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ABSTRACT 

Approximations in the use of any scalar dependent variable as a vertical coordinate in 
Dynamic Meteorology are derived. A connection with the barotropic approximation 
is made for the case of a pressure coordinate system where the dependent variable is 
pressure. 

1. Introduction 
The two obvious reasons for the introduction 

of pressure as a vertical coordinate (pressure 
coordinate system or p-system) into the dyna- 
mica1 equations of meteorology are firstly to try 
to simplify these equations and secondly to 
make the equations directly applicable to vari- 
ables measured, as they generally are, on con- 
stant pressure surfaces. The latter is the more 
basic reason and it  is found that, in moulding 
the equations to f i t  the technique of constant 
pressure analysis, simplifications do occur. 

In constant pressure (c-p) analysis the 
variables are, ideally, completely specified a t  a 
particular time ( to)  on a number of levels, 
p = P  =constant, of the parameter P ,  the pres- 
sure (e.g. 1000 mb, 700 mb, 500 mb, etc. levels). 
In  this way a composite picture of the atmos- 
phere as a whole is obtained a t  the time to. 
A set of dynamical prediction equations is then 
required to relate this picture to that at  some 
later time. The similarity to constant height 
(c-1) analysis is noted. Here, a t  time to,  the 
variables are specified on a set of levels where 
the parameter 2, the height above mean sea 
level, is constant. 2 corresponds to the vertical 
coordinate (z )  of a Cartesian frame fixed to the 
earth’s surface a t  mean sea level. In  this case 
the particular prediction equations are the well 
known Cartesian equations of motion, vorticity, 
etc. applied to each of the particular values of 
z =Z =constant chosen. It is a simple matter to  
fix z in the relevant equations for the c-1 case. 
However, since the pressure is generally a 
function of the space variables x, y and z and 
of time t ,  we cannot fix the value of p in a 
similar manner for the c-p case. 

In  both cases the method of representation of 
dependent variables is the same. Their values on 
a particular level (c-p or c-I) surface are projec- 
ted onto a sea level chart. These projections, 
together with a contour map of the level sur- 
face, are sufficient to give a complete picture 
of the variation of the variables over the level 
surface. In the c-1 caae the contour map is 
trivial: in the c-p case the contour lines are 
drawn on the same chart as the projected 
variables and are equivalent to the isobars of 
the constant height representation. 

Summarizing, we have a set of c-p boundary 
and initial conditions, but no predictive equa- 
tions directly applicable to them, and a set of 
equations (e.g. the equations of motion and 
continuity) applicable to c-1 boundary and ini- 
tial conditions which in general are not known. 

Let D,  be the set of differential and other 
operators used in meteorology and let V ,  be 
the set of variables encountered (functions of 
x, y ,  z and t ) .  ‘ v i l p )  and YllzJ represent the sets 
of variables with pressure as a variable para- 
meter taking a finite number of values (c-p 
analysis) and with height taken as a variable 
parameter with a finite number of values (c-1 
analysis) respectively. We have then a set of 
dynamic equations of the form 

and two alternative sets of boundary condi- 
tions 

~ i ( ‘ )  = const. (2) 

or v,CZ)= const. (3) 
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The equations 

2 DiVlZ'= const' (4) 
ti 

to which the boundary conditions (3) apply can 
be obtained directly from equation (1). Since 
the boundary conditions, are generally in the 
form of equation (2) we need a set of equations 

1 D,",'''= const. ( 5 )  
i i  

to which they can be applied. 

tions 
To obtain these equations we must find rela- 

Di",'"=function of the D,V,"'. (6) 

The first comprehensive treatment of this 
problem was given by ELIASSEN (1949) and his 
results have since been used extensively in 
most branches of dynamic meteorology and in 
particular in the field of numerical forecasting. 
However, Eliassen's results, which are essenti- 
ally identical to equation (8) in the next section, 
are not directly applicable to the equations xi ,  D ,  V i  = constant or x,, D, Vltz' =constant 
since equation (8) is not in the required form 
(6). In  the following sections approximate equa- 
tions are derived which can be so applied. The 
degree of approximation involved is determined 
and the consequences in numerical forecasting 
are briefly discussed. 

2. Relations between the differential 
operators 

Instead of restricting the discussion to con- 
stant pressure analysis only, we will consider 
constant. scalar analysis for a general scalar 
function 

[(x,y,z,t) =E =constant. 

We will use the following terms: q =any of the 
independent variables x, y or t. Cartesian vari- 
ables have been chosen for simplicity. 

A =A (z,y,z,t) is any scalar dependent vari- 
able. Since the extension to vector quantities 
is straightforward only the scalar case will be 
presented in detail. 

Z= = 2s (x, y, E, t) denotes the height of the 
chosen constant scalar surface. 

The parameters corresponding to the vari- 
ables p,z and t will be written P, 2 and E so 
that a particular constant pressure surface for 
example would be specified by p = P =constant. 
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The values of A on the surface 5 =E will be 

or in an implicit form 

A s  =A&, y, E, t ) .  

Ginca A&, y, a, t )  = A=&, y, Zz, t )  

aA, a a aZ, 
we have ~ = - (&,) + -- (Az=) - .  

89 a9 azq - aq 
(7 )  

If [/Iol represents the value of f for z = a  then 

The right-hand side of (8) depends on the 
variable heights of the constant-5 surface. The 
available dynamic equations do not involve 
time and space derivatives of a variable when 
these derivatives are taken at different heights 
for each instant and position (z,y): in particular 
the derivatives a t  different heights of a constant 
scalar surface. The equations however do con- 
tain derivatives taken at varying heights of a 
constant level surface z = Z  =constant. It is 
necessary then to relate terms of the form 
[aA/aq]zB to terms like [aA/aq],. 

To do this we use a Taylor series expansion 
in powers of A z = Z = - Z ,  where Z is chosen 
appropriately between the highest and lowest 

+ [?(iia)] A Z  
z az aq z= 

- -[-(-)I 1 ax aA (A%)'+ ... (9) 
2! az' aq zg 

Assuming the surface =E to be quaaihori- 
zontal we can neglect powers of Az greater 
than one. The accuracy of this step will be dis- 
cussed later. Substitution of (9) into (8) gives 
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where B = aA/az. 
Higher order terms in Az have been neglected. 
Except for the term in Az the expression 

(10) is the same as that given by ELIASSEN 
(1949), PERKINS and GUSTAFSON (1951) and 
others, and which is the basis of the dynamical 
equations in the p-system. However, the app- 
roximation involved in neglecting terms involv- 
ing Az has been overlooked. 

Neglecting the Az term gives 

From the equations for q-x and q - y  we 
obtain the vector analogue of (11) 

where Vh is the horizontal del operator, 

. a  a 
I -  + j - ,  
2x ay 

and €3 denotes either a vector or a scalar 
product. 

Differentiating A= with respect to the para- 
meter s gives, similar to equation ( 7 )  

to order zero in powers of Az. The suffix B can 
be dropped from A= without ambiguity in this 

case since A must be written in the form 
dependent on B explicitly in order that partial 
differentiation with respect to B may be per- 
formed. Hence we have 

g= k]z/3 
3. Basic differential formulae 

The fundamental equations are (1 1) and (12). 
Rewriting them we have 

aA, aA aZ,aA 
at at at az 
--=-+fl- 

where the suffixes Z have been dropped from 
the right-hand sides for simplicity and to align 
the notation more closely with that of other 
authors. 

PuttingA=Ein(14C) we have,sinceVhE==O, 

(15) 

Using the approximate form of the third 
cqnation of motion in Cartesian coordinates, viz. 

where e is the density and g the acceleration due 
to gravity, we find for the p-system the familiar 
equat'ion 

vhzP=  (vhP)/@g. (17)  

Putting A = 6 in (14D) gives 

_-  
at 

Hence 
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where D/Dt is the derivative following the 
motion 

vz is tho vertical component of the velocity V .  

The vertical &velocity is then 

Using (14C), (14D),  (15) and (18) gives 

In the 2)-system, where o = Dp/Dt, then 

DA D A o a A  
- = h P -  _. - 
Dt Dt e g  az 

(19) 

The continuity equation takes on a new form. 

using (14B), (15) and (17). 

3 + QV . v = 0 
Dt 

In tho p-system equation (13) becomes 

aA 1 aA 
aP e g  az * 

(21) _ -  - 

Using the notation V p @ A  =Vh@Ap employed 
by Eliassen and others, equation (20) becomes 

a o  
V p * v + -  = o  

aP 

from which it appears that the atmospheric 
flow is non-divergent. The notation used above 
is slightly misleading and the approximations 
involved, as found in the previous section and 
evaluated in the following section, in this form 
of the continuity equation are generally not 
mentioned. The fact that large scale flow in the 
atmosphere is approximately non-divergent has 
been long established. 

4. Magnitude of errors 

Since aAjaq generally has no singularities the 
series expansion for aA=/aq will always con- 
verge. The error introduced by neglecting all 
powers of Az greater than zero is to be found. 

If we write equation (9) in the form 

where an(A)  depends on A ,  then 

lan[ n + l  

When referring to orders of magnitude we 
shall use the convention of regarding quantities 
differing by a factor of 10 as differing by one 
order of magnitude. The symbol - will be used 
to equate quantities of the same order of magni- 
tude. Thus, following BURGER (1960) and others 
we have 

where *,IQ is a characteristic half-wavelength in 
the q direction (written H and S for vertical 
and horizontal directions by Burger who gives 
H - 10"). 

Thus we have 

Az Az 100- 0 =- 0 to within 104 10 loz h. 

In particular, for the p-system and at  the 
500 mb. level, Az is of the order of half the 
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maximum difference in heights of the 500 mb 
surface over the area of analysis (i.e. Az - 10Sm), 
so that errors of up to 10 %, though generally 
smaller, are inherent in the use of equations 
( l l ) ,  (12) and (13). 

It can be shown that the error is of the same 
order of magnitude as the error introduced 
when barotropic flow (i.e. density a function of 
pressure only, so that the vertical shear of the 
geostrophic wind velocity is zero) is assumed. 

Consider the derivation of the equation 

Suppose that for each x, y and t the constant-E 
surface passing through 2 is &(z, y , Z , t )  where 
Z is, as previously defined, between the height 
extremes of the surface t =E. 

Expanding aZ,,/aq in terms of A E  = E - So gives 

which we can compare with 

using equations (13) and (24).  
Thus 

as one would expect. 

Now from equation (25) i t  is evident that the 
neglect of the term of order one in powers of 
A E  (which is equivalent to neglecting terms of 
order one in powers of Az) is equivalent to 
assuming that 

In the p-systsm this implies 

a (5) ~ 0 
aP aq 

or, if G is the geostrophic wind, then 

i3G - = o  
aP 

so that the vertical shear of the geostrophic 
wind is zero, which is true only if the atmos- 
phere is barotropic. 

From the argument leading to  equation (23) 
i t  can be seen that the degree of approximation 
in all equations of the p-system is the same. It 
follows then that the use of these equations is no 
better than assuming barotropic conditions to 
hold. Thus, all numerical forecasting models 
which make use of pressure coordinates, have 
inherent in them an approximation which is 
of the order of the barotropic flow approxima- 
tion. We would expect, then, that models which 
are more sophisticated than the simple "equiva- 
lent barotropic" model (where the less restric- 
tive assumption of no wind direction change 
with height is made) would yield results which 
were not significantly better. 

5 .  Conclusions 
The usual expressions used in deriving dyna- 

mica1 equations for a coordinate system where 
the vertical Cartesian coordinate is replaced by 
a scalar dependent variable are found to be 
accurate only to within 10-'Az % where AZ 
(metres) is half the height difference between 
the highest and lowest points of the particular 
constant scalar surface under consideration. For 
the p-system this approximation is shown to be 
equivalent to the barotropic assumption and 
consequently one would expect an "equivalent, 
barotropic" numerical prediction model to be as 
good aa any other model where pressure coor- 
dinates are used. 
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