is 

defined as follows:

	
[ ]

1

1 1N
T

tt Y N N Yit itY Y
i Y Y

b b B B
N N

′

′ ′ ′′ × ××
= ×

 Σ = = ′ ′ 
∑ � (14)

An eigenvector v


 of this temporal matrix [ ]tt′Σ  is defined 
as a vector whose orientation is not changed after the 
action of [ ]tt′Σ . Namely, the matrix action vector [ ]tt v′Σ



 
is parallel to the original vector. Thus, there exists a 
scalar, denoted by λ so that one vector is the scalar 
multiplication of the other, i.e.,

		  [ ] .tt v vλ′Σ =
 

� (15)

This eigenvalue problem has Y solutions whose Y 
eigenvectors ( , 1,2, ,kv k Y=



 ) are the same PCs computed 
from SVD (see the rigorous mathematical proof in Shen 
and Somerville (2019)). The eigenvalues (λk, k = 1,2,…, 
Y) are proportional to the 2, 1,2, ,kd k Y=   computed from 
SVD. Therefore, λk, k = 1,2,…, Y correspond to variances 
since dk, k = 1,2,…, Y correspond to standard deviation.

Eigenvalues represent the amount of variance 
explained by each respective eigenvector (National 
Center for Atmospheric Research Staff (Eds) (2013)) and 
are sorted from the greatest variance to the smallest. 
Variance is a measure of how far a set of numbers is 
spread out from their average value (Shen and Somerville 
(2019)). Thus, the first eigenmode will show us the most 
significant pattern, as it has the most variance in climate 
dynamics. The last modes are usually less accurate and 
less important as they contain much noise and small-
scale variations (Liang et al. (2012)). The details of the 
EOF and PC derivations can be found in Shen et al. (2017).

We have computed the EOFs, PCs, standard deviations, 
and variances for each mode using both the methods 
of SVD and temporal covariance. We have compared 
their results as a cross-check and explored the physical 
interpretation of their meaning. These results are 
described in the next section.

4 RESULTS

4.1 EIGENVALUES AND VARIANCES EXPLAINED
EOFs, PCs, SVD eigenvalues, and eigenvalues of the 
temporal covariance matrix were computed for each 
month from January to December. Altogether 12 sets 
of EOFs were generated. Figure 3(a) shows the first 
eigenvalue of the temporal covariance matrix for the 
weighted temperature anomalies for each month from 
January to December. These eigenvalues represent 
variances of the space-time data projection onto their 
corresponding EOF1 for each month. The peaks in January 
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and August imply large variances in both months, relative 
to their neighboring months. Our examination of all the 
EOF patterns has shown that those two peaks are likely 
the manifestation of the relatively stronger equatorial 
upwelling in January and August.

Another important feature of Figure 3(a) is the 
obvious difference between January and December. 
The difference is around 3% and is likely an indication 
of the presence of a temporal trend in the space-time 
temperature data. If there were no temporal trend 
the annual cycle would prevail showing a 12-month 
cycle instead, and hence December’s variance would 
be similar in size to January’s. Visually this would be 
observed as a smoother transition between December 
to January. Later on, we further quantitatively verify 
our assumption here by solving the eigenvalue problem 
for the de-trended data. Indeed, the annual cycle of λ1 
appears.

Figure 3(b) and (c) show the scree plot for both peak 
months January and August. The scree plot plots every 
eigenvalue for their respective month as a percentage 
variance or cumulative variance. The purpose is to 
quantify the variance explained by each mode and 
to identify how many modes are needed to explain a 
significant amount of variance. The blue dotted line 
explains the percentage variance of each EOF mode 
relative to the total variance, i.e.,

		
1

100.k
k Yp

λ
λ

=

= ×
∑





� (16)

The red dotted line is the cumulative percentage variance 
relative to the total variance, defined as follows

		
1

1

100.
k

k Yq
λ

λ
=

=

= ×∑
∑









� (17)

Comparing Figure 3(b) and (c), January shows about p1 = 
30% variance explained by the first mode while August 
shows around 33%. Their second modes drop to 11% 
and 6% for January and August respectively. Their third 
modes are around 5% for both January and August. 
Figure 3(b) shows that for January, eigenvalues λ4 and λ5 
are close to each other and have a very small difference 
p4 – p5. EOF errors are large because they are proportional 
to the inverse of the difference of two neighborhood 
eigenvalues, i.e., 1/(λ4 – λ5), according to North’s rule of 
thumb (North et al. (1982)). This implies that the mode 
mixture between EOF4 and EOF5 is stronger, and the 
geometric pattern of EOF4 may not have a meaningful 
physical interpretation due to the uncertainty caused by 
the mode mixing. For August, this mode mixing occurs 
from EOF3. Therefore, in this paper, we focus on the 
physical interpretations of EOF1 and EOF2. Up to mode 
2, the cumulative percentage variance q2 reaches slightly 

Figure 3 (a) The first eigenvalue λ1 of the temporal covariance matrix for the weighted temperature anomalies for each month 
from January to December. Units of the first eigenvalue are the same as the covariance matrix in equation 14. (b) The scree plot for 
January based on data pk and qk. (c) The scree plot for August is based on data pk and qk.
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over 40% for January and slightly below 40% for August. 
Meaning a large number of variances are explained by 
EOF1 and EOF2. Considering the case of historical data 
reconstruction, like Shen et al. (2017), a number of 
modes may be used such that 80% or 90% of variances 
is represented. For our study here on the NASA JPL OCGM, 
it takes about 42 modes to represent 90% of cumulative 
variance for both January and August.

4.2 PHYSICAL INTERPRETATION OF EOF1: 
EQUATORIAL UPWELLING
Figure 4 shows our 3D EOF1 for January and August at 
different depth levels. We intend to use these EOF patterns 
to explain the ocean dynamic features associated with 

EOF1, PC1, and λ1. Recall that the first mode of January 
and August explains 30% and 33% variance respectively. 
This means that a third of the cumulative variance in the 
data for each month is explained by the first mode alone. 
2D EOF results from area-weighted anomaly data often 
show that the first mode is either a manifestation of a 
temporal trend or ENSO (Shen et al. (2017)). Interestingly 
enough, the first mode of our 3D EOF1 is not only related 
to the temporal trend, but also the vertical structure of 
ocean dynamics known as the equatorial upwelling.

Equatorial upwelling can be observed in Figure 4 as 
the horizontal divide of cool temperatures a little north 
of the equator with warm temperatures straddling it. 
Weisberg and Qiao (2000) and American Meteorological 

Figure 4 EOF1 for January and August showing the equatorial upwelling. Depths are chosen to show that the strong upwelling occurs 
at 150 meters and that the upwelling stops at a deeper level around 400 meters.
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Society (2012) define equatorial upwelling as the rising 
of water along the equator occurring typically from 200 
meters to the surface. Near the surface, the equatorial 
surface waters are being deflected by wind and Ekman 
flow. Thus, the surface waters are pushed away from the 
equator, and colder deep ocean waters are pumped up 
or more formally the deep ocean water upwells (Wyrtki 
and Eldyn (1982)). Our EOF1 provides a more precise 
quantitative description of the upwelling. Figures 4 and 
5 show a strong upwelling starting around the depth of 
100 meters that stops around 400 meters (specifically, 
see Figure 4(c) – (h)), and Figure 5(c)–(d)).

It is important to mention that a variety of signals can 
be explored in Figure 4. Despite the focus on equatorial 
upwelling in this section, there are other notable signals 
such as the significant warming pattern from surface to 
400 meters in the Southern Ocean between 60◦S and 
30°S. This is a widely known result of ocean warming due 
to global warming (see the satellite altimetry data from 
Song and Colberg (2011)). This is one of many signals to 
dissect from the first 3D EOF mode, but we will mainly 
focus on equatorial upwelling for the remainder of this 
subsection.

The signal strength of the equatorial upwelling 
process varies with depths. Looking at the surface layer 
for both January and August in Figure 4(a)–(b), the signal 
seems relatively weak, if we treat our 3D EOF1 as the 
upwelling mode. January shows a small line of cooler 
waters a little west of 120°E to approximately 170°E. 

August is less obvious with a smaller diffused line of cool 
water between 130°E to 170°E. Although the line of cool 
waters is narrow and small on the map, the region still 
covers a large equatorial area because Figure 4 is in the 
2D Mercator map projection.

The upwelling region gets larger in deeper layers, 
particularly at 150 meters we see a very clear divide 
between 120°E and 180°E in Figure 4. The strong upwelling 
continues at 200 meters for both months, but January 
shows a stronger signal as expected from its higher 
eigenvalue (see Figure 3). At 300 meters, the two warmer 
strips off the equator begin to fade away. The warm-cool-
warm sandwich pattern of the upwelling signal starts to 
disappear and eventually has little reminiscence at 400 
meters suggesting the vertical sandwich has a depth of 
about 400 meters. The length in the tropical Pacific in the 
east-west direction stretches about 13,000 kilometers 
from 120°E to 120°W. The “bread pieces” of warm waters 
in both south and north are thicker than the thin “cheese 
filling” in the middle, as indicated by Figures 4 and 5.

To show how the upwelling signal changes by depth 
from the perspective of cross-section, we have made a 
north-south cross-sectional cut along a meridional line 
of 160°E, shown in Figure 5. To first identify upwelling in 
Figure 5, we look for a cold section of water just north of 
the equator with warmer waters around it. Both January 
and August show cold waters at the surface between the 
equator and 10° north. Figure 5(a) and (b) suggest that 
upwelling stops before 500 meters as the 3D EOF1 is quite 

Figure 5 A north-south cross-section of the ocean taken at 160° E to show at what layers upwelling occurs. Panels (a) and (b) are 
the entire scope of all ocean layers. Panels (c) and (d) show the top layers up to 400 meters as this will better show where upwelling 
starts and stops.
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uniform and shows little spatial variation for layers deeper 
than 500 meters. These observations motivated us to 
focus instead on depths from the surface to 400 meters 
where we can see more clearly a sandwich pattern of an 
equatorial cold (the narrow blue region at the equator) 
wrapped by two pieces of off-equatorial warm waters (the 
red regions). At about 100 meters, the warmer sections 
are distinct, continuing until they reach their strongest 
reading at around 150 meters. The warmer patches start 
to become thinner at 200 meters with the southern half 
between 10°S and 0° almost entirely gone for August at 
250 meters and January at 300 meters. There is a small 
region in the southern patch around 20°S that persists to 
400 meters along with the northern warm patch at 20°N. 
The entire upwelling region is limited to a zonal bend 
between 20°S and 20°N. However, this is only the EOF1 
pattern, which reflects a temporally mean state. For a 
particular month, the equatorial upwelling region may be 
much larger, reaching 30°S and 30°N (Figure 6).

Recall EOFs are just a statistical tool used to show 
spatial patterns. We can identify the dynamics within 
the spatial patterns, and quantify their variance using 
EOFs. Equatorial upwelling has not been widely explored 
in previous EOF calculations therefore it is difficult to 
compare these results to other calculations such as 
Meyers et al. (1999), Mu et al. (2018), and Shen et al. 
(2017), whose results are favorable to ENSO. However, 
equatorial upwelling is an observable dynamic as seen 
in Figure 6. By visualizing the OGCM data we are able to 
identify what dynamics to expect of equatorial upwelling 
in EOF1.

Figure 6 plots the OGCM output for the strongest 
upwelling months and years: January 1993, January 
2003, August 1990, and August 2003. We can observe 
that upwelling for all dates occurs in both the Pacific and 
Atlantic oceans. The upwelling signal is the strongest in 
the western and the central tropical Pacific, in contrast 

to the ENSO warm pattern over the eastern and central 
tropical Pacific. The upwelling over the western tropical 
Pacific in January 1993 (see Figure 6(a)) has a quantified 
warm-cold-warm sandwich pattern as 20°C – 12°C – 
20°C, covering from 30°S to 35°N.

Focusing on January 1993 in Figure 6 the equatorial 
upwelling patterns in the Atlantic are also limited to the 
western part of the Atlantic ocean. The southern part of 
the sandwich bread piece encompasses a small area. 
In the Indian Ocean, the northern part of the sandwich 
bread piece almost does not exist. The upwelling signal 
is much weaker than that in the Pacific and Atlantic. 
The same can be said for the upwelling in all other 
months shown in Figure 6 when examining the water 
temperature distribution at the depth of 200 meters.

The high-latitude green regions of Figure 6 show 
another vertical structure of ocean dynamics: Ocean 
ventilation. This is the process in which surface water, 
recently in contact with the atmosphere, sinks, 
transporting carbon and oxygen to deeper ocean layers 
(Khatiwala et al. (2012) Naveira Garabato et al. (2017). 
Regions such as the Labrador Sea are more sensitive to 
ocean ventilation as its cold winter air will cause surface 
waters to lose heat to the atmosphere becoming cooler, 
denser, less buoyant, and consequently sinking deeper 
(Marshall and Schott (1999) Koelling et al. (2022)). These 
Labrador sea waters (LSW) that have undergone such 
convection can be seen in Figure 7.

This cross-sectional figure is a zonal mean, i.e., an 
average from longitude 0 to 360°. We should expect to 
see homogeneous values for depths up to 2500 meters 
at latitudes relative to the Labrador sea according to 
Yashayaev and Loder (2017). Observing Figure 7 from 
55°N to 60°N, we can identify LSW occurring from 50 
meters to 3000 meters. This range is much deeper than 
what was suggested from recent papers like Koelling et 
al. (2022) and Yashayaev and Loder (2017).

Figure 6 NASA JPL OGCM temperature for January and August at 200 meters showing equatorial upwelling. Years are chosen to 
reflect time with strong upwelling.
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The cross-sectional zonal mean map of Figure 7 also 
shows equatorial upwelling. The August upwelling signal 
at about 100 meters depth appears to be stronger than 
that of January according to Figure 7(c) and (d).

4.3 EOF2 AND THE SPATIAL PATTERN OF 
EL NIÑO
Figure 8 shows the eigenvalue λ2 of the temporal 
covariance matrix for every month. In contrast to λ1 in 
Figure 3, there is no longer a large jump from December 
to January in λ2. As previously mentioned the smooth 
transition is due to an annual cycle.

Figure 9 shows the EOF2 pattern at five selected layers: 
5, 50, 100, 150, and 200 meters. The warm pattern in the 
eastern tropical Pacific is the well-known ENSO mode, a 
phenomenon that occurs mostly in the winter months of 
the northern Hemisphere as seen in NOAA CPC (2005). The 
winter ENSO pattern corresponds to the large eigenvalue 
λ2 in winter months. Particularly December, November, 

and January have the three largest λ2 values according 
to Figure 8. This is expected as higher eigenvalues imply 
larger variance and vice versa. The figure also shows the 
three months with the smallest λ2 values are August, 
July, and September indicating there is little chance for 
an ENSO signal to occur in these months.

As expected from SST studies and textbooks, such 
as Shen and Somerville (2019) and Shen et al. (2017), 
Figure 9 shows January has an apparent ENSO signal at 
its surface. The January ENSO pattern vertically exists at 
the surface and continues to deeper layers. The pattern 
starts to wither at 150 meters and is entirely dispersed 
at and deeper than 200 meters (see Figure 9(g) and (i)).

At 100 meters (see Figure 9(e)), we see a large 
continuous blue region over the western tropical 
Pacific that corresponds to the cold anomalies of ENSO 
underneath the surface as shown in Shen et al. (2017) 
and similar to Roemmich and Gilson (2011). This cold 
anomaly stretches east-west over 7,000 km and north-
south over 2,000 km, almost twice the area of the United 
States. This body of cold anomaly water continues to 
exist at 200 meters (see Figure 9(i)). Our EOF2 data shows 
that the body begins around 50 meters and ends around 
250 meters. Also at the 100 meters (see Figure 9(e)), we 
see the warm tongue in the eastern tropical Pacific split 
by a small strip of cool waters just north of the equator. 
This might be part of the signal of equatorial upwelling.

Although the SST ENSO events rarely occur in August, 
our 3D EOF2 for August still shows a warm tongue pattern 
over the eastern tropical Pacific. Despite that, if we were to 
compare either column in Figure 9 it is evident the ENSO 
signal in August is less coherent compared to January. 
This may mean that the 3D ENSO dynamics continuously 
exist throughout the year and do not completely die out 
in the summer.

Figure 7 Cross-sectional map based on the zonal mean from 0 to 360° longitude degrees to show ocean ventilation at the high 
latitude regions.

Figure 8 The second eigenvalue λ2 of the temporal covariance 
matrix for the weighted temperature anomalies. Units of 
the first eigenvalue are the same as the covariance matrix in 
equation 14. January has the largest value, while August has 
the smallest value.
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For the August EOF2, in the region south of the 
equator, the cold waters are more persistent than in 
January. To better understand what depth these cooler 
waters reach, a zonal cross-section from the surface 
to the bottom of the ocean (see Figure 10) is taken at 
10°S. This cross-sectional map shows consistency in the 
behavior displayed by Figure 9(j).

The vertical map (Figure 10) cuts through the 
conventional SST ENSO pattern over the tropical Pacific. 
Figure 10(c) shows that the eastern tropical Pacific’s 
warm water body is limited to the top 150 meters, but the 
western tropical Pacific’s cold water body approximately 
spans 50 to 250 meters. In January there is also a cold-

warm-cold pattern appearing in the Indian Ocean located 
within the top 250 meters as seen in Figure 10(c). However, 
this Indian ocean signal is not obvious for the August EOF2.

To show a more robust signal of ENSO, we have 
plotted the meridional mean from latitude 10°S to 
10°N in Figure 11. Figure 11(c) shows a clear blue-red 
separation marked by the slanted yellow strip. The slope 
of the slanted yellow line is approximately –2 meters per 
longitude. This helps quantify the 3D structure of the 
El Niño dynamics, such as the thickness of the eastern 
tropical Pacific’s warm water to the surface, and the 
thickness of the western tropical Pacific’s cold water 
underneath the surface. January ENSO’s warm pattern 

Figure 9 EOF2 for January and August showing the ENSO pattern. Depths are chosen to show the ENSO regions in different depths 
from surface to 100 meters. The ENSO pattern dies out approximately at levels deeper than 150 meters.
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ends at approximately 150 meters while August ENSO’s 
warm pattern ends at around 120 meters (see Figure  
11(c) and (d)).

4.4 PCS, TREND AND DE-TRENDED
This sub-section describes the temporal patterns of the 
3D EOF-PC analysis. Principal components (PCs) are the 
eigenvectors of the temporal covariance matrix and are 
also the column vectors of the orthogonal V matrix. PCs 
are on a time scale and show temporal patterns.

PC1 shown in Figure 12(a) and (b) show an upward 
trend of temperature anomalies. Then what would be 
the cause of this upward trend? Does the association 
of EOF1 with equatorial upwelling imply that the 
upwelling contains some heat from global warming? 
If it does contains some heat from global warming, 
how much? The detailed mechanisms of heat transfer 
and distribution are still to be investigated, even if the 
association between upwelling and global warming is 
true. Some literature has already appeared to address 

Figure 10 Cross section at latitude of 10°S that shows the separation of the warm and cold anomaly regions in the Pacific.

Figure 11 A zonal cross-sectional map based on the average from latitude 10°N to 10°S. The average and figure are to better show a 
robust 3D ENSO pattern with not only the surface warm region but also a depth structure.
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these questions. For example, Song and Colberg (2011) 
explored the existence of warming in the deep ocean; 
Wang et al. (2022) studied some specifics of global 
warming on equatorial upwelling. Studies like these may 
serve as the basis for further quantitative investigations 
on whether or how upwelling and global warming are 
correlated.

PC2 of January is supposed to be a time indicator of 
ENSO occurrence. This interpretation works well for the 
SST analysis on ENSO. When regarding 3D ocean, we may 
need to consider the time delay of heat transfer in the 
top 1500 meters. The El Niño pattern in the August EOF2 
has already implied this time delay (see Figure 9). It is 
unknown how long it takes for the heat accumulation in 

the eastern tropical Pacific from the surface to 150 meters 
and for the heat loss in the western tropical Pacific in the 
deep layers from about 50 to 250 meters. Figure 12(c) 
shows that the minimum of January PC2 is about –0.32 
at January 1990. According to NOAA CPC (2001) Oceanic 
Niño Index (ONI) based on SST, the northern hemispheric 
winter of 1989–1990 was a neutral year, while 1988–
1989 winter was a La Niña year, 1990–1991 winter was 
neutral too, and 1991–1992 winter was an El Niño year.

The second minimum value of January PC2 (shown 
in Figure 12(c)) is about 0.30 occurred on January 1975, 
which was La Niña month. The maximum January PC2 
is about 0.31 occurred in January 2003. The northern 
hemispheric winter of 2002–2003 had an El Niño, while 

Figure 12 Principal components PC1, PC2, and PC3 of January and August from the weighted anomalies of the NASA JPL OGCM 
output from 1950 to 2003.
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the previous winter was neutral. The above analysis of 
the maxima and minima implies that PC2 from the 3D 
covariance matrix, although associated with El Niño, 
is not a direct indicator of the surface El Niño time. 
Further analysis may be needed to interpret PC2 and its 
association with El Niño.

A similar analysis may be done for the maxima and 
minima of August PC2. Figure 12(d) shows that the global 
maximum of the August PC2 is about 0.25 occurred in 
August 1979, which was a neutral month. The global 
minimum of the August PC2 is about –0.32 occurred in 
August 2003, the same year, i.e., 2003, as the global 
maximum of the January PC2. As discussed earlier, the 
northern hemispheric winter of 2002–2003 was in El Niño 
condition according to SST, but the summer of 2003 was 
in neutral condition.

The January PC3 shown in Figure 12(e) has a 
V-shape, going down from the 1950s to the 1970s, 
and then going up from the 1970s to the 1990s. This 
shape agrees with that of the Atlantic Multi-decadal 
Oscillation (AMO) index time series, and also that of the 
spatial average time series of the northern hemispheric 
average temperature, cumulative Southern Oscillation 
Index (SOI), and the cumulative weighted SOI1 (CSOI1) 
(see Figs. 4.2 and 4.3 of Shen and Somerville (2019)). 
We limit ourselves in claiming similar temporal patterns 
among these parameters. Whether the similarity is 
supported by climate dynamics may be worth further 
investigation.

August’s PC3 shown in Figure 12(f) has its global 
maximum in 1989 and several local minima in the 1960s 
and 1970s. This temporal pattern appears to agree 

with that of the North Atlantic Oscillation (NAO) (Hurrell 
(1995)). Again, we present here only the similarity of the 
temporal patterns. The climate dynamic support for this 
similarity needs further investigation.

The trend in PC1 motivated us to explore the EOF-
PC analysis for the de-trended anomalies. This was 
done by subtracting the predicted values of the simple 
linear regression from the anomalies. The same 
volume weight is applied to the de-trended anomalies 
as described in the methodology section. Finally, the 
temporal covariance matrix can be calculated from the 
weighted de-trended anomalies to obtain EOFs, PCs, and 
eigenvalues.

By removing the trend we hope to gain insight as to 
why there is such a large jump of λ1 between December 
and January shown in Figure 3. Figure 13 displays the 
resulting first eigenvalues ( )

1
dλ  of the temporal covariance 

matrix from the de-trended anomalies for each month 
from January to December.

Figure 13 The first eigenvalue ( )
1
dλ  for the each month 

computed from the de-trended anomalies.

Figure 14 Principal components of January and August based on the de-trended anomalies.
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The shape of ( )
1
dλ  for the de-trended anomalies is 

almost the same as that of λ2 before the de-trending 
shown in Figure 8, although the values of ( )

1
dλ  and λ2 are 

not exactly the same. The large gap between December 
to January in λ1 is gone in ( )

1
dλ  (see Figures 3 and 13 

respectively), implying the trend may have caused the 
gap. On that account the temporal trend in the 12-month 
time period from January to December is reflected in λ1, 
corresponding to the equatorial upwelling mode.

In removing the linear trend the ENSO mode becomes 
the first mode. Comparing the PCs before de-trending 
the anomalies (Figure 12) and after de-trending the 
anomalies (Figure 14), it is clear that there is a mode shift: 
De-trended PC1 corresponds to PC2 before de-trend, and 
de-trended PC2 corresponds to PC3 before de-trend. This 
mode shift due to de-trending often occurs in EOF analysis 
(see Chapters 9 and 10 of Shen and Somerville (2019)).

4.5 COMPARE THE 3D EOF1 TO THE 2D EOF1
As a way to compare results with other publications 
and reinforce the value of computing 3D EOFs, we 
computed 2D EOFs. It is important to note that 2D EOFs 
are orthonormal on each layer, in contrast, 3D EOFs are 
orthonormal only for the entire ocean domain of all layers, 
and not orthonormal on each layer. Figure 15 shows the 
2D EOF1 for the top layer based on the anomalies, not 
the de-trended anomalies, from the NASA JPL OGCM.

To reiterate the 2D EOF calculation was only applied 
to the surface layer so ocean dynamics interconnection 
with other layers is not considered. Consequently, ENSO, 
not the equatorial upwelling, appears in the first mode of 
2D EOFs, similar to Shen et al. (2017), Meyers et al. (1999), 
and Mu et al. (2018). The spatial pattern of Figure 15’s 2D 
EOF1 is very similar to that of the 3D EOF2 at the top layer 
shown in Figure 9(a). However, the data for Figure 9(a) is 
not normalized to one and is not orthogonal to the 3D 
EOF2 at the same layer.

5 CONCLUSIONS AND DISCUSSION

The main purpose of this paper is to show the method 
of computing 3-dimensional EOFs and interpret the 

physical meanings of the first two modes. To compute 
these EOFs, we used the temporal covariance of the 
volume-weighted anomalies based on the NASA JPL 
OGCM’s monthly output of 1.0 latitude-longitude degree, 
33 layers from surface to 5,500 meters depth, and a 
time span from 1950 to 2003. The eigenvectors of the 
temporal covariance are PCs. The normalized projections 
of the volume-weighted anomalies for the PCs form the 
geometric EOFs. Removing the volume factors we obtain 
the physical EOFs, which are displayed in our EOF figures.

Our method to compute the January PCs starts from 
the formulation of the N × Y space-time data matrix 
with the first dimension being the total number of grid 
boxes and the latter being the total number of years. 
Anomalies are multiplied by the volume weights of 
each depth, resulting in the weighted anomalies. After 
removing land/NaN data, the new weighted anomaly 
matrix transpose multiplied by itself forms the temporal 
covariance matrix.

We also computed the EOFs and PCs using SVD for 
the volume-weighted anomalies. Although SVD is capable 
of handling our data at the 1.0-degree resolution, it 
cannot handle the higher resolution at 1/4 degree due 
to computer memory resource limitations. Thus, our 
temporal covariance approach is useful and will be used 
later on to deal with 1/4-degree data or higher resolutions. 
Our application of SVD in this paper is for the purpose of 
verifying our temporal covariance approach.

NASA JPLs OGCM was used before in Shen et al. (2017) 
where EOFs were computed layer by layer, i.e., the two-
dimensional EOF, or 2D EOF. The paper shows the ENSO 
signal in the first one or two EOFs, and it did not reveal the 
equatorial upwelling mode. This was due to the nature of a 
2D calculation, which does not take into account the deep 
ocean dynamics interconnected among different layers 
and instead treats each layer in an isolated fashion. Our 3D 
EOFs show covariances across depth layers. Consequently, 
equatorial upwelling appears as 3D EOF1 and explains a 
third of the data’s variance. In contrast, the ENSO mode, 
or 3D EOF2, only explains 10% of the variance.

By observing the covariance among the temperatures 
of different layers, we were not only able to identify 
different ocean dynamics than the previous 2D 
calculations, but also we were able to pinpoint how deep 
each characteristic spans. Equatorial upwelling can be 
seen from 100 to 400 meters. ENSO is observed mostly 
in the upper layers until 150 meters, and at 100 meters 
we can observe a large cool water patch in the western 
tropical Pacific ocean.

Although through the 3D EOFs and PCs, we were able 
to identify some meaningful ocean dynamic patterns 
both in the deep ocean and surface, there is still much 
to explore in the resulting dynamics and the effect of 
de-trending. Further exploration of the ocean dynamics 
may be made to show how the 3D EOFs are related to 
climate oscillation patterns, such as AMO and NAO.

Figure 15 2D EOF1 for the top layer based on the area-weighted 
anomalies from the NASA JPL OGCM. ENSO signal is shown in 
this EOF1 for the surface layer. The 2D EOFs are computed layer 
by layer.



228Lafarga et al. Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.3223

Our EOFs can serve not only as a means to understand 
dynamics but also help in reconstructing historical 
climate data (Shen et al. (2017)). The 3D nature of the 
EOFs allows the covariance properties between layers 
to be used in the data reconstruction. The covariance 
between points of different depths are expected to 
add skills to reconstruction. For example, the 3D in-
situ observational data can likely support more 3D EOF 
modes than the 2D EOF modes in the sub-surface of 
the ocean where in-situ observations are scarce. Can 
we extend the reliable reconstruction of historical data 
to a longer history compared with the conventional 2D 
reconstruction? Can the historical in situ data support 
a set of 3D EOFs with a finer spatial resolution? More 
questions like these can be asked about the 3D EOFs 
with regard to their applications, computations, climate 
dynamics, and mathematical theory.
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