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ABSTRACT 

Possible flow patterns in a rectangular, B-plane, ocean are generated by assuming that 
the ocean basin can be divided into an interior region in which the dynamical balance is 
of the Sverdrup type (1947) and a boundary region where the dynamicai balance is 
governed by inertial forces. The flow pattern which was derived by CARRIER & ROBIN- 
SON (1962) is shown to  be the only possible pattern for a one-layer and a two-layer 
ocean when friction is not taken into account. The impcrtance of friction is discussed 
and possible alternatives are mentioned for cases in which friction is included. 

1. Introduction 

This paper contains a derivation of the flow 
pattern in a B-plane ocean where i t  is assumed 
that the flow in the major regions of the ocean 
is determined by a balance between coriolis 
acceleration, pressure gradients and wind 
stress,' and that in the remaining regions 
potential vorticity is conserved. No attempt 
will be made to deduce the equations in a 
rigorous manner--e.g., the questions which 
arise in connection with the derivation of the 
@-plane equations from those for flow on a 
sphere are not considered. Nor is the very 
essential role of friction treated in a detailed 
fashion. These questions and others of equal 
importance have been considered in some detail 
by previous authors (cf. MORGAN (1956) and 
CARRIER and ROBINSON (1962)). The present pur- 
PO90 is to give a simple derivation of the results 
which can be obtained by the application of 
ideas and concepts which have attained some 
degree of acceptance through continued usage 
and consequent familiarity. It will be seen that 
many of the results which have been derived 
through the use of relatively sophisticated 
mathematical technique can be easily under- 
stood from simple physical arguments. 

In  particular, the flow patterns for a homo- 
geneous ocean and for a two-layer ocean are 
derived by using the balance of forces outlined 

in the first sentence. The results show that in a 
homogeneous ocean basin the interior flow mixst 
be toward the west and that the circulation 
pattern for a basin with a zonal wind stress 
given by t N -cosny', O <  y'< 1 (where y' is 
a non-dimensional coordinate of latitudinal 
distance) requires the existence of a zonal jet 
in the interior part of the ocean. Thwe same 
results have been derived by CARRIER and RO- 
BINSON (1962) with the use of boundary layer 
theory. The details which Carrier and Robinson 
obtain for the flow pattern are not derived here 
but these details are not necessary for an under- 
standing of how the circulation pattern can arise. 
Thus details are sacrificed for the advantages 
of simplicity. 

The real advantages of the present method 
are seen more clearly in the discussion of the 
two-layer ocean. This case cannot be treated 
easily by the method used by Carrier and Ro- 
binson. The flow pattern for the two-layer ocean 
is the same as that of the homogeneous ocean 
but certain minor restrictions on the velocity 
amplitudes in the boundary layer must be 
added. 

2. Homogeneous ocean basin 

The quasi-geostrophic equations which govern 
steady flow in the interior of a homogeneous 
ocean basin are 

This will be called quasi-geostrophic flow. It  is 
the flow in the interior of the ocean first derived by 
Sverdrup (1947). 
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au av aw - + - + -  = o ,  (4) ax ay az 

(3) Sustituting V into equation (8) then provides 
the relation 

d 
- ( h - z ) = O  a t  z=h ,  
dt 

where u, v, w are velocity components positive 
to the east (z), north (y), and upward (z )  
respectively, f = f o  + By is the familiar linearized 
form of the vertical component of the earth's 
rotation vector, tz and ty are the x and y com- 
ponents of the stress vector (horizontal friction 
is neglected in the interior), e is the (constant) 
density and p is the pressure. Equation (5) 
defines the free surface height, h. 

If the equations be integrctted over the depth 
from z = O  to z =h,  the pressure gradients can 
be expressed in terms of gradients of h. Also, 
the vertical velocity, w, can be expressed in 
terms of the horizontal components of velocity 
a t  the top and bottom of the ocean through 
equation (5) and the equations reduce to the 
form 

g ah' 
2 a ~ '  

f V =  

or lat  1 v = =  -jay. 1 

U and V are now horizontal transports defined 
by s t u d z ,  s t v d z  respectively. It has been assumed 
that the stresses a t  the bottom of the ocean 
vanish, that ty evaluated a t  z = h  vanishes also, 
and that t, = t a t  z = h. Thus the circulation is 
the result of a zonal wind-stress acting a t  the 
surface, z =h.  Equations (6)-(8) are a rigorous 
consequence of equations (1)-(5) when the 
above stress conditions are invoked. 

Now cross-differentiating equations (6) and 
(7) yields 

at 

=Y 
gv- - - 

Equations (9) and (lo), originally derived by 
SVERDRUP (1947), are two equations which are 
nec-ry to deduce the flow in the interior. 
The expression for V yields the direction and 
magnitude of the meridional transport uniquely 
once at/+ is known. Equation (10) does not 
give unique information about U even when 
a%/ay* is known because the zonal transport 
is determined only to within an arbitrary 
function of y. It is therefore necessary to 
introduce additional constraints. 

It will be assumed that quasi-geostrophic 
balance is valid throughout the interior and 
up to either the eastern or the western boundary. 
Depending on which of the latter conditions is 
chosen, the direction of zonal flow is determined. 
For example, if a%/+% z 0 and if equations 
(9) and (10) obtain up to the eaetem boundary 
of a rectangular ocean (where U = O ) ,  then 
aU/ax>O and U < O  throughout the interior. 
A western boundary layer must be added to 
close the flow. If, on the other hand, a%/ay* z 0 
and equations (9) and (10) are aasumed valid 
up to the weatern boundary, then aU/ax > 0 
and U > O  throughout the interior. In  this case 
an eastern boundary layer closes the flow. 

There are, therefore, eight possible flow 
patterns determined by three independent 
parameters-viz., the sign of ar/+, the sign of 
ast/aya, and the validity of equations (9) and 
(10) up to either the eastern or the western 
boundary. It is possible to consider flows with 
boundary layers on both sides of the ocean 
but such flows simply add an unnecessary 
complication to the present considerations. 

The eight flow patterns in the interior are 
shown in Figs. l a  to l h .  In Figs. l a  to Id 
quasi-geostrophic flow is assumed right up to 
the eastern boundary and a western boundary 
layer is necessary to close the flow. For example, 
in Fig. l a  the net meridional transport in the 
interior is northward and a southward flow 
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FIG. 1. The eight posaible flow patterns in a homogeneous or two-layer ocean are shown. The patterns are 
determined by the signs of &lay and and by the closure of the flow with either a western (Figs. a 
to d )  or an eastern (Figs. e to h) boundary current. Some of the patterns cannot satisfy the constraint 

imposed by conservation of potential vorticity in the boundary layer. (See text.) 

must be added in the western boundary layer 
for purposes of mass conservation. Figs. l e  to 
l h  contain eastern boundary layers. The pat- 
terns within each group la-ld and l e - l h  are 
determined by the signs of &lay and a%/ayP. 

Thus far quasi-geostrophic flow in the in- 
terior is the only dynamical constraint which 
has been considered. The flow in the boundary 
layers is assumed to be inertially controlled and 
this assumption provides an additional con- 
straint on the flow. Using boundary layer 
considerations one can easily derive the relation 

I I* 

in the boundary layer regions. Equation (11) 
states that absolute vorticity is constant along 
a particle path. (The vertical component of 
vorticity ie consistently approximated by 
&/ax). The principal simplification involved in 

The velocities can be considered as averages in 
the vertical (V =uh) for the present purpose. h can 
be considered as essentially constant for the homo- 
geneous ocean. 
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equation (11) is the lack of importance of the 
wind-stress term. Physically one expects this 
to be the case-the boundary layer region is so 
narrow that the effect of the wind-streas in the 
boundary layer is negligible compared to its 
effect in the interior. The boundary layer flow 
is driven by the interior flow. 

Without going into the details of the bound- 
ary layer solution, one can expect that the 
meridional velocity essentially vanishes at the 
outer edge of the boundary layer and has a 
maximum amplitude at the wall. Thus if the 
flow is northward (southward) in the western 
boundary layer the relative vorticity, &/ax, is 
negative (positive). For the eastern boundary 
layer northward (southward) flow implies posi- 
tive (negative) relative vorticity. 

One can now apply the boundary layer con- 
straint to the flow pattern. Since &/ax+f is 
constant along a streamline, it is necessary that 
the relative vorticity, &/ax, compensate for the 
change in the coriolis parameter, f ,  along a 
streamline. Consider, e.g., Fig. la. .The flow 
comes in from the interior and t u r n  southward 
so that f decreases. In order that av/ax+f 
remain constant it is necessary that &/ax 
increase and since &/ax changes from zero to 
a large positive value, the pattern in Fig. l a  
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FIQ. 2. A flow pattern which is consistent with all 
constraints for both the one- and two-layer oceans 
when the wind stress is of the form T- -cosny', 

0 < y' < 1. 

is consistent with the boundary layer con- 
straint.' 

Similarly, in Fig. I b  f increases and av/az 
decreases along a streamline to yield a consistent 
picture. On the other hand, in Fig. l c  the flow 
leaves the boundary layer and along a stream- 
line av/ax changes from a positive value to zero 
so that av/ax decreases. However, f also de- 
creases and f + (av /ax)  cannot remain constant 
but must decrease. Therefore, Fig. 1 c represents 
an impossible flow pattern. Similar reasoning 
shows that the circulations in Figs. l a ,  lb, l e  
and If are consistent with the necessary con- 
straints and that those in Figs. l c ,  I d ,  l g  and 
l h  are not. 

One is therefore led to the conclusion that 
only those pat term with wwtward flow in the 
interior satisfy the necwaary conditions. This 
means that, if one tries to form a complete 
circulation pattern for a given zonal wind- 
stress distribution, i t  is necessary to put all 
the eastward flow into regions which are 
governed by dynamics which are not quasi- 
geostrophic. 

As a particuiar example consider the wind- 
stress distribution T - - cosny' where the non- 

1 This argument waa first used by MORGAN (1956) 
to show that E western boundary current could be 
generated by an interior solution but an eastward 
boundary current could not. 

dimensional coordinate y' ranges from 0 to 1 .  
Here, ar /ay  > 0 throughout, a2t /aya  z 0 for 
0 < y' < 4 and a2t /aya  < 0 for 4 < y' < 1. Thus for 
this example the only possible circulation with 
inertial balance in the boundary regions is one 
with Fig. l b  for the southern half-basin and 
Fig. 1 f for the northern half-basin. This pattern 
is shown in Fig. 2 with a zonal jet to provide 
the eastward flow. The mid-latitude jet is not 
unique-it is possible that several jets could 
exist. However, the pattern shown is the simp- 
lest one consistent with the ideas introduced 
above. 

It should be noted that the qualitative 
structure in the zonal jet is determined by the 
dynamics of the interior solution and the 
boundary layers along the coasts. For example, 
in the southern half-basin the interior flow 
generates the western boundary layer. Thus the 
southern half of the zonal jet receives water 
from the western boundary layer and in turn 
gives water off to the interior. In the northern 
half-basin the eastern boundary layer weakens 
northward and gives water off to the interior 
region. Hence, the northern half of the zonal jet 
is generated by the interior solution and, when 
it is fully formed, it turns northward and 
generates the eastern boundary layer. 

This example is essentially the one considered 
analytically by CARRIER and ROBINSON (1962) 
although they were forced to linearize the wind- 
stress in order to obtain an analytical solution. 
However, the linearization which they introd- 
uced was simply convenient and did not involve 
any changes in the qualitative flow pattern. 

As was mentioned earlier, circulations with 
boundary layers at both the eastern and 
western boundaries are also possible. The 
simplest way of looking at such flows is to 
picture the total circulation as a superposition 
of a combination of the patterns described 
above and one or more free inertial solutions 
of the type considered by FOFONOFF (1954). The 
latter involve symmetric boundary layers at 
the eastern and western boundaries. The 
amount of recirculation of the free inertial 
type which one can add is completely arbitrary 
because such flows are independent of any 
driving mechanism and therefore the amplitude 
is undetermined. The present problem is non- 
linear in the boundary layers but linear in the 
interior so that one can imagine superposition 
in the interior with a non-linear behavior in the 
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inertiel regions. It would appear that the only 
change that would occur in treating the full 
non-linear problem in the boundary layer is 
one of detail although one should carry out the 
analysis to check such a speculation. In the 
work of Carrier and Robinson the wind-stress 
is linearized and the boundary layer problem 
becomes a linear one. The principle of super- 
position is therefore valid and, in fact, their 
solutions are simply s u m  of wind-driven 
circulations and free inertiel flows. 

3. Two-layer ocean 

Consider next an ocean consisting of two im- 
miscible layers with the less dense water in the 
upper layer. If the lower layer is assumed to be 
a t  rest, the equations which determine the flow 
in the upper layer away from coastal boundaries 
are the same EB (6),  (7) and (8) with g replaced 
by g' =g(Ae/eL) (where Ae is the (positive) den- 
sity difference and eL is the density of the water 
in the lower layer). The depth, h, is now the 
variable depth of the upper layer. The flow in 
the interior is therefore determined exactly by 
equations (9) and (10)  as before so that the eight 
flow patterns in Fig. 1 again represent the 
possible circulations in the interior. The 
essential difference between the two models 
is that the depth h is variable. Although a 
variable h does not change the results for the 
interior flows, it plays a very important role 
in the boundary layers. 

A rigorous boundary layer expansion at  the 
eastern or western boundaries yields tho fol- 
lowing set of equations: 

au av ah 
u- + c-- + fu= - g ' - ,  

ax ay aY 
(13) 

where either the velocities can now be con- 
sidered as vertical averages ( U  = uh, V = vh) or 
the velocities are assumed independent of the 
vertical. Equation (12)  is simply the geostrophic 
equation. Again the essential simplification in 
(12)  is the lack of importance of the strew- 
the non-linear terms drop out in the boundary 
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layer expansion but the inclusion of those 
terms leads to no difficulties. 

Now if (12)  and (13)  are cross differentiated 
and if (14)  is used, one deduces the relation 

This is the familiar expression for conservation 
of potential vorticity, i.e., ( a q a x  + f ) / h  is 
constant along a streamline. Furthermore, if 
one multiplies (12)  by u and (13)  by v and adds 
the equations, one finds 

v - v 6 + g.h) = 0.  

Equation (16)  is the Bernoulli equation which 
states that the total energy per unit maes, 
vs/2 +g'h, is conserved. 

At the junction between the boundary layer 
and the interior the potential vorticity is simpli- 
fied since av/ax<f and the energy expression 
is also simplified since va/2<g'h. Hence, one 
writes 

av 
- + f  
ax f i  

( 1 7 )  __ = _  
h hi' 

va 
- i g'h = g'h,, 
2 

where f ,  and h, are the values of f and h on a 
streamline at  the point where the streamline 
enters or leaves the boundary layer. 

Now one can solve for h/h, in (18)  

and substitute (19)  into (17)  to dsrive 

~ ~~ 

along a streamline. Equation (20)  is the con- 
straint which is imposed by the boundary layer 
dynamics on the flow patterns of Fig. 1 .  

Consider again the various cases. In Fig. l a ,  
the interior flow is northwestward and turns 
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south in the boundary layer. Since southward 
flow in the boundary layer implies that the 

remain positive. Now f r  > j  so that the change 

av 
ax 

V t  

%‘hI 

ax 

Fig. 1 g: - < O ,  f 1  > f ,  

relative vorticity, avlax, is positive, it is neces- 
aary that the right-hand side of equation (20) 

in f has the proper sign. However, (v*/2g’hl)fl, 
is a positive quantity and the contribution of 
this term tends to decrease the right hand side 

- f l  must be very large 

at) 
Fig. 1 h: --> 0, f r < f ,  impomible 

of (20). Thus the pattern in Fig. ia is possible 
provided that (v3/2g’h,)f, is not too large.’ 

In  Fig. 1 b the flow is northward in the western 
boundary layer so that avlax must be negative. 
Now f r  < j  and one sees that both the second 
and third terms on the right hand side of 
equation (20) contribute with the appropriate 
sign. Hence, the flow in Fig. 1 b is completely 
consistent. 

In  Fig. 1 c it is necessary that &/ax be positive 
in the boundary layer. Here, f l  <f  (since the 
flow comes out of the boundary layer into the 
interior). Thus the combination of terms in (20) 
yields a negative value for &/ax and this flow 
cannot be realized. 

In Fig. I d  &/ax must be negative. However, 
f ,  > f  and it is necessary for the term (v*/2g’hi)jr 
to be sufficiently large in amplitude to over- 
come the effect of the change in planetary 
vorticity.’ This pattern is also possible there- 
fore but it requires very large velocities in the 
boundary layer. 

Thus of the four circulations with boundary 
layers on the western edge, that of Fig. l b  is 
completely consistent with the inertial con- 
straints, that of Fig. l c  is impossible, that of 
Fig. l a  requires that the velocities in the 
boundary layer be limited in amplitude and 
that of Fig. I d  requires very large velocities in 
the boundary layer. 

Similar reasoning for the eastern boundary 
layer cases gives the following results: 

av 
ax 

Fig. 1 e: - < 0, f l  < f .  completely consistent 

Fig. 1 f :  a y > O , f l > f ,  
ax 

V 1  

29% 
-fI must not be too large 

FOFONOFF, however, has pointed out to me 
that there is an additional constraint based 
on mass transports which must also be satisfied 
and when one includes this constraint, the two 
flow patterns I d  and l g  are not possible. The 
argument is straightforward and simple and can 
be seen from the following: 

Consider Fig. Id. The mass transport in the 
boundary current can be computed from the 
geostrophic relation (12) by multiplying (12) 
by h, making use of the stream function defi- 
nition, 

and integrating across the boundary layer from 
x = O  to x = x i  at any value of y. Thus one finds 

where ho is the value of h at 2 =O. 
Now the northward mam transport given by 

(22) must equal the eastward transport which 
one derives by integrating with respect to y 
the geostrophic relation 

at the off-shore edge of the stream from the 
value y to the northern boundary (denoted by 
subscript n) of the basin. Using (21), one can 
integrate (23) to get 

/r/hpdy.kfryl = - 9’ -(h:-h:) .  (24) 2 

Then subtracting (22) from (24) yields 

(25) 
9‘ pydy = - (hi  - h i ) .  
2 

1 The magnitude of the term v*/2g’h , can be ex- 
pressed in terms of a Froude number. “Not toolarge” 
and “not too small” can be interpreted respectively 
as cases in which the Froude number is less than 
one and greater than one. Since y > O ,  by definition, it is necessary that 

Tellus XV (1983), 1 



INERTIALLY-CONTROLLED FLOW PATTERNS 65 

hi > h:. (26) 

But by the Bernoulli relation ( l e ) ,  along the 
streamline y = O  one has 

2 
VO 

2 
- + g’h0 = g’h,. 

Theref ore h, > h,. (28) 

Since h is positive (26)  and (28)  are contra- 
dictory. Hence, Fig. Id is not a possible pattern. 

The above argument also rules out the pat- 
tern of Fig. l g ,  and more generally any de- 
celerating western boundary current or accel- 
erating eastern boundary current. 

Hence for the specific wind stress distribution 
discussed for the homogeneous ocean one is 
again led to Fig. 2 as the only possible pattern. 
The only restriction imposed by the additional 
considerations of the two-layer ocean is that 
(vP/2g‘h,)jl not be too large along the eastern 
boundary of the northern half-basin. (It should 
be noted that the same restriction applies to 
the homogeneous case also but since g’ is re- 
placed by g and since h, is much greater for the 
homogeneous ocean, the term (v2/2gh,)fr is 
always very small. Essentially one assumes that 
such is the case when one considers h as constant 
for the homogeneous baain.) 

4. Additional considerations 

The results derived in the previous sections 
are based on certain simplifications and ap- 
proximations which must be reconsidered at  this 
point. 

It is clear, for example, that a driven system 
which is bounded by coasts must have some 
dissipative mechanism to offset the driving 
force.’ In  particular, if one forms the steady 
state vorticity equation for the homogeneous 
ocean one finds that 

V .  A ( j  + 5 )  - curlp +friction. 

If friction is neglected, the total vorticity of a 
particle increases by a multiple of curlp when 
the particle makes a complete circuit and returns 
to its original point. Thus one must either 
introduce a discontinuity in the streamline 

1 In an unbounded system a momentum balance 
could be achieved by adveotion to infinity. 
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pattern or one must include friction in order 
to achieve a steady state. All streamlines must 
effectively pass through a frictional region in 
order to aatisfy the steady state vorticity 
balance. 

Furthermore, if one integrates the vorticity 
equation over the basin, one finds that the 
vorticity input given by the integral of cur1,r 
must be balanced by vorticity diffusion at the 
boundaries. This vorticity diffusion will occur 
at the bottom and/or along the sides. 

No attempt will be made here to consider 
the role of friction in a detailed manner. It 
suffices to note that friction muet be introduced 
and that it requires a considersbly more detailed 
investigation than is possible with the simple 
ideas presented here. 

It should be pointed out, however, that 
MOORE (1961) has looked into the problem of 
attaching a frictional sub-layer onto the inertial 
boundary layers along the sides. He found that 
for the homogeneous ocean a frictional sub-layer 
can be added to the inertial boundary layer on 
the western boundary of the southern half-basin. 
However, with the Navier-Stoker, form for the 
frictional term it is impossible to find s solution 
with a frictional sub-layer on the eastern 
boundary of the northern half-basin. In  fact, 
he draws an exact mathematical analogy 
between the present problem and the flow past 
a cylinder. The western boundary layer cor- 
responds to the boundary layer along the front 
half of the cylinder. The eastern boundary 
layer corresponds to flow along the back half 
of the cylinder and no boundary layer solution 
exists-a wake region is formed. In  both 
problems the determining factor seeme to be 
that a boundary layer solution cannot be found 
when the flow is against the pressure gradient. 

A further point which one must consider is that 
the thermocline structure is quite unrealistic. 
The interface between the two layere deepens 
northward up to the zonal jet, where it becomes 
rapidly shallower. North of the jet it deepens 
again. This pattern of the thermocline is, of 
course, associated with westward flow in the 
interior. Even in those areas where the wind 
stress is directed eastward the slow interior 
flow is westward. It is difficult to accept such 
a picture of the circulation, particularly since 
much of the slow geostrophic flow of the oceans 
of the world is eastward. 

There are several alternative arguments which 
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one can invoke and which might lead to results 
that differ markedly from those given here. 

In  the first place, it is possible that a hydraulic 
jump occurs in the western boundary current 
so that the dynamics of that region are changed 
drastically. In  fact, since the thermocline is 
observed to come to the surface near the inshore 
edge of the Gulf Stream, a jump is bound to 
occur (because v8 > 2g’h as h+O) and the results 
of the inertial theory cannot be applied there. 

Secondly, the basic idea underlying the 
present investigation, viz., that of inertio- 
frictional boundary layers with slowly varying 
interior solutions, may not be valid. An alter- 
native possibility is one with rapidly oscillating 
flows in the interior of the northern half-basin 
with something like standing Rossby waves to 
give the oscillatory pattern. MOORE (1961) has 
constructed such a model with oscillatory 
solutions. 

In  addition it is conceivable also that no 
steady-state solution exists for the complete 
non-linear set of equations and that locally the 
motions are time dependent. This possibility 

can perhaps best be explored through numerical 
models on an electronic computer. 

A final point is that the two-layer ocean model 
subsumes a parametric density distribution. 
In  the real ocean the supply of warm, upper- 
layer water is probably controlled by the 
overall heat balance. Hence, it is quite possible 
that the amount of upper-layer water available 
to the system controls the circulation pattern. 
The combined dynamic-thermodynamic model 
is another possibility which can probably be 
explored only with numerical techniques. 
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