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ABSTRACT

Limited-area models (LAMs) allow high-resolution forecasts to be made for geographic regions of interest when

resources are limited. Typically, boundary conditions for these models are provided through one-way boundary

coupling from a coarser resolution global model. Here, data assimilation is considered in a situation in which a

global model supplies boundary conditions to multiple LAMs. The data assimilation method presented

combines information from all of the models to construct a single ‘composite state’, on which data assimilation

is subsequently performed. The analysis composite state is then used to form the initial conditions of the global

model and all of the LAMs for the next forecast cycle. The method is tested by using numerical experiments with

simple, chaotic models. The results of the experiments show that there is a clear forecast benefit to allowing

LAM states to influence one another during the analysis. In addition, adding LAM information at analysis time

has a strong positive impact on global model forecast performance, even at points not covered by the LAMs.
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1. Introduction

Geophysical fluid dynamical forecasts (e.g. for atmospheric

or oceanic states) are typically created by integrating a

numerical model forward in time from suitable initial

conditions. Limited-area models (LAMs), which only cover

a restricted geographic area, allow high-resolution forecasts

for small, subglobal regions of interest to be made when

limited resources prevent running a high-resolution global

forecast model or assimilating high-resolution global data.

While higher spatial resolution does not guarantee that a

model will behave more realistically, it is generally helpful

in this endeavour. (For simplicity, our numerical experi-

ments are designed to ensure that increased model resolu-

tion corresponds to increased model realism.)

LAMs are found in a variety of settings, ranging from

research to operational situations. Typically, operational

weather centres run LAMs that are defined over the geo-

graphic region(s) of interest to that centre. Some centres,

such as those of the U.S. National Weather Service and

the U.S. Navy, run their LAM independently on multiple

domains that may or may not overlap, to produce high-

resolution regional forecasts. The U.S. Navy, in particular,

routinely runs their limited-area COAMPS† model on

more than 70 different limited-area domains (Pielke, 2013).

Some of these domains are overlapping, and their union

covers more than 20% of the globe. But, in the data assi-

milation phase, the analysis state of one LAM is normally

not directly affected by the state of any of the others,

and the analysis state of the global model providing LAM

boundary conditions is not affected by the analysis LAM

states. The present work investigates the possibility of

improving forecast performance by allowing interactions

between global and limited-area model states at analysis

times in situations where multiple LAMs are employed.

In particular, we consider data assimilation in an en-

semble forecasting context. Ensemble data assimilation uses

a collection of model forecasts to estimate the probability

distribution of the state of the system. We investigate an

approach in which each individual LAM is used to integrate
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its own ensemble of model states. Integrating an ensemble

of LAM model states requires an ensemble of boundary

conditions that transmit information about the large scale

flow features to each of the LAM ensemble members. An

ensemble of lateral boundary conditions may be generated

in a number of ways (Torn et al., 2006), which includes

concurrently running a global forecast ensemble (Merkova

et al., 2011; Holt et al., 2013).

Traditionally, data assimilation has been performed on

the global and limited-area models separately. However,

recently it has been shown that using the global analysis

(Guidard and Fischer, 2008) or a short-range forecast based

on the global analysis (Dahlgren and Gustafsson, 2012) as

an additional constraint on the limited-area state estimate

has a positive effect on the limited-area analysis, while

allowing communication between the global and limited-

area processes can improve both the global and the limited-

area analyses (Yoon et al., 2012). This finding is similar to

the one that two-way grid nesting during the forecasting

phase can help reduce discrepancies between global and

limited-area model states (Harris and Durran, 2010). In

situations with multiple LAMs, two-way coupling of the

models during the analysis procedure can potentially im-

prove the global analysis. More accurate global analyses

would, in turn, lead to improvements in the lateral boundary

conditions applied to LAMs. Allowing for additional com-

munication between LAMs during the analysis may help

alleviate the lateral boundary condition errors that have

typically plagued LAMs (Warner et al., 1997).

Here we present a framework that combines all available

global and limited-area model state information at analysis

time, and performs data assimilation on this composite state.

An aim of the new approach is to obtain ensemble mean

analyses for all LAMs and the global model that minimise

the distance between the analysed ensemble mean and truth

filtered to the resolution that each model is supposed to

simulate. Obtaining analyses that lie on the model attractors

is not an explicit part of this aim; but to the extent that the

model is like filtered reality, obtaining analyses close to

filtered reality will provide initial conditions close to the

model attractors. Recent work by Klocke and Rodwell

(2014) suggests that even the most advanced current data

assimilation systems provide analyses that are pushed off the

model attractor in the direction of the true filtered state. The

authors of that paper also showed that the mean short-term

initial drift of the model forecast from the analysis toward

the model attractor provides highly useful information for

the identification and correction of model errors.

Yoon et al. (2012) used a joint-state approach in which

the components of the state vector analysed by the Local

Ensemble Transform Kalman Filter (LETKF) (Ott et al.,

2003; Hunt et al., 2007) consisted of the components of

the regional and global state vectors. A drawback of

this approach was that an ad hoc term had to be added

to the state estimation equations to moderate a tendency of

the global and regional state estimates to diverge.

The new approach presented here is based on the notion

that there is just one true state and that the object of data

assimilation should be to estimate that state as accurately

as possible. At locations where LAMs are present, it is pos-

sible to estimate the true state at a higher resolution than

at locations where LAMs are not present. Hence, in the

new composite state method introduced in the present

paper, the LETKF is applied to a single, variable resolution

state vector in which the local resolution is determined

either by the highest resolution LAM available at that

location or by the global model. The forecasts for this

variable resolution state vector are obtained by linearly

combining information from models that have grid boxes

that overlap with points on the variable resolution state

vector. Applying the LETKF to this variable resolution state

vector results in an ensemble of variable resolution analyses.

These variable resolution analyses can then be filtered

down to the lower resolution models that cover the same

area. In this way, the composite state approach delivers

analyses to both the global model and the regional models

that are informed by all the models.

A theoretically appealing aspect of the composite state

approach is that it would deliver the minimum error vari-

ance state estimate provided the correct forecast and obser-

vation error covariance matrices were specified and the

effects of localisation in the LETKF were negligible. In

contrast, the presence of the ad hoc term in the formulation

of Yoon et al. (2012) precludes the possibility of it delivering

the minimum error variance state estimate.

We test our method in a series of simulated observation

experiments that utilises the simple, one-dimensional, chaotic

models introduced by Lorenz (2005), and we find that

analyses and forecasts produced by a coarse resolution

‘global’ model and a collection of high-resolution ‘LAMs’

that cover the entire simulation domain can attain essen-

tially the same accuracy as analyses and forecasts produced

by a single high-resolution global model. If only part of

the global domain is covered by overlapping LAMs, the

analyses and forecasts are essentially as accurate as if

the overlapping LAMs were replaced with a single LAM

covering the same region, and except near the boundary

of this region, the results can be nearly as accurate as using

the high-resolution model globally. These results serve as

motivation for further investigation, to see if real systems

utilising our method might realise similar forecast improve-

ments. Importantly, unlike the Lorenz models, real-world

atmospheric models include interaction between motions at

a wide range of scales. Further studies will be necessary to

explore the behaviour of these scale interactions in model

simulations that use the composite state method.
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The rest of this paper is organised as follows. Section 2

introduces the composite state technique. Section 3 de-

scribes our numerical experiments with the Lorenz (2005)

models. We use a sparse observation network, so that the

advantage of the high-resolution LAMs over the global

model is primarily in greater forecast accuracy, rather than

an ability to resolve the observations. In Section 4, we con-

sider the case where the LAMs cover the global domain. In

this case, the composite state analysis is done on a global

high-resolution grid, and any disadvantage compared to

using a single global high-resolution model must be due to

the decomposition of the global model states into LAM

states for the forecast phase of the analysis cycle. We explore

the effect of varying LAM region size and global domain

size within this context. We find that there is essentially

no degradation of the composite state estimate relative

to using a single high-resolution model, unless the LAM

region size is too small. In Section 5, we consider over-

lapping LAMs that cover only part of the global domain,

so that the analysis is done at coarse resolution on the part

of the globe that is not covered by LAMs. As in Section 4,

the interface between neighbouring LAMs is not a sig-

nificant source of error; degradation compared with using

a global high-resolution model occurs near the boundary

with the coarse resolution region. Section 6 presents our

conclusions and further discussion.

Finally, we note that our presentation is in the context

of one-dimensional models defined on subsets of the same

common grid. In practice, one would be interested in three-

dimensional atmospheric models and a collection of

LAMs, each with its own grid. These issues are not directly

addressed here, but would have to be dealt with if our

method were to be operationally applied (see Section 6).

2. Data assimilation and the composite state

method

Data assimilation is a cyclic alternation between a short-

term forecast and a procedure, called the ‘analysis’, that

seeks to estimate a system’s state (and possibly its error

statistics). At the beginning of each cycle, the analysis

procedure is performed, combining available observational

information with a forward forecast from the end of the

previous cycle (called the ‘background’ estimate) to yield an

updated estimate of the system state (the ‘analysis state’).

The estimates of the uncertainties in the observations and

background state estimate are crucial to this step, as they

determine the relative weighting of the observations and

background in forming the analysis state estimate. Once

the analysis procedure is completed, the analysis state, and

possibly its uncertainty, can be forecast to the next analysis

time, where the cycle is repeated.

Data assimilation based on Ensemble Kalman Filters

(Evensen, 1994; Burgers et al., 1998), which will be the basis

of our work, has attracted much recent interest because of

its ability to form consistent time-dependent uncertainty

estimates in the analysis. In an Ensemble Kalman Filter,

a collection of system state estimates (the ensemble) is

evolved in time and updated with observational informa-

tion at the start of each analysis. The best guess of the

system state is given by the ensemble mean, and the back-

ground error covariance matrix Pb, a measure of the state

estimate’s uncertainty, is approximated by the sample co-

variance of the background ensemble. Here, we conduct

our analysis on the composite state ensemble using the

LETKF (Hunt et al., 2007). The LETKF algorithm seeks

an analysis ensemble with mean and covariance given by

the Kalman Filter update equations. It is equivalent to a

localised version of the ETKF of Bishop et al. (2001) with

spherical simplex centring (Wang et al., 2004), and may be

viewed as a computationally advantageous version of the

LEKF method of Ott et al. (2004). A local ETKF has been

successfully implemented to generate ensemble perturba-

tions for an operational global-regional model pair in the

UK Met Office’s MOGREPS system (Bowler and Mylne,

2009). The LETKF has also been tested, with positive results,

using the regional models of the Italian and German

weather services (Bonavita et al., 2010; Reich et al., 2011;

Lange and Craig, 2014).

In Ensemble Kalman Filters, the background and anal-

ysis ensembles are typically expressed as an ensemble mean,

and a collection of ensemble perturbations from this mean.

The ensemble mean is denoted x, an N vector, with N being

the dimension of the model state. The ensemble perturba-

tions form an N�k matrix X, where k is the number

of ensemble members. The mth column of this matrix

(m�1,2,. . .,k) represents the perturbation ðxm � xÞ of the
mth ensemble member, xm, from the ensemble mean. In the

LETKF, the analysis ensemble mean and ensemble pertur-

bations are expressed in terms of the background ensemble

mean and ensemble perturbations through a weight vector,

w, and a weight matrix, W,

xðaÞ ¼ xðbÞ þXðbÞw;

XðaÞ ¼ XðbÞW:
(1)

Here X(b) and X(a) are the matrices of background and

analysis ensemble perturbations, respectively. The back-

ground and analysis ensemble means are given by xðbÞ and

xðaÞ, respectively. The LETKF conducts its analysis in a

local ensemble space. At each grid point n, the LETKF uses

the observations within an empirically determined local

analysis region to determine w and W for grid point n, and

hence the analysis state value at that grid point.

Although our presentation and numerical examples

assume use of the LETKF framework, our method does
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not rely on the details of the LETKF, and we expect it can

be straightforwardly adapted to other versions of Ensemble

Kalman Filters (see, e.g., Houtekamer and Mitchell, 1998;

Anderson and Anderson, 1999; Anderson, 2001; Bishop

et al., 2001; Whitaker and Hamill, 2002).

2.1. The composite state method

In the following discussion, we consider cases with a global

model, whose state is denoted x0, and c LAMs, with states

labelled xi, where i�1,2,. . .,c. Our method does data

assimilation on all model ensemble states simultaneously

by performing the analysis on a ‘composite’ state ensemble.

The composite state is defined on a model grid with poten-

tially non-uniform spatial resolution that, in a given region,

matches that of the highest resolution model defined there.

More formally, denoting the region where the ith LAM is

defined as Li, the entire global model domain as L0, and a

location in the continuous global domain as A, the com-

posite lattice has the same resolution at A as the global

model when A is not in
Sc

i¼1

Li. Here the notation
Sc

i¼1

Li

denotes the subset of the global domain covered by all

LAMs. When A is in
Sc

i¼1

Li, the composite state lattice has

the same resolution at A as the highest resolution LAM

defined there.

We view the state estimates contained in each forecast

model ensemble to be approximations to the same true

state, albeit with different accuracies. We consider situa-

tions in which high spatial-resolution short-term forecasts

will be more accurate than low spatial-resolution short-

term forecasts, and thus we value those forecasts produced

at higher spatial resolution more when constructing the

composite state ensemble. This assumption, and the

algorithmic simplifications that it permits for performing

data assimilation, is what led us to the specific formulation

of the composite state method presented here. In formulat-

ing our composite state method, we envision a situation in

which there are no persistent forecast model biases in the

LAM and global model forecasts, so that the dominant

forecast errors inside the LAM domain are caused by

spatial truncation errors. (The subject of correcting forecast

model biases will be a subject of future work.) The mth

ensemble member of the composite state ensemble, bxm, is

constructed from the mth ensemble members of the global

and each LAM ensemble. For brevity, in the following

discussion we suppress the ensemble member subscript, m.

The composite state bxðnÞ at location n is a linear function of

the state vectors of the global and limited-area models

whose domains contain n, as given by eq. (2),

bxðnÞ ¼
Xc

i¼0

pi ðnÞOn½xi�: (2)

The functions pi (n) define the weighting given to the ith

LAM model state at location n. The operator On inter-

polates a state vector xi to location n when n does not

correspond to a grid point of xi, and acts as the identity

operator in situations when n corresponds to a grid point of

xi. If all LAMs whose domains contain a location n have

the same spatial resolution, but incommensurate grids, On

will still need to interpolate, but the choice of which LAM

grid to interpolate to is left to the user. For all i�0,1,. . .,c,

the functions pi (n) satisfy 05pi (n)51 and
Pc

i¼0

pi ðnÞ ¼ 1 at

every location n, and pi (n)�0 if n is outside the domain Li

of the ith LAM. In general, pi (n) should vary slowly with n,

to ensure continuity of bxðnÞ. However, if the LAM is

evolved with boundary conditions from the global model,

so that xi�x0 on the boundary of Li, then pi (n) and p0 (n)

can change discontinuously as n crosses the boundary.

Within these restrictions, there is a lot of freedom in

picking the values of the pi (n) functions when LAMs

overlap. In Section 3 we specify reasonable pi (n) choices

for the situations we consider in our experiments.

The first step in performing data assimilation using the

composite state method is to create a background ensemble

of composite state vectors from the background ensembles of

global and limited-area model states, using the definition

of the composite state, eq. (2). Once the background com-

posite state ensemble has been created, the analysis proce-

dure is carried out on it, yielding the analysis composite state

ensemble. The global and limited-area model state ensem-

bles that are forecasted to the next analysis time are each

constructed from the analysis composite state ensemble,

interpolating from the composite state grid to the appropriate

global or limited-area lattice when necessary. In the LETKF

formulation, the interpolation is best done on the weight

vector w and matrix W, applying the interpolated weights to

the model states on their native grid (Yang et al., 2009).

3. Numerical experiments

For ease of presentation, in the following sections we

specialise to the context of one spatial dimension, evenly

spaced grid points forming a high-resolution grid, and a

low-resolution grid of evenly spaced grid points that are a

subset of this high-resolution grid. The global model is

taken to be defined on the low-resolution grid, and each

LAM is defined on a subset interval of the high-resolution

grid. For this situation, the operator On in eq. (2) always

acts as the identity, and can thus be omitted. In addition,

we consider the case where at most two LAM domains can

overlap at any given location. At locations where only the

ith LAM is defined, pi (n)�1, and outside of the domain

of the ith LAM, pi (n)�0. In our experiments, we chose

p0 (n)�0 at all locations n where LAMs are defined, and

4 M. KRETSCHMER ET AL.



p0 (n)�1 at locations where only the global model is

defined. If LAM i overlaps with another LAM, we chose

pi (n) to decrease linearly across the overlap region, to zero

at the edge of LAM i. We chose this form of weighting

function for its simplicity, and because of our observation

that boundary condition errors decreased with increasing

distance from the LAM’s lateral boundary (see Fig. 1). For

other models, it may be advantageous to have the global

weights p0 (n) taper more continuously from 1 to 0 near

the boundary of the LAM domains, or remain positive

throughout the LAM domains. Additionally, our experi-

ments use LAMs governed by the same model physics, at

the same spatial resolution. More complex scenarios may

benefit by choosing the pi (n) functions to more heavily

weight LAMs with better historical error properties. As an

illustrative case for the example of two LAMs with

domains as shown in Fig. 2a, Fig. 2b�d show correspond-

ing choices of p0 (n), p1 (n) and p2 (n).

3.1. The Lorenz models

To test our data assimilation framework we perform a

series of numerical experiments. These tests require three

models: a global high-resolution model which generates the

simulated ‘nature’ or ‘truth’; a high-resolution LAM model;

and a low-resolution global model that has only large

spatial-scale behaviour.

With these considerations in mind, we utilise in our

experiments two models that are described in Lorenz

(2005), known as Lorenz Models II and III. Lorenz Model

II describes the spatiotemporal behaviour of a quantity, Z,

defined on a one-dimensional lattice with periodic bound-

ary conditions, analogous to a ring of constant latitude.

A subscript n is used to index the value of Z at each grid

point on this lattice. Model II exhibits spatially extended

and smooth waves, and is given by

dZn

dt
¼ ½Z;Z�K ;n � Zn þ F : (3)

The terms on the right hand side (RHS) of eq. (3) are

analogous to nonlinear advection, dissipation, and forcing,

respectively. The bracket term in eq. (3) is given by

½X ;Y �K;n ¼
XJ

j¼�J

0XJ

l¼�J

0ð�Xn�2K�lYn�K�j

þ Xn�Kþj�lYnþKþjÞ=K2: (4)

The forcing parameter, F, and smoothing parameter, K, in

eq. (3) and eq. (4) are chosen by the experimenter, with

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 200  300  400  500  600  700

R
M

S
E

Grid Point

Single LAM Analysis Error

Fig. 1. RMS analysis errors of the ensemble mean when the LETKF is performed using only the state information of a single LAM. The

LAM is defined over grid points [240,720]. The RMS errors shown are averaged over 2�104 analysis cycles. Boundary condition errors can

be seen in the increase in RMS error at grid points near the LAM boundary.
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J�K/2 when K is even, and J�(K�1)/2 when K is odd.

The primed summation,
P0

, represents a modified summa-

tion, with the first and last terms divided by 2 when K is

even. If K is odd,
P0

denotes a normal summation.

As noted in Lorenz (2005), the waves of Model II have

long spatial scales, making it fitting to represent a coarse

‘global’ model. Smaller spatial-scale behaviour can be

added to the dynamics of the quantity Z by modifying

the equations of Model II, to arrive at Model III,

dZn

dt
¼ ½X ;X �K;n þ b2½Y ;Y �1;n þ c½Y ;X �1;n � Xn � bYn þ F :

(5)

In Model III, the quantity Z varies spatially with long

and short spatial-scale components, denoted by X and Y,

respectively. The first two terms on the RHS of eq. (5)

represent spatially smoothed nonlinear advection of the

long spatial-scale component X and nonlinear advection of

the short spatial-scale component Y, respectively. The long

and short scale components are coupled through the third

term on the RHS of eq. (5). The last terms on the RHS of

eq. (5) represent linear damping and constant forcing. The

parameters b and c control the amplitude of short scale

waves and the coupling between scales, respectively. We

use Model III to represent both the LAM and ‘nature’

dynamics. The long spatial-scale component of a Model III

state is found at grid point n via spatial averaging of Z,

Xn ¼
XI

l¼�I

0ða� bjljÞZnþl ;

and the short scale component is found by Yn�Zn�Xn.

The summation limit I is chosen by the experimenter. The

a and b quantities are functions of I, whose exact form

can be found in Lorenz (2005). These are chosen so that

Xn�Zn whenever Zn varies quadratically within 9I grid

points of n. Like Model II, Model III is also defined on a

one-dimensional lattice with periodic boundary conditions,

although typically at a higher spatial resolution. As noted

by Lorenz, one model time unit of these models is anal-

ogous to approximately 5 d in the atmosphere.

3.2. Experimental parameter and domain details

In our experiments, we use Model III with parameter values

of K�32, b�10, c�0.6, F�15, and I�12 to govern the

LAM and ‘nature’ model dynamics. The global model is

Model II, with parameters F�15 and K�8, and 1/4 the

spatial resolution of the ‘nature’ model. In both Models II

and III, K is a smoothing parameter which controls the

spatial resolution of the long wavelength waves. (Additional

experiments used c�2.5 in the LAM and nature model

(a)LAM 1 Domain

LAM 2 Domain

 0

 1

p0 (n)

p1 (n)

p2 (n)

(b)

 0

 1
(c)

0

 1

 0  240  460  500  720  960
Grid point

(d)

Fig. 2. An example of the pi functions for a scenario with two limited-area models, denoted LAM 1 and LAM 2, used in one of our

experiments. Part (a) shows the domains on which the LAMs are defined, which cover grid point intervals of [240,500] and [460,720]. Parts

(b)�(d) show the functional form of the pi functions for the global model, p0 (n) [shown in panel (b)], and each of the limited-area models,

p1 (n) and p2 (n) [shown in panels (c) and (d), respectively]. All plots show grid point location n on the horizontal axis.
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dynamics, enhancing the difference between the global and

limited-area and nature model dynamics. Despite more

dramatic differences between the global and limited-area

model attractors, the composite state method performed

similarly to the experiments reported on here.) The ‘nature’

model lies on a lattice of n�960 grid points, which are

indexed from n�0,. . .,959. The LAM domains are not

constant from one experiment to the next, but are always

defined on continuous subsets of the ‘nature’ grid, such as

n�0,1,. . .,540 or n�480,481,. . .,60, for example. In most of

our experiments, we consider a global model defined on a

lattice of 240 grid points, each corresponding to every 4th

‘nature’ model grid point, n�0,4,8,12,. . .956. In experi-

ments where the global model resolution is lowered by a

factor of two, K is adjusted to K�4. To avoid ambiguity,

we index all model grid points by their corresponding

‘nature’ grid point index.

The global and limited-area model ensembles have 40

ensemble members in our experiments. The initial Model II

global ensemble is sampled from a free run of the global

model, after 600 model ‘days’ of spin-up time. At the be-

ginning of each experiment, each LAM ensemble mem-

ber is produced by interpolating a corresponding initial

global Model II ensemble member onto the finer LAM

grid, at locations where the LAM is defined. The initial

conditions of the ‘nature’ model are found by initialising

its grid points with random numbers uniformly distributed

in the interval [0,1], and allowing the model to spin up for

600 model days.

During our numerical experiments, we perform data

assimilation every dt�0.05 model time units [the equiva-

lent of about every 6 hours in real time, according to

Lorenz (2005)]. At each analysis time, observations of the

‘nature’ model at 15 equally spaced observation locations,

located at grid points 0,64,. . .,896, are created by adding

Gaussian noise with mean 0 and standard deviation 1 to

the ‘nature’ model values. A key parameter of the LETKF

is the size of the local state vector patch on which the

analysis is performed. For our experiments, we use a local

patch size that is 81 grid points wide, so that at least one

observation is assimilated at every grid point. The influence

of observations inside of a local analysis region was not

tapered for the experiments reported on here; we expect

that results could improve when that technique is imple-

mented in the LETKF. Also, multiplicative covariance

inflation is used in our experiments to prevent filter

divergence (Anderson and Anderson, 1999). At each

analysis cycle, the composite ensemble background covar-

iance matrix is inflated by the constant factor r�1.048,

which was found through empirical tuning to minimise

RMS error.

3.3. Numerical integration

The global and regional ensembles are forecasted simulta-

neously, using a fourth order Runge-Kutta scheme, break-

ing the ‘6-hour’ forecast between analysis times into 36 time

steps. The boundary conditions required by each LAM

ensemble member are provided by its corresponding global

ensemble member. Specifically, interpolation of the state

values of the appropriate global ensemble member is used

to provide state values needed in eq. (4) that are outside of

the LAM domain, but which are needed for the integration

of eq. (5).

During the integration, we utilise Davies Relaxation

(Davies, 1983). We define ‘sponge regions’ at both bound-

aries of each LAM domain, having a length of 10 LAM

grid points. After the ensembles have been integrated for-

ward in time by 1 time step, the state of an ensemble

member of LAM i at a grid point in a sponge region is

updated to a linear combination of the corresponding

forecasted LAM i and global model ensemble members at

that grid point, according to

xiðnÞ ! ð1� cðnÞÞxiðnÞ þ cðnÞx0ðnÞ: (6)

Here, xi(n) and x0(n) are the state values at grid point n of

a member of limited-area ensemble i and a global model

ensemble member, respectively, and g(n) is a spatially

dependent weighting function. In our experiments, g(n)

decreases linearly over the sponge region, from a value of

1 at the outer sponge region boundary to 0 at the inner

sponge region boundary. At grid points in the sponge

region at which the global model is undefined, the global

state value is linearly interpolated onto the finer LAM

mesh, and this value is used for x0(n) in eq. (6).

3.4. Verification details

The results presented below use the temporally averaged

Root-Mean-Square Error (RMSE) between the ensemble

mean, x, and the truth xt

RMSEðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

XT

q¼1

ðxqðnÞ � xt;qðnÞÞ
2

v
u
u
t ;

as a measure of the effectiveness of our method. Here the

subscript q indexes analysis cycle. The RMSE of the en-

semble mean at grid point n is the average, over T analysis

cycles, of the squared difference between the ensemble

mean and the truth at n, square-rooted. Errors are calcu-

lated at each analysis time, as well as for single determi-

nistic forecasts. These forecasts use analysis ensemble

means as initial conditions.

We test the composite state method in two situations,

one where the LAMs collectively cover the global domain,
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Li, and one where they do not. In each case, we

generate forecasts, initialised from the analysis ensemble

mean, for both the global and limited-area models.

We compare results using the composite state method

to high- and low-resolution forecasts made from a pair

of models that are defined over the entire experimental

domain. These benchmark high- and low-resolution en-

semble forecasts are created using the same high- and low-

resolution models used to create the composite state method

forecasts, Lorenz Models III and II, respectively. The bench-

mark ensemble forecasts assimilate the same set of obser-

vations as the composite state forecasts, using the same

algorithm, the LETKF, with the same number of ensemble

members. The benchmark ensembles are integrated for 6

model hours between analysis cycles. The composite state

analysis ensemble mean is verified against the benchmark

analysis ensemble mean after each analysis. For forecasts

longer than 6 hours, both benchmark and composite state

forecast estimates are found by integrating the benchmark

and composite state analysis ensemble means, using the

appropriate forecast models.

For the experiments in which the LAMs do not collec-

tively cover the entire experimental domain, we compare

composite state analyses and forecasts to those from the

‘joint-state method’ of Yoon et al. (2012). The joint-state

method performs data assimilation simultaneously on both

global and limited-area models. It accomplishes this by

using an observation function that predicts the observa-

tions by using information from both the global model

state and the LAM state, as well as by including a con-

straint term in the cost function that penalises large dif-

ferences between global and limited-area model states.

We compare the high-resolution limited-area forecasts of

the joint-state method to similar high-resolution forecasts

created using the composite state method.

Our method differs from the joint-state method in a

number of ways, one of which is that the joint-state method

does not constrain the global and limited-area model

analyses to be identical. More specifically, the joint-state

method performs data assimilation by minimising a local

cost function, JnðxÞ, at each grid point. This local cost

function depends upon the local background ensemble,

local observations, and their respective error covariances,

and is given by

JnðxÞ ¼ðx� xbÞ
T
P�1

b ðx� xbÞ þ ðy �HðxÞÞTR�1ðy �HðxÞÞ
þ jðxg � xrÞ

T ðxg � xrÞ:
(7)

Here xb is the local background ensemble mean, Pb is

the local ensemble sample covariance, y is a vector of

local observations, R is the local observation error co-

variance matrix, and xg and xr are vectors which contain

the global and regional (LAM) model state values, respec-

tively, at grid points at which both the global and regional

ensembles are defined. The k in eq. (7) is a parameter.

Importantly, the forward operator H used in the joint-state

method depends on location. Inside of the local analysis

region, it maps a linear combination of global and regional

model states to observation space, and depends upon a

parameter l. Both of these parameters, l and k, must

be tuned for optimal performance in any application of

the joint-state method. In applications with d limited-area

models, the joint-state method would necessitate the

empirical tuning of 2d of these parameters, in addition

to parameters associated with other empirical techniques,

such as covariance inflation. Additionally, the computa-

tional cost of finding the minimum of eq. (7) grows quickly

with the number of LAMs present in a local analysis

region, as each of the d LAMs would contribute a term

equivalent to the third term in eq. (7). Both of these qua-

lities make implementing the joint-state method in any

context with multiple LAMs exceedingly complicated. The

composite state method proposed here presents a simpler

approach to performing data assimilation in the multiple

LAM context that is a natural extension of the joint-state

method, avoids the necessity of empirically tuning a large

number of adjustable parameters, and allows a con-

siderably simpler cost function to be minimised. The com-

posite state method corresponds to the case where l�1

and j ¼ 1 in eq. (7). For additional details on the joint-

state method, see Yoon et al. (2012).

As a diagnostic of the composite state method, we

conducted ensemble forecasts, verified at several lead times,

to measure the relationship between ensemble spread and

ensemble RMS error while using the composite state

method, and found that the global model ensemble spread

adjusts appropriately tomatch the decreasedRMS ensemble

forecast error of the composite state method. Globally

averaging over space and time, the ensemble spread for

6-hour forecasts was found, for the cases considered, to be

approximately equal to the ensemble RMS error. Specifi-

cally, these quantities differed by approximately 2%.

4. Results for global LAM coverage

As a first test of the composite state method, we apply it to

a situation where there are two LAMs, whose domains

together cover the entire ‘global’ domain of our experi-

ments. Both LAMs are driven at their boundaries by the

global model dynamics. When there is no communication

between global and limited-area model ensembles during

the analysis it is typical that boundary conditions supplied

this way lead to an increase in errors near LAM bound-

aries, as a result of mismatches in state information at these

locations. To see how such errors can be eliminated by the

8 M. KRETSCHMER ET AL.



composite state method, Fig. 1 provides an illustrative

example of lateral boundary-induced LAM errors, for the

case of a single LAM defined over the interval [240,720]

of our n�0 to 960 grid, when assimilation is performed

separately on the limited-area and global model states, with

no feedback between limited-area and global model state

information during the analysis. While both ensembles of

model states assimilate the same observations, the ensemble

of LAM states is used as the background ensemble only for

the LAM assimilation, and the ensemble of global states

is used as the background ensemble only for the global

assimilation. Figure 1 shows how error near both LAM

boundaries can be dramatically larger than the error closer

to the LAM domain interior.

In contrast to the separate analysis method shown in

Fig. 1, we find that applying the composite state method in

multiple LAM situations allows LAM analysis and 1-d

forecast errors to rival those of a globally high-resolution

perfect model, as demonstrated in Figs. 3 and 4a, for a

situation with two overlapping LAMs that cover the entire

n�0 to 960 domain. For the case shown in Figs. 3 and 4a,

the LAMs are defined over the intervals [0,520] and

[480,40], overlapping at 41 grid points near each of their

boundaries. Similar LAM analysis and forecast accuracies

were achieved with other overlap values, as shown in Fig. 5.

In the experiments whose results are shown in Fig. 5,

analysis accuracy of the composite state analysis ensemble

mean is calculated when two equally sized LAMs, whose

domains collectively cover the entire experimental domain,

are used to construct the composite state ensemble. The

analysis RMS error is calculated as a function of LAM

domain overlap, with larger overlap corresponding to

larger LAM domain size. As the size of the LAM domain

overlap grows, we see from Fig. 5 that there is virtually no

change in analysis or forecast errors, indicating that there is

little benefit to large LAM domain overlap.

In Figs. 3 and 4a, we can see that the RMS analysis and

1-d forecast errors obtained using the composite state

method (red and green curves, respectively) are virtually the

same as those obtained using a global high-resolution

perfect model (black curve). Figure 4b shows 5-d forecast

statistics, produced by limited-area and global models

initialised to the composite state analysis ensemble mean.

For comparison, curves of the RMS error of 5-d forecasts

produced by global low- and high-resolution ensembles

without the composite state method are also shown.

Comparing the errors of composite state (blue curve) and

control (orange curve) low-resolution global model 5-d
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Fig. 3. RMS analysis errors of the composite state ensemble mean (red curve). For comparison, the analysis error of the ensemble mean

for a global high-resolution perfect model LETKF analysis (black curve) is also shown. LAMs are defined over grid points [0,520] and

[480,40], and statistics are taken over 105 analysis cycles, discarding the first 103 cycles. The shaded areas indicate the domain where both

LAMs are defined.
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forecasts, the composite state method substantially im-

proves the global model 5-d forecasts, indicating that much

of the difference between the high- and low-resolution

global model forecasts (black and orange curves, respec-

tively) is due to initial condition errors.

The LAMs are able to approach the accuracy of high-

resolution global model forecasts (black curve in Fig. 4b) in

the interior of the LAM domains. The effects of imperfect

boundary information coming from the global model can

be seen in Fig. 4b, as LAM forecast errors rise near LAM

boundaries. The size of the effected region is dictated by the

flow of imperfect state information into the LAM from the

lower resolution global model. As shown by Yoon et al.

(2010), this information moves predominantly ‘eastward’

1.25

1.3

1.35

1.4

1.45

1.5

1.55

0 100 200 300 400 500 600 700 800 900

1-
D

ay
 F

or
ec

as
t R

M
S

E

(a)

Composite State Analysis, LAM Forecasts
Composite State Analysis, Global Model II Forecast

High-Resolution Global Model III

4

4.2

4.4

4.6

4.8

5

5.2

5.4

0 100 200 300 400 500 600 700 800 900

5-
D

ay
 F

or
ec

as
t R

M
S

E

Grid Point

(b)

Composite State Analysis, LAM Forecasts
Composite State Analysis, Global Model II Forecast

High-Resolution Global Model III
Low-Resolution Global Model II

Fig. 4. (a) RMS 1-d and (b) 5-d forecast errors, initialised using the composite state analysis ensemble mean. The green curves in both

panels show errors of forecasts produced by the LAMs, while the blue curves show errors for forecasts produced by the low-resolution,

imperfect global model. For comparison, forecast errors produced by a global high-resolution perfect model and a global low-resolution

imperfect model, initialised from an LETKF analysis are shown as black curves [in panels (a) and (b)] and an orange curve [in panel (b)],

respectively. Both panels show results using the conditions described in Fig. 3, and the shaded areas indicate regions of LAM domain

overlap.
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(direction of increasing n), at a rate of 1.4 grid points per

‘hour’ in the Lorenz models. Thus for a 5-d (120-hour)

forecast, on the order of 160 grid points will be adversely

affected by boundary condition errors, which is approxi-

mately what can be seen in Fig. 4b, in the grid point

intervals [0,160] and [480,640]. Also, compatible with the

predominantly ‘eastward’ propagation of information in

the Lorenz models (Yoon et al., 2010), we see that the

adversely affected region of the LAM domain is larger to

the ‘east’ of a LAM boundary than to the ‘west’ of a

boundary. Choosing LAM domains with greater overlap

can help mitigate the effect of LAM boundary errors on

forecasts, as with sufficient overlap grid points affected by

boundary conditions in one LAM might correspond to

more accurate, interior grid points of another.

To see how the global model resolution influences the

accuracy of these results, we apply the composite state

method in an experiment with two LAMs defined over the

intervals [0,540] and [480,60], but do so using a global model

with K�4 that is defined on every eight of the nature

model grid points, or half of the resolution of the pre-

viously used global models. To quantify how much the

RMS forecast and analysis errors change when the global

model resolution is lowered, we compare spatiotemporally

averaged RMS errors of composite state analyses and 1-d

forecasts made using global models at both of these spatial

resolutions. The lowering of resolution causes the RMSE of

the composite state analysis mean to increase by approxi-

mately 2.9%, and the 1-d forecast RMSE of the LAMs to

increase by approximately 1.7%, while decreasing global

forecasting costs by 50%, as a result of decreased function

evaluations. Thus, for our original setup, we see that the

resolution of the global model may be lowered without

much loss of accuracy.

We now test the composite state method on multiple

LAMs defined over a larger experimental domain that

consists of twice as many grid points (1920) as in the

experiments just described, but maintains spatial resolution

and Model II and III parameter values (e.g. K�32 for

LAM and nature dynamics). Thus, there are now four

LAMs in this ‘Large World’ experiment, each defined over

541 grid points. The observation density is also held

constant. The 1-d forecast results from this experiment

are shown in Fig. 6. The composite state method is again

seen to achieve performance that is virtually the same as

that of a global high-resolution perfect model. In this

scenario, the errors are approximately constant across LAM

domains and there are no large deviations in RMSE at the
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Fig. 5. RMS analysis and 1-d forecast errors of the global model ensemble mean, averaged over all grid points and time (105 analysis

cycles), discarding 103 initial spin-up cycles, and performing the analysis using the composite state method. The results shown above are for

two LAMs whose domains tile the globe. The x-axis shows the number of grid points that the LAM domains have in common. For these

models, there appears to be no benefit to large LAM domain overlap.
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LAM boundaries (shaded regions) similar to those seen

at the LAM boundaries in Fig. 1, indicating that lateral

boundary errors have been minimised. The results of this

experiment lead us to believe that the composite state

method is scalable with LAM number, and similar forecast

accuracies may be achieved with a much larger number of

LAMs, in a proportionately much larger global domain.

Another condition we investigate is the size of LAM

domains. In order to test this we consider an experiment

on our original n�0 to 960 grid that uses an increasing

number of LAMs. Specifically, we calculate errors of the

composite state ensemble mean when two, four, eight, and

16 identically sized LAMs are independently forecasted

during each analysis cycle; results of these experiments are

shown in Fig. 7. These LAMs have sizes of 521, 261, 131,

and 65 grid points, with overlaps of 41, 21, 11, and 5 grid

points, respectively. The concurrently running global model

ensemble provides boundary conditions to each of these

individual LAMs. Despite the smaller domain sizes of the

experiments with four or eight LAMs, Fig. 7 shows that

there is not much loss of accuracy with these domain sizes.

In Fig. 7 we can see that errors begin to increase when the

LAM size is small enough such that on the forecast phase

of the analysis cycle, boundary errors from the driving

global dynamics are able to affect a larger proportion of

the LAM domain. This increase in error is not because

of smaller LAM overlap, as Fig. 5 shows that forecast

accuracy is not strongly dependent on LAM domain

overlap. As the speed of information flow in the Lorenz

models is approximately 1.4 grid points per hour (Yoon

et al., 2010), in one 6-hour analysis cycle information

travels about 10 grid points. For a 24-hour forecast time,

information from the boundaries would affect LAM

grid points up to approximately 30 grid points inside the

LAM domain, and it is unsurprising that LAM domains

large enough such that these boundary regions represent a

small fraction of overall size would exhibit similar forecast

results.

5. Results for incomplete LAM coverage of

global domain

As we have seen, analyses and forecasts produced using the

composite state method can rival those produced by a high-

resolution ensemble of perfect model states when there is a

collection of LAMs which cover the entire experimental

‘globe’. We now show that forecasting systems comprised

of a single limited-area and global model pair can realise
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Fig. 6. RMS 1-d forecast errors, averaged over 105 analysis cycles, in the ‘Large World’ scenario. The experimental domain runs from

n�0 to 1920, and LAMs are defined over grid point intervals [0,540], [480,1020], [960,1500] and [1440,60]. The blue curve shows forecasts,

initialised using the composite state analysis ensemble mean, made with the low-resolution global model. Observations are located at every

64 grid points, and the shaded areas indicate grid point intervals where more than one LAM domain is defined.
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dramatic benefits to analysis and forecast accuracy if state

information from an additional LAM is included in the

analysis procedure. To do this, we first find analysis errors

for a single limited-area and global model pair, when the

analysis is performed using both the composite state

method and the joint-state method of Yoon et al. (2012).

These errors are then compared to those calculated using

the composite state method when there are two LAMs

and a global model. In this second situation, the LAMs are

defined over the domains [240,720] and [720,240], collec-

tively covering the globe, but with overlap only at the two

boundary points.

Figure 8a shows the results of these experiments as curves

of the RMS error of the analysis composite state ensemble

mean, for the LAM defined over the interval [240,720] of

a n�0 to 960 grid point domain. This result demonstrates

that for the single LAM case, the composite state analysis

error (blue curve) is approximately the same as that calcu-

lated using the joint-state method (brown curve). However,

when we add another LAM to the analysis the accuracy of

the composite state method analysis (green curve in Fig. 8a)

becomes competitive with the high-resolution global perfect

model ensemble (black curve), as shown above in Section 4

(see Fig. 3). The previous strong increase of analysis error

near the left LAM boundary is nearly eliminated when this

extra LAM state information is considered in the analysis

procedure. (The asymmetry between left and right bound-

aries is a result of the eastward (direction of increasing n)

‘group velocity’ of waves in the Lorenz models, which is

analogous to the westerly atmospheric flow in the Northern

Hemisphere mid-latitudes.) Comparing the blue curve in

Fig. 8a to the curve in Fig. 1 shows that the composite state

method helps alleviate increases in boundary error near the

right LAM boundary as well.

Even more dramatic effects are seen in Fig. 8b, which

shows the benefits to 1-d forecast accuracy when state

information from an additional LAM ensemble is consid-

ered in the analysis. The composite state method considers

this extra information in the analysis and can produce

an analysis ensemble whose mean allows more accurate

LAM and global model forecasts than would otherwise

be possible. We note that the addition of a LAM allows

the composite state method to greatly decrease the fore-

cast error near the left-most (‘western’) LAM boundary.
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cycles, then over all grid points.
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An additional LAM also allows forecasts made by the lower

resolution global model to improve, as shown in Fig. 9.

Here we compare the 1-d forecast accuracy of forecasts

produced by the global model, initialised with a composite

state analysis mean calculated using 1 or 2 LAMs (blue and

gold curves, respectively). The addition of an LAM helps to

more accurately initialise global model forecasts across the

entire simulation domain, allowing forecast accuracies to

approach those made by a higher resolution perfect model

over the whole ‘globe’, rather than only at certain locations

inside the LAM domain, which may be far from its

boundaries.

Figure 10 shows results for our final experiment, which

compares state estimates produced for two scenarios.
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The first has two small overlapping LAMs, covering grid

point intervals [240,500] and [460,720] (red curve), and the

second has a single larger LAM defined over the union of

these domains, the interval [240,720] (blue curve). Data

assimilation is performed in both of these situations using

the composite state method. Overall, the accuracy of the

state estimates produced in both scenarios, when averaged

over time, is almost the same. This is a somewhat surprising

result, as the two LAMs are driven by the imperfect global

dynamics. At regions of LAM overlap and near LAM

boundaries, the composite state method eliminates much

of the boundary condition errors that would otherwise be

present at these locations (for example near the LAM

boundaries in Fig. 1). Overall, we conclude from our ex-

periments that by considering all relevant LAM state

information during the analysis, the composite state method

helps to decrease, and in some cases virtually eliminate,

boundary condition errors, and that this improved analysis

state translates to better forecast performance.

6. Summary and conclusions

While the advantages of using LAMs for short-term (about

48 hours and shorter) weather forecasting have been known

for some time, data assimilation has been traditionally

performed solely on either the LAM or the global model

that provides lateral boundary conditions. However, recent

results indicate that this may not be the most optimal

course of action (Guidard and Fischer, 2008; Dahlgren

and Gustafsson, 2012; Yoon et al., 2012). Rather, forecast

accuracy can increase by allowing the global model to

influence LAMs, and vice versa, in the analysis. Motivated

by these findings, and the fact that some large weather

centres run LAMs for multiple regions, we present an

ensemble data assimilation scheme that allows a global and

several limited-area models to influence one another during

the analysis procedure.

Using numerical experiments conducted under idealised

test conditions, we show that our method has the potential

to improve forecast accuracy. When applied to multiple

LAMs, the first step of our analysis algorithm creates

an ensemble of high-resolution ‘composite’ states from the

ensembles of global and all limited-area model states. We

then perform an ensemble analysis procedure (in the case

considered in this paper, the LETKF), to arrive at a com-

posite state analysis ensemble. Next, we use the composite

state analysis ensemble to construct global and limited-area

model ensembles to be employed as initial conditions for

forecasts that provide the background ensemble for the next

analysis cycle. We note that, through the analysis procedure
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and the boundary conditions supplied by the global model

ensemble, the composite state method effectively allows

observational information from outside of a LAM domain

to influence the update of the estimate of the state at grid

points inside of its domain. Additionally, we note that this

general composite state method does not depend on the

particulars of the LETKF, allowing for flexibility in the

choice of the analysis algorithm.

For experiments with LAMs that cover the entire global

domain, the composite state method is shown to be capable

of producing forecasts with accuracies that are almost as

good as those produced in the ideal case of assimilations

using a global perfect model. Additionally, in situations

where the collection of LAMs cover a subsection of the

global domain, we show that there is a clear benefit to allow-

ing the LAM states to influence one another during the

data assimilation process. The experimental results shown

here suggest that, in real weather forecasting situations,

high-resolution state estimates provided by many (poten-

tially overlapping) LAMs can be used to greatly improve

global atmospheric state analysis estimates. Even includ-

ing information about the state from LAMs with non-

overlapping domains in the composite state analysis has

a positive effect on global model state estimates outside of

a LAM domain (see blue and orange versus green curves

in Fig. 9). The composite state method analysis technique

could be a useful tool for organisations like the United

States Navy, which currently runs the COAMPS† LAM for

many, often overlapping, domains, as it presents a straight-

forward method for utilising a collection of disparate state

estimates in the analysis. The composite state method

would allow for short-term high-resolution forecasts pro-

duced by these regional models to improve the global

analyses, in turn allowing for further improvements to the

LAM forecasts through improved boundary conditions.

Our presentation of the composite state method has

utilised simple one-dimensional models, each defined on

subsets of the same grid. Atmospheric models are defined

over three spatial dimensions, and different LAMs will not,

in general, share common grid points, even if their domains

happen to cover common geographic areas. Thus, in further

tests of the composite state method on more realistic systems,

it will be necessary to choose appropriate pi (n) functions,

and to specify the interpolations that the operator On in

eq. (2) is to perform. These choices will be dependent on the

number and relative layout of LAM domains, and can be
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Fig. 10. RMS analysis errors of the ensemble mean calculated using the composite state method for two model scenarios. The first

scenario has a single LAM defined over the grid point interval [240,720] (blue curve), and the second has two LAMs defined over the

intervals [240,500] and [460,720] (red curve). The analysis error of the ensemble mean of a global high-resolution perfect model LETKF

(black curve) is included as a benchmark for comparison. Statistics are gathered over 105 analysis cycles, discarding the first 103 cycles. The

shaded area indicates the domain where both LAMs are defined.
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empirically adjusted to yield the most desirable results.

Our choice of pi (n) used no information from the low-

resolution forecast wherever a high-resolution forecast was

available. It remains a possible subject for further study

whether it is advantageous to retain some of this informa-

tion in other scenarios. Overall, we are encouraged by our

results from the one-dimensional models to speculate that

the composite state method might offer a potential means

of obtaining forecast improvements in real weather fore-

casting situations.
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