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ABSTRACT
The Newton method is used for optimisation in the maximum likelihood ensemble 
filter (MLEF) to improve analysis convergence and accuracy. The proposed method 
is compared against the original method using the conjugate gradient (CG) method 
preconditioned by the Hessian for optimisation. The mechanisms of the two 
minimisation methods are illustrated with optimisation for the Booth and Rosenbrock 
functions. Comparisons are then made in simple data assimilation experiments. In the 
assimilation of a single wind speed, the Newton method is affected by the gradient 
and Hessian approximated by the forecast ensemble but the gradient norm decreases 
geometrically. The CG method is terminated at the first step unless the ensemble 
perturbation matrix in the observation space is fixed. In the cycled experiments using a 
Korteweg–de Vries–Burgers equation model with a quadratic observation operator, the 
Newton method and the preconditioned CG method with gradients updated during 
iterations yield an analysis with comparable accuracy, but the CG with the fixed gradient 
is found to produce an analysis that leads to unstable forecast. When the number 
of Newton iterations is limited to one, the solutions remain suboptimal, significantly 
destabilising the model. The experimental results indicate that the Newton method is 
a promising alternative to the CG method with a line search for optimisation in MLEF.
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1 INTRODUCTION

Optimisation of a cost function is a key component in 
variational data assimilation (VAR) and determines the 
analysis quality. For atmospheric applications, popular 
choices include the conjugate gradient (CG) method and 
quasi-Newton methods, such as the limited-memory 
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method 
(Navon and Legler 1987). The CG method searches 
mutually conjugate directions, while quasi-Newton 
methods progressively approximate the Hessian from the 
initial guess, typically an identity matrix. A small footprint 
of several vectors is one of the benefits of these gradient-
based optimisations for large-scale problems in VAR.

The control variable for optimisation may be 
transformed and alternatively be optimised in an 
ensemble space (Lorenc 2003). Due to the complexity 
of the forecast model, a typical ensemble size is 
O(10)–O(100), O(1000) at most. For such a problem size, 
the linear system can be solved, and a matrix can be 
inverted efficiently and accurately with a direct solver. 
The storage and computational load for the Hessian 
and its inverse are prohibitive in the physical space but 
tractable in an ensemble space. The Newton method 
exactly solves the quadratic approximation of the cost 
function and has quadratic convergence. The Newton 
method may or may not be used with a line search. 
In contrast, the CG and quasi-Newton methods with a 
line search (Nocedal and Wright 2006) inexactly solve 
the Newton equation and have linear and superlinear 
convergence, respectively.

The maximum likelihood ensemble filter (MLEF, 
Zupanski 2005) is a deterministic ensemble square-root 
filter that maximises the posterior probability distribution 
(maximum a posteriori estimation). The MLEF can be 
regarded as an ensemble VAR (Liu et al. 2008) as it can 
produce an analysis by minimising the cost function in 
the ensemble space using a nonlinear unconstrained 
optimisation method, such as CG or L-BFGS. The use 
of an ensemble eliminates the need for tangent linear 
and adjoint models and provides a flow-dependent 
forecast error covariance matrix. In addition, the Hessian 
can be calculated from an ensemble. In the MLEF, the 
Hessian is used for preconditioning by transforming the 
control variable to accelerate convergence. The MLEF 
can be formulated to accommodate non-differentiable 
observation operators (Zupanski et al. 2008) and non-
Gaussian cost functions (Fletcher and Zupanski 2006).

The MLEF can improve an analysis by iteratively 
minimising the cost function and can effectively extract 
information from nonlinear observations. However, 
the minimisation with CG or quasi-Newton methods is 
often discontinued before reaching the minimum, and 
sometimes the analysis is not improved from the first 
iteration. This paper applies the Newton method to 
the MLEF and examines the analysis convergence and 

accuracy. The Newton equation is exactly solved without 
a line search at each iteration, hence called the exact 
Newton (EN) method. It should be noted that ‘exact’ 
does not refer to the exact solution of the line search 
subproblem. The Kalman gain calculation is equivalent 
to exactly solving the Newton equation (Zupanski 2005). 
The Gauss–Newton (GN) or Newton methods were 
chosen for the iterated Kalman smoother (Bell 1994) and 
for the iterative ensemble Kalman filters (Gu and Oliver 
2007; Sakov et al. 2012). However, the advantages of the 
Newton method and its convergence properties are not 
necessarily obvious.

In this study, EN is compared against CG with Hessian 
preconditioning under the MLEF framework. Section 
2 revisits optimisation with CG and EN with the Booth 
and Rosenbrock (1960) benchmark functions. Section 3 
reviews the MLEF formulation and derives an alternative 
formulation using the EN method. Section 4 presents the 
assimilation of a single wind speed observation (Bowler 
et al. 2013) and cycled experiments with a Korteweg–de 
Vries–Burgers (KdVB) equation model (Zupanski 2005). 
Section 5 presents the summary and final remarks.

2 OPTIMISATION OF BENCHMARK 
FUNCTIONS

This section applies the CG and EN methods to 
optimisation of two-dimensional Booth and Rosenbrock 
(1960) functions, which are expressed as a sum of 
squares of functions

21
( ) ( )] .[

2

m

i

i

f f= åx x � (1)

The minimisation of the functions of this form is called 
linear or nonlinear least-square problems, depending 
on the linearity of residuals fi(x). The Booth function 
is a quadratic function with linear residuals, which is 
analogous to a cost function with a linear observation 
operator. Meanwhile, the Rosenbrock function is quartic 
function with a nonlinear residual, which is reminiscent 
of a quadratic observation operator.

The two functions are optimised with the CG method 
(Appendix A) with a line search (Appendix B), the 
preconditioned CG method (PCG), and the EN method 
(Navon and Legler 1987). The Rosenbrock function is 
also optimised by the Gauss–Newton method (GN). The 
quadratic approximation of a function f(x) is obtained by 
a truncated Taylor series

T T1
( ) ( )

2
f f+ » + +x d x g d d Gd � (2)

where d is a descent vector, f=g  and 2f=G  are 
the gradient vector and the Hessian at x, respectively. 
The minimum of (2) is achieved by solving the Newton 
equation
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=-Gd g� (3)
The GN method is often used to solve a nonlinear least-
square problem. GN uses a Jacobian matrix

( )T
1 2, ( ) ( ) ( )mf f f

¶
= = ¼

¶
f

F f x x x
x

� (4)

where f is called a residual vector, to approximate the 
gradient

T=g F f � (5)
and the Hessian

T ,=G F F � (6)

ignoring the contribution from the Hessian of the 
residual vector 2 f . The solution of the Newton equation  
becomes

1 T 1 T( ) .- -=- =-d G g F F F f � (7)

The preconditioning can be done by a transform with a 
square root of the Hessian as

T/2 .¢ =x G x � (8)

In PCG, the descent direction is updated by the same 
way as CG but the state vector x is preconditioned using 
the Hessian 2( )f . Thus, the first descent direction of PCG 
becomes the Newton direction.

2.1 BOOTH FUNCTION
The Booth function is defined by

2 2( , ) ( 2 7) (2 5)f x y x y x y= + - + + - � (9)

in two dimensions. Unlike the sphere function (a circle 
in two dimensions) two variables are correlated, i.e. 
the off-diagonal elements of the Jacobian matrix are 
nonzero. The squashed shape and small gradients 
near the solution (1, 3) cause the minimisation with 
a simple optimisation method, such as the steepest 
descent method, challenging and demanding numerous 
iterations with a small step size. With f1(x, y) = x + 2y – 7 
and f2(x, y) = 2x + y –5, a square root of the Hessian

T/2 T 1 2

2 1

æ ö÷ç ÷= =ç ÷ç ÷çè ø
G F � (10)

yields x’ = x + 2y, y’= 2x + y; therefore, (9) is preconditioned 
to be

2 2( , ) ( 7) ( 5) .f x y x y¢ ¢ ¢ ¢= - + - � (11)

Minimisation is conducted with EN, CG, and PCG methods 
with the initial position at (0, 0). As expected, the EN 
and CG methods require only one and two steps to the 
solution, respectively (blue and green curves in Figure 1a). 
Here, the line search in CG is exact for the quadratic 
function. Preconditioning using the Hessian of (9) leads 
to the diversion of the descent direction of CG from the 
steepest to Newton directions and enables convergence 
in a single step (PCG, orange in Figure 1a), indicating 
that the Hessian preconditioning works effectively for 
quadratic cost functions.

2.2 ROSENBROCK FUNCTION
The two-dimensional Rosenbrock function is defined by

2 2 2( , ) (1 ) 100( )f x y x y x= - + - � (12)

Figure 1 Minimisation of the (a) Booth and (b) Rosenbrock functions with the exact Newton (EN, blue), conjugate gradient (CG, green), 
preconditioned CG (PCG, orange) and Gauss–Newton (GN, red). Black contours are drawn in logarithmic intervals.
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with standard parameters. The optimisation is initiated 
at (–1, –1) with the control vector (x, y) for EN, CG and 
GN, and with (x’, y’) for PCG. The residual functions are 
defined as described in Appendix C. It should be noted 
that the behaviours of the optimisation schemes are 
not affected by the initial position except for x = 1 as 
discussed below. The gradient norm below 10–5 is used 
as a criterion for convergence. A banana-shaped valley 
hinders convergence and usually requires more iterations 
to reach the minimum at (1, 1).

CG (green in Figure 1b) starts with the steepest 
descent direction and falls into the ditch in two steps. The 
minimisation continues along the ravine before arriving 
at the minimiser in 18 steps. EN (blue) dives into the 
abyss in a single step but climbs the hill at the second 
step. The Rosenbrock function is minimised in a total 
of five steps, significantly fewer than CG. PCG (orange) 
shares the first descent direction with EN caused by the 
Hessian preconditioning. Unfortunately, PCG drops into 
the valley farther away from the goal at the first step and 
spends 23 iterations, with an increase of 5 steps from 
CG. GN (red), with the Hessian approximated by Jacobian 
matrix, converges in only two steps. The GN or EN 
methods with a line search (not shown) are conservative 
and guarantee a smaller cost than the initial value at the 
expense of slower convergence as CG and PCG.

The GN and EN tracks imply that an erroneous solution 
due to the increase of the cost can be obtained when 
the iterations are terminated at first and second steps, 
respectively. The descent vector of EN (and PCG) is not 
directed towards the minimiser, indicating adverse 
effect of the higher order derivatives. The Hessian 
approximated with the Jacobian matrix is no better than 
the full Hessian since it also leads to a state distant from 
the solution. However, it is an vantage point x = 1, where 
the Rosenbrock function (12) is a quadratic function f(y) = 
100(y-1)2; therefore, it leads to the minimiser in the next 
step. The Jacobian-based Hessian that ignores second 
and higher derivatives is consistent with the quadratic 
assumption of the cost function. It should provide a 
good approximation of the full Hessian near the solution 
and reduces an error due to the inaccurate higher order 
derivatives away from the solution. Therefore, the 
Jacobian matrix can be beneficial when available. The EN 
and GN outperformance can be explained by obtaining 
the descent vector analytically in Appendix C.

3 FORMULATIONS

This section summarises the original MLEF formulation 
(Zupanski 2005; Zupanski et al. 2008) and describes our 
modifications.

Assuming the Gaussian distribution, the cost function 
may be written as

[ ] [ ]Tf T 1 f 11 1
( ) ( ) ( ) ( ) ( )

2 2
J H H- -= - - + - -x x x B x x y x R y x � (13)

where x represents the state vector, i.e. the control 
variable of iterative minimisation, xf and y represents 
the first guess of the control forecast and observation, 
respectively; B and R are the background and observation 
error covariance matrix, respectively; and H is a nonlinear 
function that represents the observation operator. In 
ensemble-based data assimilation, the forecast error 
covariance matrix Pf approximates the background error 
covariance matrix. Each column of the square root of Pf 
is taken to be the deviation from the first guess xf for the 
corresponding ensemble forecast.

1/2 f f f
1 2f k

é ù= ê úë ûP p p p � (14)

where k is the ensemble size,

     � (15)

and 
a a a
j j= -p x x  are the forecast and analysis 

perturbations, respectively. The departure of the state 
x from the control forecast xf is represented by a linear 
combination of ensemble perturbations with a weight w 
defined as

f 1/2
f- =x x P w � (16)

In terms of the ensemble weight w as the control 
variable, the cost function (13) may be written as

[ ] [ ]TT 11 1
( ) ( ) ( ) .

2 2
J H H-= + - -w w w y x R y x � (17)

In this form, the background (first) term of the cost 
function (17) is quadratic in w and its Hessian is the 
identity matrix, but the observation (second) term 
is not quadratic unless the observation operator is  
linear.

In the following subsections the original and proposed 
methods are described. Because the original method 
does not specify which optimisation method to be used, 
CG is chosen in this study. The proposed method uses EN 
for optimisation.

3.1 HESSIAN PRECONDITIONING
The original MLEF employs the square root of the Hessian 
to precondition the forecast error covariance matrix in 
the following form

f 1/2 T/2
f ( )-- = +x x P I C ζ � (18)

where T=C Z Z and +I C is the Hessian, and

1/2 1/2
f

-=Z R HP � (19)
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is a normalised ensemble perturbation matrix in the 
observation space. When the Jacobian matrix /H=¶ ¶H x 
is available, Z can be directly calculated by (19). With 
an ensemble, Z is approximated by the difference of 
the simulated observations between the perturbed and 
control states as

[ ] 1/2 f
1 2 , ( ) ( ) .k j jH H- é ù= = + -ê úë ûZ z z z z R x p x � (20)

At the beginning of iterations, Z is calculated using x = xf 
and using x with (18) when it is updated.

In terms of the transformed control variable ζ, the 
cost function and gradient can be written as

[ ] [ ]TT 1 11 1
( ) ( ) ( ) ( )

2 2
J H H- -= + + - -I C y x R y xζ ζ ζ � (21)

and

[ ]1 1/2 T 1/2( ) ( ) ( ) ,J H- - -Ñ = + - + -I C I C Z R y xζ ζ � (22)

respectively. Prior to the optimisation, the eigenvalue 
decomposition T=C V VΛ  is used to compute the inverse 
of the Hessian +I C and its square root, which are 
used consistently during iterations to evaluate the cost 
function (21) and its gradient (22).

After the minimisation, the ensemble update is 
performed with the optimised ensemble perturbation 
matrix in the observation space a( )=C C x ,

( ) T/21/2 1/2
a f .

-
= +P P I C � (23)

The transposed square root of the inverse Hessian is 
calculated with the eigenvalue decomposition

    � (24)

In this study, PCG (simply denoted as CG hereafter) is 
used for optimisation with a line search (Appendix B.) 
It should be noted that ZT in (22) can be either fixed or 
updated during iterations. The CG using updated Z is 
similar to EN described in Subsection 3.2 in which Z is 
updated during iterations. The choice has a profound 
influence on optimisation hence the analysis, as will be 
shown in the data assimilation experiments (Section 4).

3.2 EXACT NEWTON OPTIMISATION
The original solution method is modified to improve 
convergence and accuracy by using the Newton method. 
In addition, the proposed formulation avoids the 
square root matrices except for the ensemble update. 
The quadratic approximation of (17) is obtained by a 
truncated Taylor series

T 21
( ) ( )

2
J J J J+ » +Ñ + Ñw d w d d d � (25)

whose minimum is achieved by solving Newton equation

2J JÑ =-Ñd � (26)

where the gradient vector and Hessian are

[ ]T 1 ( )J H-Ñ = - -w w Y R y x � (27)

and

2 T 1 ,J -Ñ = +w I Y R Y � (28)

respectively, and

1/2
f=Y HP � (29)

is an unnormalised ensemble perturbation matrix in 
the observation space. Here, Y is adopted instead of 
the normalised ensemble perturbation matrix in the 
observation space Z to avoid the inverse square root 
of the observation error covariance matrix. As for the 
normalised case, Y can be approximated by the difference

[ ] f f f
1 2 , ( ) ( ).k j jH H= = + -Y y y y y x p x � (30)

In (26), J-Ñ  and d are called the steepest descent and 
Newton directions, respectively. These two directions 
coincide when the Hessian is an identity matrix, which 
is the case for the initial step for the CG and quasi-
Newton methods with the Hessian preconditioning. 
To solve (26), the Hessian is not explicitly inverted but 
implicitly used in the linear system solution for the 
Newton equation because the linear system solution is 
numerically more accurate and stable than the inverse. 
It should be noted that eigenvalue decomposition is 
not performed here because the inverse square root of 
Hessian is not required.

As with ensemble Kalman filters the Newton equation 
(26) is solved exactly for the linear observation operator. 
The quadratically approximated Newton equation (26) 
is solved iteratively for a nonlinear observation operator. 
The gradient vector (27) and Hessian (28) are updated 
during minimisation for the weight w with innovation y – 
H(x) and ensemble perturbation matrix in the observation 
space Y. The ensemble update is analogous to the 
original scheme (23) except for the use of the Hessian 
(28) with Y recomputed using the analysis xa in (30).

The method in this study differs from the original in 
the following aspects. First, instead of the CG or a quasi-
Newton method with Hessian preconditioning, the 
Newton equation is solved exactly, avoiding re-evaluation 
of the cost function (21) in the iterative line search 
subproblem. Second, the Hessian is updated during 
iterations, and its inverse is not explicitly computed. 
Finally, the square root of inverse of the observation error 
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covariance matrix is not used. The off-diagonal elements 
of R are assumed to be naught in this paper but are 
nonzero in general. The proposed method avoids a non-
unique square root of R and its computational cost. The 
original and the proposed methods yield the identical 
analysis for the linear observation operator, but can 
behave differently for nonlinear observation operators 
or for R with non-zero off-diagonal elements, due to the 
different optimisation methods and to non-uniqueness 
of the square root, respectively.

4 DATA ASSIMILATION EXPERIMENTS

The two optimisation methods (EN and CG) in MLEF are 
compared in idealised data assimilation experiments. 
Unlike those analytically given for the benchmark 
functions in Section 2, the cost, gradient and Hessian are 
typically approximated with ensemble members. First, 
the two methods are validated without a forecast model 
in the assimilation of a single wind speed observation 
with an ensemble normally distributed around a first 
guess. Cycled experiments are then conducted with the 
KdVB equation model.

4.1 ASSIMILATION OF A SINGLE WIND SPEED 
OBSERVATION
The transform between the wind vector u and its 
magnitude |u| and direction θ is nonlinear.

| | sin
.

| | cos

u

v
q
q

æ öæ ö ÷÷ çç ÷÷=-çç ÷÷ çç ÷÷ç ÷çè ø è ø

u

u � (31)

This is identical to a transform between Cartesian 
and polar coordinates for object tracking besides the 
definition of the direction. A Gaussian distribution in the 
magnitude–direction space can be distorted in a banana 
shape with a small magnitude error and a large angle 
error. The linear transformation not only underestimates 
the covariance but also yields a biased posterior mean 
(Julier and Uhlmann 2004).

An assimilation of a single wind speed observation tests 
this nonlinear observation operator 2 2( , )H u v u v= +  
(the inverse of (31)) (Lorenc 2003; Bowler et al. 2013). 
The test uses a forecast ensemble with a size of k = 1000 
distributed with a standard deviation of σu = σv = σf = 2 
ms–1 around the first guess at xf = (2, 4) ms–1 (Figure 2a) 
and a single wind speed observation of Vo = 3 ms–1 with 
an error standard deviation of σo = 0.3 ms–1. Using the 
linearised observation operator H = u/|u|, this problem 
has the analytical solution of the form

a a

f

V
V

= fx x

where

2 2
o of f

a 2 2
of

V V
V

s s
s s

+
=

+

and f
f ( )V H= x . For the above settings, the analytical 

solution is Va = 3.03 ms–1 and xa = (1.36, 2.71) ms–1. 
Iterations are terminated if the maximum number of 
steps (100) is reached or the gradient norm satisfies a 
criterion. EN is deemed converged when the gradient 
norm becomes smaller than 10–5. CG uses a smaller 
threshold of approximately 1.5 × 10–6 considering the 
transformation of the control vector (18). To determine 
the criterion for CG, that for EN is scaled with a 
factor 2 2

of1 / 6.74s s+ »  that represents the Hessian 
preconditioning. With MLEF, the control forecast is used 
as the first guess and the anomalies from the control 
forecast are used as the square-root forecast error 
covariance matrix. This assumption leads to the ratio 
of the forecast to observation error covariance k times 
larger than 2 2

of /s s . To be consistent with the specified 
background–observation error ratio, R is multiplied by k.

4.1.1 Comparison between optimisation methods
EN and CG are compared in wind speed assimilation 
experiments. Figure 2 shows the prior and posterior 
distributions. As discussed in Section 3.1, the ensemble 
perturbation matrix in the observation space Z may 
be fixed (CG) or updated (CGZ) during iterations. The 
analysis (orange dot) falls within the observation 
standard deviation marked with double circles. The 
posterior ensembles (blue dots, in Figure 2b, c, d, f) look 
almost identical but differences exist in the ℓ2-norm 
error and convergence. EN converges in 15 steps while 
CGZ fails to converge due to the failure in the line search 
at step 1 (Figure 2b, c, respectively.) It turned out that 
the fixed Z acts as a remedy for the stagnation. CG can 
improve the solution further and converge in three steps 
(Figure 2d). The CG analysis error at the third step is 
reduced by approximately an order of magnitude from 
that of CGZ at the first step and comparable to that of 
EN at 15th step.

The reason why the remedy works can be explained 
as follows. A descent direction towards the origin leads 
to the solution (cf. H = u/|u|) because the observation Vo 
is any point on a circle of 3 ms–1. Therefore, the steepest 
direction should be selected at each iterative step. CGZ 
fails because g1 ≠ g0 for the updated Z to yield β1 ≠ 0 
(38 in Appendix A), i.e. the contribution from the initial 
descent direction d0 = –g0, where the subscript denotes 
the counter of iterations and g is the gradient, remains 
and the descent direction is not the steepest descent 
direction at the first step. The cost function for the first 
step J(w1) is monotonically increasing and the line search 
fails to terminate the optimisation. CG descends along 
the steepest direction because      thus 
βk = 0 (Appendix A).
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Figure 2 Distributions of (a) prior and posterior ensembles with the (b) exact Newton (EN), (c) conjugate gradient with updated Z 
(CGZ), (d) conjugate gradient with fixed Z (CG), (e) EN with the linearised observation operator applied during optimisation and the 
ensemble update (ENJJ) and (f) EN with the observation operator linearised during optimisation and approximated by ensemble 
on the ensemble update (ENJ), for the single wind speed assimilation. The orange dots represent the control forecast in (a) and the 
control analysis in (b)–(d). The wind speed observation is marked with the circles of radius 3.0 ± 0.3, ms–1. The title of each panel 
shows the optimisation method and ℓ2 analysis error.
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4.1.2 Approximated and analyitical Jacobian 
matrices
CG with the Jacobian (CGJ) and EN with the Jacobian 
(ENJ) that use the analytical form H = u/|u| in (19) 
and (29), respectively, are compared against CG and 
EN to examine the influence of the finite-difference 
approximation of the Jacobian of the observation 
operator. The optimisation history in the zonal and 
meridional winds (Figure 3) shows that EN becomes 
closer and farther alternatively, corresponding to the 
cost oscillation (blue curve in Figure 4a). In addition, EN 
slightly staggers perpendicular to the descent directions, 
probably due to the error introduced by ensemble 
approximation of the gradient and Hessian, i.e. the 
Newton direction is not always towards the solution. 
CG with the fixed Z steadily approaches the solution 
in the Newton direction that is shared by the first step 
of EN and attains the minimiser in five steps. The first 
steps of CG and EN are identical due to CG’s step size 
of 1. ENJ jumps to a point very close but not identical 

to that of CGJ in a single step with an ℓ2 analysis error 
of 3.31 × 10–2; however, it moves along the circle for 
another five steps until the convergence criterion in the 
gradient norm is satisfied.

The above result shows that the gradient and Hessian 
calculated from the ensemble can be inaccurate, unlike 
optimisation for the benchmark functions. CG is less 
sensitive to the approximation because the Hessian and 
the perturbation matrix Z are fixed before iterations. 
When available, it is better to use the analytical Jacobian 
to avoid the finite-difference error. However, ensemble 
members are aligned around the tangent to a circle 
at the analysis (ENJJ, Figure 2e) when the ensemble is 
updated with the ensemble perturbation matrix in the 
observation space (29) computed with the Jacobian of 
the observation operator. Therefore, the finite-difference 
approximation of the ensemble perturbation matrix in 
the observation space (30) is preferred for the ensemble 
update (ENJ, Figure 2f).

Figure 4 compares the cost functions, gradient 
norm and analysis error during iterations for the four 
optimisation methods. EN (blue) requires the largest 
number of iterations (15 steps) to satisfy the stopping 
criterion; however, the gradient norm decreases 
geometrically with diminishing oscillations and the 
changes of cost function are small from the third iteration. 
CG (green) is terminated in three steps but achieve the 
comparable error as the converged EN solution when Z 

Figure 3 Intermediate values of the zonal and meridional 
winds (ms–1) during optimisation for the single wind speed 
assimilation. The number below and above a dot represents 
the number of iterations for the exact Newton (EN, blue)/
EN with the analytical Jacobian (ENJ, orange) and conjugate 
gradient (CG, green)/CG with the analytical Jacobian (CGJ, red), 
respectively. The curve at the bottom left corner shows a part of 
circle |u| = 3.0 ms–1. The dotted grey line represents the steepest 
descent direction connecting the first guess and the origin. The 
green and red dotted lines represent the descent directions for 
CG and CGJ, respectively, connecting the first guess and the 
analysis. The black dot represents the analytical solution.

Figure 4 Changes in the (a) cost function, (b) gradient norm 
and (c) analysis error during iterative optimisation for the single 
wind speed assimilation with the exact Newton (EN, blue), EN 
with the Jacobian (ENJ, orange), conjugate gradient (CG, green), 
and CG with the Jacobian (CGJ, red). The tolerance of the EN 
gradient norm (10–5) is represented as a broken grey line in 
(b). The gradient norm of CG/CGJ is plotted with a scaling of 

2 2
of1 / 6.74s s+ » . The observation standard deviation and 

the first iteration are marked by broken horizontal and dotted 
vertical lines, respectively, in (c).
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is fixed otherwise CGZ stagnates at the first step. Using 
of the analytical Jacobian helps in achieving faster 
convergence (ENJ, orange; CGJ, red). The analysis error 
goes below the observation standard deviation and 
CGJ converges at the first iteration. Unlike EN, the cost 
function and gradient no longer oscillate with ENJ.

The single wind speed assimilation is a challenging 
problem for ensemble methods. The gradient and the 
Hessian matrix are inaccurate even with a large ensemble 
size of 1000 members. The observation operator 
is nonlinear and the cost function is not quadratic. 
Moreover, the cost function in the magnitude–direction 
space is quadratic, and the minimiser can easily be 
found by consistently proceeding towards the steepest 
descent direction. The quadratic nature of the problem 
can explain the effectiveness of the analytically obtained 
Jacobian and the fixed Z for CG.

4.2 CYCLED EXPERIMENTS
This subsection validates EN against CG with a model of 
the Korteweg–de Vries–Burgers (KdVB) equation

3 2

3 26
u u u u

u
t x x x

n
¶ ¶ ¶ ¶

+ + =
¶ ¶ ¶ ¶

� (32)

where u is the model state, t and x are the time and 
space dimension, respectively, and ν is a diffusion 
coefficient. The inviscid case, where ν = 0 in (32), is called 
the Korteweg–de Vries (KdV) equation. The KdVB model 
is discretised in space and time with the centred finite-
difference method and the fourth-order Runge–Kutta 
method, respectively (Marchant and Smyth 2002). The 
model configuration follows that of Zupanski (2005). 
There are grid points n = 101 with a spacing of Δx = 0.5. 
A time step of Δt = 0.01 and a diffusion coefficient ν = 
0.07 is used for the control run. In this study, the model 
domain is chosen to be –25≤ x ≤ 25.

The initial state of the true run is taken from a two-
soliton solution of the KdV equation. The two-soliton 
solution can be written as a sum of two single solitons 
for the regular (sech) and irregular (csch) solutions 
(Yoneyama 1984).

2 2 2 2
2 2 2 2 1 1
2 1 2

2 2 1 1

csch sech
( , ) 2( )
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u x t

k q k q
k k

k q k q
+
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- � (33)
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and β1,2 are Bäcklund parameters. The two-soliton 
solution (33) can then be rewritten with cosh as

 
  

 
    

     
 

        � (35)

The true run, from which observations are generated, and 
the control run, to which observations are assimilated, 
are integrated from the two-soliton solutions with β1 = 
0.5 and β2 = 1.0 at t = –5 and with β1 = 0.4 and β2 = 0.9 
at t = –6, respectively. The ensemble members of size 
k = 10 are generated as follows. The unperturbed run 
uses the same Bäcklund parameters as the control run 
but integrated from t = –7. For the perturbed runs, the 
Bäcklund parameters and initial time are perturbed with 
a standard deviation of 

1 2
0.04, 0.09b bs s= =  (10% of β1 

and β2) and σt = 2, respectively. The ensemble is integrated 
for 400 steps. The unperturbed run is subtracted from the 
perturbed runs to generate the initial perturbations and 
discarded. The perturbations are added to the control run 
to form the ensemble members. The Monte Carlo method 
is used to estimate the initial forecast error covariance, 
i.e. initial perturbations are scaled by k . The scaling is 
not used during the cycle following the philosophy behind 
MLEF (Zupanski 2005) that error covariance is propagated 
by the model in a similar manner to the Kalman filter. 
An analysis is conducted every 200 model time steps. An 
observation is generated at every grid point by adding 
Gaussian noise of an amplitude 0.05 to the true run 
using a quadratic observation operator (H(u) = u2). Each 
experiment performs 100 analyses from t = –6.

4.2.1 Comparison for a particular realisation
The KdVB model is used to compare EN and CG in cycled 
data assimilation experiments with the same initial 
ensemble and observations. Deterministic (EN1) and 
iterative (EN) solutions are examined for optimisation 
effectiveness. Because the forecast is unstable for CG 
when the ensemble perturbation matrix in the observation 
space Z is fixed (CG), Z is updated during the analysis (CGZ).

Figure 5 shows the analyses for the first four cycles. 
EN (blue) is the smoothest solution with two peaks 
after cycle 2, and quickly converges to the true run 
(broken black). EN1 has short-scale noise that is most 
noticeable at cycle 2. All methods achieve an error below 
the observational error (grey) in several cycles, showing 
the effectiveness of data assimilation over the free 
run, in which error grows until about 10 cycles due to 
nonlinearity of the model (Figure 6). The final error for EN 
(blue) is almost an order of magnitude smaller than that 
for EN1 (green). In the middle of the cycles, CGZ reduces 
error significantly and is almost as good as EN, although 
the analysis error is saturated in all experiments, and the 
error of the free run even diminishes due to diffusion. 
Therefore, the several cycles from the beginning, where 
the error reduction is largest, are examined.
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The iterative optimisations with EN and CGZ are 
compared for the first cycle in Figure 7. EN (blue) converges 
in 15 steps. After cycle 3, no further significant reduction 
is observed in the cost function and analysis error even 
though the gradient norm does not meet the stopping 
criterion. The cost function and gradient norm are 
reduced, but the analysis is slightly increased, implying 
the distance from the solution. CGZ (brown) benefits 
from the updated Z and achieves an analysis error as 
small as that of EN. The iteration is terminated before the 
gradient norm meets the criterion (10–5). The results are 
in contrast with the wind speed experiments, in which 
CG is optimised because the descent is guaranteed in the 
steepest descent direction computed for the first guess.

4.2.2 Repeated tests
It turns out that the KdVB model may be unstable for a 
combination of certain initial ensemble and observations. 
In fact CG with the fixed Z failed for the ensemble and 
observations used in the Section 4.2.1. The stability of the 

Figure 5 Analysis using the exact Newton (EN, blue), conjugate gradient with updated Z (CGZ, brown) and EN terminated at the 
first iteration (EN1, green) for the first four cycles with the Korteweg–de Vries–Burgers model. The black broken curve and grey dots 
represent the true run and its observations, respectively.

Figure 6 Analysis RMSE (solid) against the true run and 
analysis ensemble spread (dashed) for the data assimilation 
experiments over 100 cycles with the Korteweg–de 
Vries–Burgers model using the exact Newton (EN, blue), 
conjugate gradient with updated Z (CGZ, brown), and EN 
terminated at the first iteration (EN1, green). The grey and 
red curves show the prescribed (dotted) and actual (solid) 
observation error, and RMSE for the free run without data 
assimilation, respectively.



52Enomoto and Nakashita Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.3255

analysis–forecast cycle with the MLEF and KdVB model 
are examined in a test repeated for 100 times. Each test 
uses a different realisation of an initial ensemble and 
observations. The numbers of successful tests are 100, 
100, 81, and 42 for EN, CGZ, CG, and EN1, respectively.

Figure 8 compares the number of successful 
convergence for each cycle. EN (blue) always converges 
within 100 iterations except for the first cycle, where 
convergence is achieved in 81 tests. CG and CGZ never 
converges for the first cycle and convergence is achieved 
in equal to or less than 40 and 21 tests, respectively, for 
the first ten cycles. The number of successful convergence 
increases gradually with cycles with a median and 
maximum of 58 and 81 for CGZ and 51 and 62 for CG, 
respectively.

EN consumes a greater number of iterations in the 
first five cycles than CG or CGZ (Figure 9). It should be 
noted that the boxes and whiskers include cases without 
convergence. The smaller numbers of iterations for CG 
or CGZ do not indicate faster convergence but immature 
termination and inability to continue minimisation. 
The medians of the number of iterations for EN are 
comparable to that for CGZ after cycle 6 and its variance 
is smaller. It should be noted that EN always converges 
after the first cycle and CG or CGZ does not in the majority 
of tests.

The analysis error is compared in Figure 10. Figure 
10a and b are plotted for 81 cases of EN, CG, CGZ and 42 
cases of EN and EN1, respectively. Compared with CG, an 
error is indeed more effectively reduced with EN or CGZ 
especially in earlier cycles (Figure 10a). EN1 is inferior to 
EN statistically (the median, mean, minimum, maximum, 
first and third quantiles), indicating the optimisation 
effectiveness.

To determine the statistical differences, paired 
Student’s t-tests and Wilcoxon rank sum tests are 
conducted (Figure 11) with a confidence level of 0.95. 
The null hypothesis is that the difference is insignificant. 
The alternative hypothesis is that the analysis error 
of CG, CGZ, or EN1 is greater than that of EN. In the 
Wilcoxon rank sum tests the ranks of the failed tests are 
set to the last place, i.e., 82th and 43th for CG and EN1, 
respectively. EN is significantly more accurate than CG 
up to the the first eight cycles in Student’s t tests and 
throughout the first ten cycles in the Wilcoxon rank 
sum tests. The advantage of EN over CGZ is clear both 
in Student’s t and the Wilcoxon rank sum tests. EN is 
significantly more accurate than EN1 only for the first 
two cycles in Student’s t-tests, but at all cycles in the 
Wilcoxon rank sum tests.

Figure 7 As in Figure 4 but for the first analysis cycle with the 
Korteweg–de Vries–Burgers model using the exact Newton (EN, 
blue), conjugate gradient with updated Z (CGZ, brown). The 
gradient of CGZ is plotted with a scaling to match that of EN at 
the beginning of the iterations.

Figure 8 Number of successful convergence in data assimilation 
experiments with the exact Newton (EN, blue) and conjugate 
gradient with fixed and updated Z (CG, orange and CGZ, brown, 
respectively) using the Korteweg–de Vries–Burgers model.

Figure 9 Number of iterations for the first 10 cycles in data 
assimilation experiments with the exact Newton, (EN, blue) 
and conjugate gradient with fixed and updated Z (CG, orange 
and CGZ, brown, respectively) using the Korteweg–de Vries–
Burgers model. The thick lines represent the medians, the 
bottom and top of the box are first and third quadrants, and 
the minimum and maximum values are marked by whiskers.
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5 SUMMARY AND DISCUSSION

A simplified variant of the MLEF has been proposed in 
which the cost function is minimised by exactly solving 
the Newton equation (EN) as an alternative to the 
original formulation of Zupanski (2005) using the Hessian 
for preconditioning and optimisation with a line search.

First, EN and CG methods are tested against two 
benchmark functions. The Hessian preconditioning 
effectively works for the Booth function, and both 
preconditioned CG and EN converge in a single step. This 
is not the case for the Rosenbrock function, but EN and 
GN converge fast, as discussed in Appendix C.

Then the modified MLEF has been validated with a single 
wind speed assimilation test and cycled experiments with 
a quadratic observation operator. The solutions with CG 
and EN for the wind speed assimilation are similar due to 
the comparable error. With CG, the normalised ensemble 
perturbation matrix in the observation space (Z) used 
to calculate the gradient must be fixed; otherwise, the 
optimisation cannot proceed beyond the first step and 
the analysis remains suboptimal. The gradient norm 
of EN reduces geometrically; however, it increases and 
decreases alternatively and the convergence is slower 
than that of CG with fixed Z. The number of iterations 
significantly reduced with analytical Jacobian is used, 
indicating influence from the error in the gradient and 
Hessian approximated by ensemble.

In the cycled experiments with the KdVB model, EN 
more effectively and efficiently minimises the cost than 
CG and yields outstanding stability. When the number of 
iterations is limited to 1, the analysis is degraded, and the 
forecast becomes unstable. The results of repeated tests 
indicate a statistically significant difference. The updates 
of Z are beneficial in CG, for the stability and accuracy 

Figure 10 Two-norm error with the (a) exact Newton (EN, blue) 
and conjugate gradient with fixed and updated Z (CG, orange 
and CGZ, brown, respectively) (b) EN and EN terminated at the 
first iteration (EN1, green) with the Korteweg–de Vries–Burgers 
model for 81 and 42 successful tests of CG and EN1, respectively. 
The means for each cycle are represented by white circles.

Figure 11 The p-values in paired Student’s t-tests (a) and those in Wilcoxon signed rank tests for (b) with the Korteweg–de Vries–
Burgers model. The conjugate gradient with fixed (CG, orange) and updated Z (CGZ, brown), respectively, vs exact Newton (EN), and 
EN terminated at the first iteration (EN1, green) vs EN.
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of CG with the updated Z and EN are comparable for 
cycled experiments with the KdVB model. The superiority 
of EN or CGZ to CG probably stems from the updated 
observation perturbation matrix in ensemble space at 
each iterative step. EN and CGZ can use a better gradient 
than CG and EN can also take advantage of the updated 
Hessian.

MLEF with EN adaptively iterates depending on the 
distance from the solution. The maximum number 
of iterations is set 100, in this study, but only several 
iterations are required, except for the first few cycles. A 
smaller limit may be used to reduce computational cost. 
Alternatively, the limit is left large enough to let EN deal 
with a cycle in which observations are farther from the 
first guess.

The results show that EN has an excellent convergence 
property and can iteratively minimise the cost to yield 
optimal analysis for nonlinear observations in simple 
assimilation experiments with MLEF. Moreover, MLEF 
with EN is successfully applied to an atmospheric 
general circulation model SPEEDY (Molteni 2003) and 
a nonhydrostatic regional atmospheric model NCEP 
RSM (Juang 2000). It should be noted that practical 
considerations, such as inflation and localisation of the 
forecast covariance, are required for such large-scale 
problems. EN effectively minimises the cost function 
although the convergence is not always attained as with 
the KdVB model. The results with these models will be 
reported in separate papers.

A CONJUGATE GRADIENT METHOD

This appendix briefly describes the CG method as 
implemented in scipy.optimize (Polak and Ribière 1969; 
Navon and Legler 1987).

The initial descent direction is set to the steepest 
descent direction.

0 0=-d g � (36)

where the subscript indicates the number of iteration 
(0 for the initial position) and f=Ñg  is a derivative of a 
function f(x) with respect to the state x.

The state is updated with

1 , 0,1,k k k k k+ = + = ¼x x dα � (37)

where αk is a step size that minimises ( )k k kf +x dα  
(Appendix B).

The descent direction is updated as

1 1 1k k k kb+ + +=- +d g d � (38)
where
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When 1 , 0k k b+ = =g g  and the steepest descent direction 
is chosen as a descent direction as for the first descent 
direction d0, i.e. CG is restarted.

B LINE SEARCH

The line search subproblem finds the step size α > 0 such 
that

( ) ( )ff = +x dα α � (40)

is minimised for the fixed state x and the descent 
direction d (Moré and Thuente 1994; Nocedal and 
Wright 2006).

To avoid possibly expensive function evaluations, 
an inexact line search is conducted with a sufficient 
decrease condition (Armijo condition)

T
1( ) ( ) ( )f f c f+ £ + Ñx d x x dα α � (41)

and a curvature condition (strong Wolfe condition)

T T
2| ( ) | | ( ) |f c fÑ + £ Ñx d d x dα � (42)

where 0 < c1 < c2 < 1. The parameters c1 = 1× 
10–4 and c2 = 0.4 are used in scipy.optimize.
minimize (method=’CG’). The first guess 
of the step size is 1 at the beginning and 

( ) ( 1)max(0,min(1,1.01 2( (0) (0))/ (0))n nf f f- ¢= ´ -α  at n-th 
(n > 1) descent direction, where ( ) ( 1) ( )( ) ( )n n nff -= +x dα α  
and ( ) d ( )/df f¢ =α α α . Then, the applicable step size 
is searched iteratively by try-and-error with suitable 
interpolations.

C FAST CONVERGENCE OF NEWTON 
AND GAUSS-NEWTON METHODS

The gradient vector, Hessian, and its inverse of the 
Rosenbrock function (12), which are required to solve the 
Newton equation (3), are derived from (12) as follows

             � (43)

            � (44)


           �(45)

Then the descent vector for each step is
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Away from y = x2, the descent vector is d ≈ (0, –y+x2) 
because |200(y–x2)| is large and yields y ≈ x2. For y ≈ x2, 
200(y–x2) is negligible, and the descent vector becomes d≈ 
(1–x, 2x(1–x)) and x ≈ 1 in the next step. Starting from x0 = 
(–1, –1), i.e. |200(y–x2)| = 400, x1 ≈ (–1, 1), i.e. y ≈ x2, x2 ≈ (1, 
–3), where the subscript denotes the number of iterations. 
Two more steps are required to exactly arrive at x = 1 
where d = (0, 1–y) that moves the state to the minimum.

GN requires a Jacobian matrix to approximate the 
Hessian. The vector of residual functions for the nonlinear 
least squares (1) for the Rosenbrock function (12) are

1
2

2

1( )
2 .

( , ) 10( )

xf x

f x y y x

æ öæ ö - ÷÷ çç ÷÷ ç= =ç ÷÷ çç ÷÷ç ÷ç -è ø è ø
f � (47)

The Jacobian matrix is composed of derivatives of the 
residuals

                           

� (48)

The gradient fÑ  can be expressed exactly with the 
residual functions and the Jacobian matrix as TfÑ =F f  
and the Hessian is approximated by ignoring the second 
and higher derivatives.

           � (49)

The gradient and Hessian inverse
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are combined to obtain the descent vector

T 1 T 1
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The decent vector (51) leads x to 1 for any initial x and 
y to 1 for any y if x = 1. Consequently, the Rosenbrock 
function is minimised in only two steps with GN.
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The source code is available from https://github.com/
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