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ABSTRACT 

The basic equation of the barotropic model atmosphere is solved by following the 
motion of a system of atmospheric parcels each of which conserves its vorticity. The 
wind field is computed at intervals from the vorticity field on a fixed grid and is used 
as a basis for calculating the motion of the parcels. Results have similar accuracy to 
those obtained by Eulerian methods, but being independent of the latter, serve to 
indicate some effects of truncation error in the usual Eulerian scheme. The semi- 
Lagrangian scheme is suitable for integrations with long time steps on a coarse grid. 

1. Introduction 

It is well known that finite-difference methods 
of solving the vorticity-advection equation, and 
other similar equations, introduce errors into 
numerical predictions of the atmospheric flow. 
There have been a number of theoretical studies 
of the nature and magnitude of such truncation 
errors (for example GATES, 1959) and studies of 
the errors produced when finite difference 
methods operate on artificial analytical initial 
data fields for which the solutions are known 
(GATES & RIEQEL, 1962; MYAKODA, 1962). How- 
ever, the effect of truncation errors in calcula- 
tions based on synoptic data is not fully known, 
and there is therefore some interest in alter- 
native integration procedures which have very 
different error characteristics, and in compari- 
sons of the results with those of the more usual 
integration procedures. 

The usual integration technique employed in 
computations involved in the barotropic fore- 
casting model employs the vorticity advection 
equation in Eulerian form 

!! + J ( y ,  7) = 0 
at 

where 7 = Agy +f.  Here 7 is the absolute vorti- 
city, y a stream function, f the Coriolis para- 
meter and J the Jacobian operator. Since equa- 
tion (1) simply states that the absolute vorticity 
is conserved following the fluid motion, an 

attractive alternative procedure can be based 
on following the motion of fluid elements in a 
Lagrangian manner. A technique for carrying 
out the integration in strict Lagrangian co- 
ordinates is presented by WIIN-NIELSEN (1959), 
but the rapid distortion of an initially square 
grid embedded in the flow limits the period 
over which the purely Lagrangian technique 
can be employed to 12 hours. 

The technique described in the present paper 
traces the motion of fluid elements with respect 
to a fixed grid, attributing to each an appro- 
priate value of absolute vorticity. At convenient 
intervals the wind field is reconstructed from 
the distribution of vorticity represented by the 
moving fluid elements and this wind field is 
employed to compute the further displacement 
of the fluid elements. The technique has the 
advantages that it closely parallels the physical 
interpretation of equation ( l ) ,  and that it can- 
not artificially introduce vorticity not present in 
the original field (nor artificially remove it). 
Computational instability of the type associated 
with the Courant-Friedrichs-Lewy criterion 
does not arise and relatively long time steps 
may be employed. 

2. The integration procedure 

The steps taken in the course of the semi- 
Lagrangian integration of the vorticity advec- 
tion equation may be summarised a~ follows: 
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FIG. 1. Layout of points for computing vorticity. 

(i) Form a list of fluid elements and their 
absolute vorticity, r ] ,  calculated from the 
initial stream function, tp. 

(ii) Calculate the advecting field, V, from tp. 
(iii) Interpolate V to the positions of the fluid 

elements. 
(iv) Calculate the displacements of the fluid 

elements over one time step. 
(v) Delete from the list of fluid elements 

those leaving the area of the computa- 
tion grid, and add to the list additional 
elements to represent the vorticity of air 
entering the area. 

(vi) Form the field of relative vorticity, 
5 ( =v'tp), from the absolute vorticity 
of the fluid elements, V,I ( = 5 + f). 

(vii) Calculate the stream function, tp, from 
the vorticity field, 5. 

(viii) Repeat from step (ii). 

The following paragraphs give some more 
details of each step as carried out in the erperi- 
ments reported here. The following notation is 
Ueed. 
A' is the simple finite difference approxima- 

tion to the operator A'. Thus A'cy ={tp, +tpYn + 
tpI +tp, -4cyo}/h' where h is the grid-length and 
yo, tpl etc. are the values of the stream function, 
cy, at an array of point arranged as in Fig. 1. 

qr is the finite difference approximation to 
the vorticity of the rth fluid element at its 
initial position. T is the timo-step. 

Step (i). "he  initial list contained one entry 
for each point of the basic grid, excluding 
boundary points. With each fluid element was 
associated its initial absolute vorticity calculated 
from 

Steps (ii) and (iii). Following FJORTOBT (1966) 
and WINN-NIELBEN (1969) advection wes car- 
ried out using winds derived from a smoothed 
stream function, 'p', where (in the notation of 
Fig. 1) 

(3) tp; - +(cy,+ 'pa + 'pa+ n). 

Advecting velocities at grid-points were 
evaluated by simple two-point finite differencee 
and linear interpolation used to the positions of 
the fluid elements. 

Step (iv). At each time step except the first, 
the co-ordinates of each fluid element for use at 
the next time step were calculated from the 
centred difference relations 

where x' and y' are preliminary co-ordinates for 
use at  the next step. The values of x; and y; 
were subsequently corrected when u; had been 
calculated to give improved values. 

At the first time step uncentred differences 
were used in place of (4). 

Step (v). All fluid elements with new co- 
ordinates outside the boundary of the grid 
were deleted from the list before computation 
proceeded. 

The results of the barotropic forecasts were 
Eound to be sensitive to the procedure adopted 
for introducing new fluid elements at inflow 
boundaries and several variants were tried. The 
procedure found most successful was as follows. 
The inflow velocity, v,, normal to the boundary 
waa computed at the first interior row of points 
from the stream function at the initial stage. 
A new fluid element was introduced at this point 
a t  the Nth time step if v ,NT/h had increased 
beyond a new integer since the (N-1)th time 
step (thus a new fluid element was introduced 
every time an element moving inward with 
velocity, v,, would have crossed a grid-line). 
The vorticity attributed to the new element was 
the initial vorticity at the point at which it 
was introduced. If v ,NT/h increased past two 
or more integers in one time step, two or more 
new fluid elements were introduced, the addi- 

Tellus XV (1963). 4 

22 - 642896 



338 J. S. SAWYER 

3 

FIQ. 2. Layout of points used in interpolation 
procedure. 

tional elements being appropriately displaced 
into the computation area along the wind 
vector. 

Step (vi). In order to form the field of vorticity 
a t  grid-points a weighted average of the 
vorticity of all fluid elements in a square of 
two grid-lengths side was used. It was obtained 
in the following manner: 

(a )  For each fluid element, for example at P 
in Fig. 2, the absolute vorticity, q, is allocated 
to the corner points 0, 1, 2 and 5 of the square 
in which it lies by multiplying by (1 - r ) (  1 - S) ,  
r(1 -S), (1 - r ) S  and rS respectively. Subse- 
quently the vorticity appropriate to each grid- 
point is determined from 

where the summation is over all fluid elements 
in the squares surrounding P and a, represents 
the factor by which the vorticity of the fluid 
element has been multiplied. (f is the average 
value of the Corolius parameter.) 

(6) If n = O  a mean value, M ,  of qp a t  sur- 
rounding grid points is substituted. 

( c )  The difference of vorticity totaled over 
grid points from that totaled over the fluid ele- 
ments is shared between the grid points. 

( d )  The relative vorticity, 5, is computed 
from . 

5 P = T ) P - f  

Step (vii). The new field of the stream func- 
tion, yt, is calculated from the field of relative 
vorticity by means of the equation 

This is solved by the usual iterative Liebmann 
process. 

3. Experiments with the semi-Lagrangian 
technique on analytical fields 

Some experiments have been conducted in 
which both the semi-Lagrangian technique and 
the more usual Eulerian scheme of integration 
have been applied to a stream function repre- 
sented by the analytical expression 

1 Y y = 2  - 
l+(z*+y*)a- -*- i  

which represents a vortex embedded in a uni- 
form current. 

The true solution is known and represents a 
simple translation of the vortex along the z-axis. 

For values of a = 4  or more corresponding to 
a vortex extending over some 8 grid-lengths 
the Eulerian method underestimated the motion 
of vortex by some 10 per cent as expected from 
the theoretically known truncation error when 
simple finite differences are used (MIYAKODA’S 
(1962) 3-3-3 scheme). The semi-Lagrangian 
scheme was not subject to this effect and conse- 
quently had smaller errors. The under estimate 
of the vortex motion was, however, removed if 
a five-point formula was used to estimate deriva- 
tives in the advection Jacobian J(w,q)  (Miya- 
koda’s 3-5-3 scheme) and the Eulerian scheme 
then gave somewhat better results than the 
semi-Lagrangian scheme. 

However, when computations were carried 
out with smaller values of a (vortices extending 
over less than 8 grid-lengths) the semi-lagran- 
gian scheme gave significantly better results 
than the Eulerian scheme whichever finite dif- 
ference scheme was employed. This is illustrated 
in Fig. 3 by calculations with a = 1 representing 
a vortex extending over little more than two 
grid lengths. Noteworthy is the tendency of 
the Eulerian schemes to increase the transverse 
wind behind the trough line and consequently 
to displace the vortex to the right of its track. 
It can be explained as an effect of the slower 
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(c) (4 
Fig. 3a. Correct stream function (or initial field 
displaced by 4 grid-lengths). b, Computed stream 
function by semi-Lagrangian procedure. c,  Computed 
stream function by Eulerian (3-3-3) scheme. d, 
Computed stream function by Eulerian (3-5-3) 
scheme. 

displacement of the short wavelength feature 
which define the trough line than of the longer 
wavelepgth components defining the outer part 
of the profile; a differential effect of truncation 
error. 

4. Barotropic predictions at 500 mb with 
the semi-Lagrangian scheme 

In order to test the suitability of the semi- 
Lagrangian scheme for use in preparing numeri- 
cal forecasts, the technique was applied to a 
stream function derived from the 500 mb chart 
on ten occasions. The stream function was 
derived by solving the “balance equation” by 
the method of MIYAKODA (1960). At the con- 
clusion of the 24-hour forecasts the balance 
equation was resolved again as a Poisson equa- 
tion for the geopotential, h. Time steps of 6 
hours were used on a 20 x 24 grid as used by 
KNIQHTINQ, CORBY & ROWNTREE (1962). For 
comparison, forecasts were also made by the 
Eulerian (3-3-3) scheme based on the same 
stream function and using 1-hour time steps. 
Statistics of the results are given in Table 1 for 
an interior area of 16X 12 points as illustrated 
by KNIGHTINQ et al. (1962). 
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TABLE 1. Verification statbtics for 24-hr 500 mb 
barotropic forecasts prepared w i n g  a semi- 
Lagrangian method and a conventional finite 

difference method. 

Semi- Finite- 
Lagrangian difference 

I - 
Date (4 (6) (4 (4 ( b )  (4 

12.1.59 
16.1.59 
5.2.59 
10.2.59 
16.2.69 
5.3.59 
20.7.59 
27.7.59 
10.9.59 
27.10.59 

Mean 

68 25 0.42 93 30 0.09 
58 19 0.80 106 25 0.66 
54 24 0.82 56 25 0.80 

119 36 0.43 85 34 0.48 
132 30 0.79 72 20 0.92 
68 21 0.87 73 27 0.76 
43 13 0.88 30 13 0.87 
51 16 0.56 62 17 0.60 
57 21 0.75 52 18 0.80 
86 21 0.89 73 24 0.86 
74 22.6 0.72 69 22.9 0.68 

’ r.m.8. error in predicted 500 mb height (metres). 
r.m.8. vector wind error (kts). 
Correletion coefficient between observed and 

predicted 500 mb height changes. 

Overall there is little to choose between the 
verification statistics of the two schemes, but 
there are some interesting differences between 
the individual charts produced by the two 
methods. Such differences may arise from (a) the 
differences in the boundary conditions used in 
the two schemes and (b)  from differences in the 
approximation to the solution of equation (1). 
The two effects can be recognised separately in 
the results. 

The Eulerian scheme which was used held 
the stream function, y,  constant throughout 
the integration a t  two rows of grid-points at the 
boundary. Near the inflow boundary it appeared 
to be largely fortuituous whether this led to a 
solution closer to the actual developments than 
the assumption of the semi-Lagrangian scheme 
which maintained y constant at a single row of 
points and continued the initial vorticity ad- 
vection. However, on the whole the former 
procedure appeared less liable to extreme errors. 

CHARNEY, FJORTOFT & NEUMANN (1950) 
showed that sufficient boundary conditions for 
solution of the barotropic vorticity equation are 
provided by specifying the stream function y 
at all points of the boundary and the vorticity 

only at points of inflow. The boundary condi- 
tions employed with the Eulerian method 
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Fig. 40. 600 mb contours 0000 GMT 27th October 1969 (am). 

which provide two conditions along all sections 
of the boundary, therefore probably over- 
specify the problem. An effect of this may be 
found in the considerable irregularities in the 
Eulerian solutions in areas adjacent to the 
outflow boundary. Although such irregularities 
appeared in several of the Eulerian solutions 
examined during the present study, they were 
absent from the corresponding semi-Lagrangian 
solutions. 

As indicated in section 3 it might have been 
expected that in the synoptic examples studied 
the synoptic features, lows, troughs etc., would 
have been given greater displacements in the 
semi-Lagrangian integrations than by the 
Eulerian scheme. This effect waa not, however, 
very noticeable in the results. Nevertheless, the 
positions of synoptic features did appear to be 
predicted somewhat better by the semi-lag- 
rangian method; the predicted position waa 
classed as better in respect of 11 features, as 
good for 5 features and worm for 4 when a 
comparison was made with the Eulerian scheme. 

Particularly interesting is the difference be- 
tween the integrations bawd on the situation a t  
0000 GMT on 27th October 1959. This is il- 
lustrated in Figs. 4a-d. The movement of a low 
centre waa predicted aa SSE-wards by the 
Eulerian method (with simple finite differences), 
but the actual movement waa ESE-ward and 
this was correctly given by the semi-Lagrangian 
method. There were no important differences 
between the two calculations over other are= 
of the chart and the differences in the result 
are believed to arise from the truncation error 
in the finite differences used in the Eulerian 
scheme. The error is similar to that illustrated 
in Fig. 3 and discussed in section 3. 

5. Discussion 

The semi-Lagrangian technique is shown to 
provide a practical method of integrating the 
barotropic vorticity-advection equation and 
may prove of use aa a means of monitoring the 
truncation errors of the Eulerian schemes more 
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Fig. 4 b .  600 mb contours 0000 OMT 28th October 1969 (dm). 

Fig. 4c. 600 mb contours computed by semi-lag- 
rangian method for 0000 UMT 28th October 1969 
and distribution of error (dm). 
Tellus XV (1963), 4 

Fig. 4d. 600 mb contours computed by Eulerian 
(3-3-3) method for 0000 UMT 28th October 1060 
and distribution of error (dm). 
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usually employed in numerical weather predic- Acknowledgements 
tion. 

The semi-Lagrangian technique permits time 
steps of 6 hours to be used without encountering 
computational instability and the method also 
creates less distortion than the Eulerian method 
when the scale of the features of the flow pattern 
falls to a few grid-lengths. The method may 
therefore have practical value, if limitations on 
computing resources necessitate the use of 
relatively coarse grids and long time steps. 
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of the Director General of the Meteorological 
Office. 
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