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ABSTRACT
Ensemble methods are increasingly used in data assimilation for numerical weather 
prediction. These methods utilize sample covariance matrices that are subject to 
sampling error, which is commonly addressed by application of a localisation. The form 
of the localisation is usually ad-hoc. This paper presents results from applying a series 
of theoretically optimal localisations, derived for assimilating a single observation 
(sparse density), to a Gaussian model state. The theoretical localisations included 
are optimal localisation for a single true covariance (OSTC), optimal localisation for 
a variable true covariance (OVTC), which includes knowledge of the climatology and 
optimal hybrid localisation for a variable true covariance (HOVTC) which damps the 
difference from the mean covariance as opposed to the covariance itself. The optimal 
localisations and Gaussian localisation perform similarly for sparse observations. 
For dense observations, the theoretical assumptions do not hold, and the optimal 
localisations break down, but the Gaussian, which is retuned, continues to perform 
well. HOVTC localisation is shown to outperform traditional forms of localisation in the 
single observation cases. A tuned hybrid localisation is proposed based on the form 
of the optimal hybrid localisation and this is shown to perform well in all ranges of 
observation density and assimilation strengths. The paper shows that theoretically 
derived localisations can produce improved assimilation performance for a range 
of observation densities and assimilation strengths in a Gaussian model scenario. It 
provides the proof of concept that studying the optimal localisation can inform the 
improvement of localisation regimes for more complex models.
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1 INTRODUCTION

Numerical weather prediction (NWP) systems take 
an initial state and use dynamical models to evolve it 
forward in time to produce a forecast. A data assimilation 
(DA) process is then used to assimilate new observations 
into the forecast state to produce an initial state for the 
next forecast run. The exact state of the atmosphere 
is never known and the error statistics of the state and 
observations, in particular, the covariances, must be used 
to optimally combine the observations with the state. In 
ensemble methods, the covariance is estimated using 
the sample covariance of an ensemble of states. There 
is a need to mitigate the sampling error associated with 
this process, and this is often done using localisation, 
which damps the long range spurious correlations.

There are two types of errors associated with 
ensemble DA methods: the first occurs because the 
sampling process may have errors due to the states not 
being drawn from the true covariance matrix. The second 
type of error is sampling error, which results from the 
finite size of the ensemble. This can be explored using 
idealised models where the true distributions are known: 
this source of error is the focus of this paper.

Sampling error is a particular problem where the 
correlations between variables are small and the 
sampling noise can swamp the signal. Small correlations 
often occur at large physical distances and so a common 
problem is long range spurious correlations. Where 
they occur, the sample covariance contains erroneous 
large correlations between distant and weakly or 
unrelated variables in place of true small correlations. If 
unaddressed, erroneous large correlations can produce 
erroneous large increments that harm the analysis and 
forecast. This problem can be addressed by applying a 
localisation to the covariance matrix, which multiplies 
the sample covariance matrix element-wise by a matrix 
and cuts off or damps the correlations that are expected 
to be suffering from sampling noise (Houtekamer and 
Mitchell, 1998).

Many implementations use an ad-hoc tuning method 
to specify a localisation. They assume the correlations 
decrease with distance and, in order to mitigate the 
sampling error, either apply a cut off beyond which the 
correlations are zeroed (Houtekamer and Mitchell, 1998) 
or a damping to distant correlations (Houtekamer and 
Mitchell, 2001; Roh et al., 2015; Whitaker and Hamill, 
2002). The shape of the damping is commonly a Gaspari-
Cohn function which is similar to a Gaussian in shape but 
has compact support requiring it to go to zero at a finite 
distance (Gaspari and Cohn, 1999): it is identified by a 
width parameter. The width is tuned using past data and 
the shape is chosen to be similar to a Gaussian because 
the correlation tends to decrease with width. However, 
many shapes satisfy this assumption and there is nothing 
to suggest this particular choice is optimal. Additionally, 

there is no reason that the localisation width tuned 
initially would remain well tuned in time or be well tuned 
across a large area.

The aims of this paper are two-fold. First, is to develop 
a deeper understanding of ‘optimal localisations’ 
which optimise the accuracy of the analysis state. 
This includes exploring how different factors of the DA 
determine the optimal localisation and investigating 
the strengths/weaknesses of using different forms of 
localisation to optimise the analysis state. It is addressed 
by focusing on the single observation case where the 
optimal localisation of the gain can be derived. This 
is a step towards addressing the general case for any 
observation density which is extremely complicated. The 
second, parallel aim is to investigate the performance 
of derived localisations in the cases where they are not 
optimal. This includes identifying features of the optimal 
localisations that are valuable even when the deriving 
assumptions no-longer apply and using them to develop 
new tuneable localisations. All investigations take place 
in a simple, ideal model, representing a single variable 
state with known statistical behaviour.

Previous attempts have been made to investigate 
optimal localisation. They do not always optimise 
the analysis state. Ménétrier et al. (2015a) found the 
localisation that minimises the error between the 
true and localised sample covariance. This approach 
combined optimal linear filtering theory (analogous to 
OSTC presented in this paper) with centred moments 
estimation theory with the aim of expressing optimal 
filters in terms of statistics of the ensemble covariance 
and 4-order moment only. An ergodicity assumption 
is then used to evaluate the statistics, implying an 
averaging in space. Optimal localisations are identified 
that outperform traditional Gaussian approaches when 
their assumptions are met. Ménétrier et al. (2015b) 
applied this approach to an operational system and 
showed it can be used for successful DA, although there 
is a computational cost associated with the localisations 
computed at every DA step.

Perianez et al. (2014) found an expression for the 
optimal length scale of observation space localisation by 
minimising the analysis error, assumed to be made up of 
components due to the effective observation error and 
the approximation error. These experiments explored 
how observation density and observation error variance 
affected the optimal localisation length scale for a fixed 
localisation shape which is not necessarily optimal.

The work presented here builds on that by Flowerdew 
(2015) which uses a different approach to address state 
space localisation. It is assumed in Flowerdew (2015) 
and throughout this paper, that some climatological 
and sampling statistics are known, in addition to the 
ensemble of states, and these are used to evaluate 
the optimal localisation. This method produces static 
localisations for a climatology, implying an averaging 
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over time (as opposed to spatial averaging imposed by 
Ménétrier et al. (2015a)). Flowerdew showed that the 
resulting localisations for a range of different covariance 
matrices were not Gaussian and can have a much more 
complex shape. Furthermore, this optimal localisation 
outperforms the best tuned Gaussian localisation in the 
cases considered.

Flowerdew (2015) focuses on optimising the gain, 
and not the covariance. This is because optimising the 
analysis relies on optimising the gain. When using the 
Kalman filter algorithm, using an optimal covariance 
localisation does not imply an optimal analysis because 
of the complex way the covariance (and its localisation) 
appear in the gain. The computation involves matrix 
multiplication, addition and inverse computation. This 
complexity also makes optimising the full gain extremely 
complex. Instead, a “sparse gain” for assimilating a single 
observation is optimised. The sparse gain localisation 
is applied to the covariance and remains optimal if the 
assumption holds that the sampling error in the variance 
is negligible. This paper follows the convention to optimise 
the sparse gain, building on it by investigating different 
application forms. Each computed localisation in this 
paper is implemented in three ways by, (i) applying the 
sparse gain localisation directly to the gain, (ii) applying 
the sparse gain localisation to the covariance and, (iii) 
applying the optimal covariance localisation directly to 
the covariance.

The localisation tested in Flowerdew (2015) is based 
on the assumption that there is a static, or known, 
true covariance matrix. Using the proposals outlined in 
Flowerdew (2015), this paper develops and tests two 
alternative “optimal” localisations derived under the 
assumption that the true covariance is not known, but 
a climatological distribution is known or predicted. One 
is a traditional localisation in which the localisation 
damps the sample covariance towards zero and the 
other is a hybridized localisation that damps the sample 
covariance towards the mean covariance. It is expected 
that this could produce analyses which better preserve 
the relationship between different but correlated 
assimilated variables. The development and testing of 
these methods is a fundamental step towards improving 
localisation schemes for more complex models including 
realistic weather models.

This paper extends the model used by Flowerdew to 
implement these two novel localisation methods and test 
their performance. The optimal localisations are scenario 
dependent and a Gaussian shaped covariance matrix 
model is used as the basis for the scenario following the 
work of Flowerdew (2015). The following objectives are 
addressed:

1. To incorporate a climatology into the model. This 
makes state and ensemble generation a two level 
process in which firstly a covariance is selected from 

the climatology, and secondly, states are selected 
from the covariance. This enables the statistics of 
the climatology to be used to compute optimal 
localisations.

2. To implement optimal localisation for a variable 
true covariance (OVTC) and a hybridized version 
(HOVTC) in a single observation scenario (in which 
the “optimal” status holds) and compare them to 
traditional Gaussian methods.

3. To investigate how increasing the density of the 
observations affects the performance of the 
computed localisations (OVTC and HOVTC) when the 
optimality no longer holds. This could provide insight 
into how the localisation should be adapted and 
applied for dense observations.

4. To investigate how the hybridized localisation (which 
damps towards a mean covariance not towards 
zero) compares to traditionally applied localisation. 
This includes testing if the hybridized version can 
be used to inform a tuned hybrid localisation 
(HTDG) with a comparable performance to Gaussian 
localisation.

The structure of the paper is as follows. In section 2, 
localisation methods are described. Section 2.1 describes 
the form of localisation schemes, section 2.2 describes 
where the localisation is applied and section 2.3 gives 
details of the sampling processes and the statistics 
needed to produce the optimal localisations. Section 
3 describes the experimental framework with details 
about the model and the data assimilation application. 
Section 4 presents the results comparing the 3 types of 
localisation (i) traditional tuned Gaussian localisation 
(ii) theoretically derived localisations and (iii) a newly 
developed tuned hybrid localisation. Finally, section 5 
provides a discussion of the findings.

2 LOCALISATION METHODS

2.1 LOCALISATION TYPES
In the experiments, an Ensemble Kalman Filter (EnKF) is 
used to perform the DA. Unlike other (e.g. variational) DA 
methods, the Kalman filter gives an explicit equation for 
the optimal update in terms of the covariance matrices. 
The covariance is directly computed and can be assessed 
and manipulated when using ensemble methods. It is, 
therefore, an ideal framework in which to attempt to 
extend the optimality to address the sampling error in 
the covariances, which occurs in ensemble methods. The 
Kalman Filter update equation is

( ( ))a f fK h x= + −x x y  (1)

where xa and xf are the analysis and (previous) forecast 
states respectively, K is the Kalman gain,
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1( ) ,f T fK P H HP H R −= +  (2)

y is the vector of observations to be assimilated, Pf is the 
error covariance, R is the observation error covariance and 
h(∙) is the observation operator with linear approximation 
H. In the EnKF, the error covariance Pf is replaced with a 
localised sample covariance f

ijP . This is traditionally of the 
form


  ,f f

ij ij ijP L P=  (3)

where Lij is a localisation matrix applied by a Schur 
product to the sample error covariance matrix
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− ∑ x x x x  (4)

which is computed from the N ensemble members xi and 
their mean. A localised Kalman gain, K, is produced by 
using the localised sample covariance, f

ijP , in place of Pf in 
equation (2). Alternatively, the sample gain,  

ijK , computed 
using the sample error covariance, fP , in equation(2), can 
be localised directly

.ˆ
ij ij ijK L K=  (5)

In ensemble methods the mean ensemble analysis state 
is found using

( )( ) ,a f fK h= + −x x y x  (6)

where the overbar represents the ensemble mean. 
Assessing the error in the mean analysis state avoids 
the related problems of addressing the spread in the 
analysis ensemble (or inflation) and focuses only 
on optimising and assessing the mean error in the 
ensemble DA. In the case with a single observation, y, 
taken at xi assimilated into point xj equations (1) and (2) 
become

   (  ),a f f
j j ji ix x b y x= + −  (7)
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,
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f f
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i o j

r
b

σ σ
σ σ
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+

 (8)

where b is the sparse gain, σi is the standard deviation in 
the state error at i, rij is the correlation between the state 
error at points i and j and 2

,o jσ  is the observation error 
variance at point j.

Table 1 summarises the 5 types of localisation 
considered in this paper. The Gaussian localisation is the 
traditional, form against which the new localisations 
are compared (Gaussian is used as opposed to Gaspari-
Cohn localisation following previous work by Flowerdew, 
2015). The OSTC has been applied in Flowerdew (2015). 
The application of the remaining 3 localisations (OVTC, 
HOVTC and HTDG) are novel to this paper.

All of the computed localisation factors can be 
expressed in terms of a signal to noise ratio, Q, as

.
1
Q
Q

α =
+

 (9)

LOCALISATION COST FUNCTION FORM BASED ON

Gaussian NA 2

2exp
2 

ijd

γ
 
−  
 

Damps sample covariance 
towards 0.

Tuned width parameter γ. The 
distance between 2 points dij. 

Optimal for a single 
covariance (OSTC)

2(  ) ( | )ˆ ˆ ˆb b P b dbα θ∫ −



2

2 2

ij

ij

ij b

b

b
α

σ
=

+

Damps sample sparse gain 
towards 0.

Signal: (mean) sparse gain.
Noise: mean variance in sample 
sparse gain. 

Optimal for a variable 
covariance (OVTC)

2 ˆ( ) (  ) ˆ )ˆ ( |P b b P b dbdθ α θ θ∫ ∫ −
2 2

2 2
ˆ

2
b

b b

b
b

σα
σ σ 〉
+

=
+ + 〈

Damps sample sparse gain 
towards 0.

Signal: mean and variance in 
sparse gain.
Noise: mean variance in sample 
sparse gain. 

hybrid Optimal for a variable 
covariance (HOVTC)

2( ) ( ( (ˆ |ˆ ˆ) ) )P b b b b P b dbdθ α θ θ∫ ∫ + − −

ˆ

2

2 2
b

b b

σα
σ σ

=
+ 〈 〉

Damps sample sparse gain 
towards mean sparse gain.

Signal: variance in sparse gain.
Noise: mean variance in sample 
sparse gain. 

hybrid tuned double Gaussian 
(HTDG)

NA 2 2

2 2
1 2

exp exp
2 2 

ij ijd d

γ γ
   
− − −      
   

Damps sample covariance 
towards mean covariance.

Tuned width parameters γ1 and γ2. 
The distance between 2 points dij. 

Table 1 Types of Localisations. Bottom 3 rows show localisation application novel to this paper. Cost functions are given in terms of 
the parameter θ which represents the parameters of the distribution.
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Each computed localisation uses a different definition for 
the signal, as indicated in the final column of Table 1. In 
each case, the noise is the mean variance in the sample 
gain.

The first and last, Gaussian and hybrid tuned double 
Gaussian (HTDG), are both tuned using past data. 
The tuned parameters are found by running a suite 
of experiments for the given scenario for a range of 
values and selecting the one with the lowest RMS error. 
This process is an ad-hoc method and consequently is 
not expected to produce assimilation results that are 
optimally accurate.

The middle three localisations in Table 1: optimal for 
a single true covariance (OSTC), optimal for a variable 
true covariance (OVTC) and hybrid optimal for a variable 
true covariance (HOVTC), are all computed localisations 
given in terms of the sparse gain.1 They are optimal for 
assimilating a single observation, assuming there is no 
bias in the gain, and are derived in Flowerdew (2015) by 
minimising a cost function giving the squared distance 
between the localised sample gain and the true gain 
(i.e. the sparse gain calculated from the true covariance 
using equation (8).) Table 1 shows the cost function 
and resultant form of these three optimal localisations. 
OSTC gives the damping that is necessary to address the 
error due to sampling from a fixed covariance matrix, 
however, if the true covariance were known, there would 
be no need for ensemble methods or localisation. In a 
typical system, the covariance varies in time and its exact 
value is unknown at the assimilation step. However, a 
climatology describing a distribution of likely covariances 
may be estimated.

OVTC assumes there is a climatology specifying the 
variation in the true covariance and defines a theoretical 
optimal localisation to be applied to the sample sparse 
gain. HOVTC is an extension of the OVTC in which the 
localisation is applied to the variation of the sparse gain 
from its mean so as to provide an unbiased estimator of 
the gain:

( )ˆb b b bα= + −  (10)

where b  is the localised sparse gain, b is the climatological 
mean sparse gain, b̂ is the ensemble sample sparse gain 
and α is a localisation factor. By preserving the mean gain, 
HOVTC is expected to produce localised gains that are 
closer to the true gain than the traditional forms which 
are damped towards zero. For multiple observations, 
hybrid localisation of the gain is applied as

( ),ˆ
ij ij ij ijK b K bα= + −  (11)

where the damping is towards the mean sparse gain.2 
HTDG is a tuned version of a hybrid localisation in which 
the localisation is applied such that the localisation 
damps towards the mean covariance,


( )f f f f

ij ij ij ij ijP P P Pα= + −  (12)

Its shape is composed of two Gaussians and has been 
chosen to be a similar shape to the optimal hybrid 
localisation in the experiments (see Section 4 for more 
details).

2.2 LOCALISATION APPLICATION
The optimal localisations: OSTC, OVTC and HOVTC, 
are derived to be optimal when assimilating a single 
observation. When they are applied to cases with 
multiple observations they are referred to as computed 
localisations. Each localisation in this paper is 
implemented in three ways by, (i) applying the sparse gain 
localisation directly to the gain, (SG;G). (ii) applying the 
optimal covariance localisation directly to the covariance 
(C;C) and, (iii) applying the sparse gain localisation to the 
covariance (SG;C).

The first application is where the sparse gain computed 
localisation is applied directly to the gain (SG;G). The 
localisation factors given in Table 1 are expressed and 
applied to a sparse gain, b. In multiple observation cases, 
the sparse gain localisation is applied to the multiple 
observation gain.

Optimal covariance localisations, (C;C) can be found 
by replacing the sparse gain, b, with the covariance Pf in 
the cost functions and localisation factors given in Table 
1. This produces the most accurate covariance from the 
sample covariance using equation (3) or equation (12) 
but it does not necessarily optimise the analysis. In the 
limit that the covariance is accurate, the true covariance 
produces the true gain. However, sampling errors in 
the covariance become sampling errors in the gain via 
equation (2) (or equation (8) for the sparse case). This 
transformation is complex involving a matrix inverse (or 
ratio of correlated sampling errors). Therefore, addressing 
the sampling error that occurs in the covariance (in a way 
that optimises the analysis) needs to take into account 
how the errors propagate through the gain.

The final application type is to apply the sparse 
gain localisation to the covariance (SG;C). To achieve 
this, a representative observation error variance, 2

,o jσ , is 
assigned to points without an observation. The same 
observation error variance 2

,o jσ  is used for all observations 
in each experiment, and for all unobserved points. This 
enables the sparse gain (equation (8)) and its statistics 
to be computed for every pair of grid points, and ensures 
the statistics are continuous across both observed and 
unobserved points.

In the single observation case, applying any of the 
optimal localisations of the sparse gain to the gain 
is equivalent to applying it to the covariance if two 
assumptions hold. Firstly, that there is no climatological 
variation in the variances, f 2

i( )σ  and secondly, that there 
is no sampling error in the sample variances  f 2 f 2

i i() ,  )( . 
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The experiments in this paper have static variances so 
the first assumption holds. The standard deviation in the 
sample variance of size N taken from a normal distribution 
N(μ, σ2) with mean μ and variance σ is (Casella and Berger, 
2002, example 7.3.3, p. 331)

2

2 2
 ,

1Nσ
σ σ=

−
 (13)

which indicates the variance is small for ensemble size 
10 but not zero, so the second assumption does not 
strictly hold but can be approximated.

It is interesting to explore this application type 
because, although the (SG;G) localisations are optimal, 
implementations of equation (5) or equation (10) for a 
single observation, they apply no localisation in the inverse 
matrix term, 1( )f THP H R −+ , of the gain. A localisation 
applied to the covariance, on the other hand, addresses 
the sampling error at source. For a single observation, 
only the variance is not localised in the denominator 
of the sparse gain, but for multiple observations, more 
terms are not localised. Complex effects also occur 
when assimilating multiple observations. It is known 
that observations interact and can reinforce each other 
(Lorenc 1981, Bannister 2008). This is a reason to apply 
the localisation to the covariance before the spurious 
correlations could cause additional effects in the 
assimilation through “reinforcing” effects in the gain. 
Covariance localisation (SG;C) may therefore be expected 
to be similar to the gain localisation (SG;G) for sparse 
observations and be more robust to dense observations. 
However, the (SG;C) localisation does not optimise the DA 
or the covariance.

2.3 SAMPLING PROCESSES AND COMPUTED 
STATISTICS
A two layered sampling process is used to specify the 
sampling of states from the climatology. The climatology 
is referred to as a Scenario and is defined as a distribution 
of covariance matrices. A Scenario describes the longer 
term variability in the weather. Sampling from a Scenario 
produces a covariance matrix referred to in this paper 
as a Regime. A Regime describes the variation in the 
states of an ensemble and can be thought of as the 
uncertainty on a shorter scale e.g. a day. Sampling from 
a Regime produces States: ensemble and truth states 
are all sampled from the same Regime. Finally, a State 
is a single value of every parameter at every point which 
can be thought of as representing a possible state at a 
moment in time.

Statistics needed to calculate the localisations are 
computed by empirically drawing covariances from 
the Scenario and states from the Scenario and Regime, 
converting them to sparse gains via equation (8) and 
taking appropriate statistics. Specifically, to obtain the 
mean 2 b  and variance   of the gain, a large number 
(10000) of Regime covariances are generated from the 

Scenario and converted to sparse gains. The mean and 
variance of these are then computed.

For gain localisations (SG, G, SG; C), the mean variance 
in the sample gain, 2

b̂
σ〈 〉, is computed by a three step 

process. First a range of Regimes is sampled from across 
the climatology (1000 samples). For each Regime a large 
number (1000) of sample sparse gains calculated from 
ensembles of size 10 can be computed and from them, 
the variance is computed. Finally, the mean is taken of the 
variances over the different Regimes. Similar processes 
are used to compute the statistics of the covariance for 
optimal covariance localisations, (C;C).

OVTC and HOVTC localisations are defined in terms 
of a climatology but OSTC is not, as it is based on the 
assumption of an underlying static true covariance. 
Where OSTC is applied, the mean sparse gain/covariance 
is used as the true gain/covariance and the mean 
variation in the sample sparse gain/covariance is used as 
the variation in the sample gain/covariance.

3 EXPERIMENTAL FRAMEWORK

Python 3.7 was used to develop an object-oriented 
package of code to perform the localisation experiments.

In the experiments, a State gives the value of a single 
variable on a one-dimensional domain of grid points. A 
Regime is specified as the correlation between points 
given by a Gaussian shaped covariance matrix

2

22 ,
ijd

f
ijP e γ

−

=  (14)

where dij is the distance between grid points i and j and γ 
is a specified width parameter. Sampling from a Regime 
to produce States is done via eigenvector decomposition. 
The climatology (a Scenario) can be thought of physically 
as an expectation that the weather will exist on a range of 
spatial scales. It is represented as a uniform distribution 
of the width parameter, γ between two boundary values 
(e.g. between 5 and 40).

A number of additional parameters were set via a 
series of initial experiments and fixed for all subsequent 
experiments. The number of ensemble members was set 
at 10 as this was small enough to show the effects of 
sampling error. The number of times the experiment was 
repeated was fixed at 100,000. This was large enough 
to produce reliable RMS analysis error results whose 
relative ordering did not change when the experiments 
were repeated. The number of grid points was fixed at 
100 to keep the computational cost of the model down. 
The Scenario scale and observation density were chosen 
relative to the number of grid points so that the detail 
of the Scenario’s form, and the impact of different 
density regimes could be investigated. The observation 
error covariance was assumed to have independent 
cross correlations (set to zero) as this was the simplest 
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case and a common assumption operationally. The 
observation error variance was set to 0.1, 1.0 or 10.0 (low, 
medium or high) indicating the assimilation strength was 
respectively strong, equal or weak as the true background 
error variance implied by equation (14) is 1.

Three schematic figures show how the code functions 
to produce the results. Figure 1 shows the process 
of assimilating a single (set of) observation(s) into a 
forecast ensemble to produce an analysis state. Figure 2 
summarises the process of performing a single DA cycle 
where a Scenario is specified and used to generate the 
analysis state and RMS errors in the analysis state are 
computed to give a measure of the DAs performance. 
Figure 3 shows the highest structure level of the 
experiments which produce results that average over a 
large number of individual DA cycles.

4 COMPARISON OF LOCALISATIONS 
AND THEIR PERFORMANCE

A suite of experiments investigating the Gaussian 
Scenario with width parameter uniformly distributed 
between 5 and 40 were performed (Scenario 1). These 
experiments were repeated for 3 observation error 
variances namely 0.1 (strong assimilation), 1.0 (equal 
strength assimilation) and 10.0 (weak assimilation) and 
for 3 observation densities. The observation densities 

were: (i) a single (sparse) observation; (ii) regularly 
spaced (medium) observations with large spacing of 
33 grid points between observations (equivalent to 4 
observations across the domain) and (iii) small spaced 

Figure 1 Schematic of a single DA process using the EnKF.

Figure 2 Schematic showing the ensemble and observation 
generation, assimilation and error production for a single DA cycle.

Figure 3 The flow diagram of the experiments performed and 
reported in this paper.
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(dense) observations with 9 grid points between 
observations (equivalent to 12 observations across the 
domain).

A second suite of runs were then performed for the 
same Gaussian Scenario with the width parameter 
uniformly distributed between 20 and 30 (Scenario 
2) to explore the impact of the variability in the  
climatology.

4.1 SIGNAL, NOISE AND LOCALISATION 
FACTORS
Figure 4 shows the form of the localisations applied in 
the single observation experiment for each assimilation 
strength in Scenario 1. The first row of plots shows the 
statistics that are used to construct the computed 
localisations. The mean gain and the variance in the gain 
are used to construct the signal in the computed gain 
localisation ( see Table 1 for how the signal is constructed 
for each localisation). The square root of the mean 
variance in the sample gain represents the noise. This is 
also plotted with the error in the variances replaced with 
the true background error variance (one). This statistic is 
the scaled square root mean variance in the correlation: 
it represents the noise term in the gain due only to the 
sampling error in the correlation. The scaled square root 
of the mean variance in the sample covariance shows 
the behaviour of the noise term in the (C;C) localisations. 
The covariance statistics are scaled by dividing by the 
expected denominator of the sparse gain, ( 21 oσ+ ). Finally, 
the mean sample gain is shown. This differs from the 
mean gain indicating that there is some bias in the gain 
and the bias is worst for the case with observation error 
variance 1.0.

The second row of plots shows the resultant form 
of the computed localisation types for optimising the 
gain, the covariance, and the gain with variance errors 
removed (equivalent to optimizing the correlation and 
neglecting sampling error in the variance). Also shown 
is the form of the tuned Gaussian and HTDG localisation 
used for the single observation case.

It can be seen that for strong assimilation (observation 
error variance 0.1) the sparse gain noise and localisations 
behave similarly to the case with the removed variance 
error. This is because for small observation error variance, 
the sample gain behaves as
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so that, where the sampling error in  ˆ iσ  and  ˆ jσ  are 
correlated, their sampling errors approximately cancel. 
An expression can be found for the covariance between 
the sampling error in the variances (Raynaud et al., 2009)
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2 2 2 2 2 2 22
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which shows the correlation between the sampling 
error in the variances is proportional to the square of the 
true correlation rij. This implies that where the sampling 
error in  ˆ iσ  and  ˆ jσ  are uncorrelated, the correlation rij is 
small. This implies the sampling error in the correlation 
rij is large and the sampling error in the sparse gain is 
dominated by the sampling error in the correlation rij. For 
weak assimilation (observation error variance 10.0), the 
sparse gain noise and localisation behave more similarly 

Figure 4 Plot showing the shape of each localisation and the statistics used to compute the localisation for Scenario 1. The form 
of the localisations is shown for observation variance 0.1, 1.0 and 10.0. The shown tuned widths are tuned from assimilating a single 
observation.
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to the covariance. This is because the observation error 
variance dominates the denominator of the sparse gain 
and the sampling error in the sparse gain is dominated by 
the sampling error in the numerator i.e. the covariance. In 
the equal assimilation case, the behaviour of the sparse 
gain statistics and localisation lies between the case with 
removed variances and the covariance case.

The Gaussian localisation peaks at 1 but the optimal 
localisations of the gain, peak at less than 1 which 
implies that they damp the update even at the observed 
point. This is due to the non-vanishing sampling error in 
the sample gain. The first case with observation variance 
0.1 is the only case with near unit localisation applied to 
the update at the observed point. The OSTC and OVTC 
localisations agree at the peak but the OVTC allows more 
signal through at intermediate distances as is indicated 
by the broader OVTC curve compared with the OSTC 
curve. This is because OVTC allows for more variability in 
the true gain/covariance due to the climatology.

When studying the hybrid localisations (optimal and 
tuned), it is important to note that they are localising 
the departure from the mean covariance and not the 
covariance. Therefore, where the hybrid localisation is 
zero, this does not correspond to zeroing the covariance 
or gain matrix but instead to using its climatological 
average. The hybrid localisation for this Scenario has two 
peaks either side of the zeroed centre. The tuned hybrid 
localisation, HTDG, was constructed from 2 Gaussians to 
have a similar double peaked shape to the optimal hybrid 
localisation. The equation for its form is given in Table 
1 and is given in terms of 2 width parameters to tune. 
HTDG was tuned separately for each observation density 
and assimilation strength.

A similar plot for Scenario 2 is shown in Figure 5. A 
key difference between the Scenarios is the standard 
deviation in the gain which is much smaller in Scenario 
2. This causes OSTC and OVTC to be similar as the 
assumption of OSTC that the true covariance is static is 
a more reasonable approximation. For HOVTC, the small 
amount of variability in Gaussian Scenario 2 and the 
hybrid structure allows it to identify that the ensemble 
covariance/gain is always close to the climatological 
mean covariance/gain. The HOVTC localisation factor is 
small and the adjustment made to the mean covariance 
using the ensemble data is small. In Gaussian Scenario 1 
the HOVTC localisation makes a much larger adjustment 
to the mean covariance/gain due to the large amount 
of variability in the Scenario. The effect of the variability 
of the Scenario on the form of the traditionally applied 
localisation is less significant because of the inclusion 
of the mean gain/covariance in the signal. This means, 
at intermediate distances where the variability is most 
significant in this Scenario, the mean gain/covariance is 
still a significant component of the signal determining 
the form of the localisation.

4.2 ANALYSIS ERROR RESULTS
Table 2 shows the overall RMS analysis error results for 
experiments using Scenario 1, comparing localisation 
performance for various observation spacing and 
observation error variance. The RMS error between the 
true state and the assimilated state produced by the 
experiment is given for each localisation type. To put 
these results in context, the background error, computed 
as the RMS error between the ensemble mean and the 
true state averaged across the regime, is approximately 

Figure 5 Plot showing the shape of each localisation and the statistics used to compute the localisation for Scenario 2. The form 
of the localisations is shown for observation variance 0.1,1.0 and 10.0. The shown tuned widths are tuned from assimilating a single 
observation.
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1.046 in every experiment.3 The difference between the 
background error and localised error, therefore, indicates 
the error improvement made by the assimilation process. 
These results are plotted in Figure 6. Similarly, Table 3 
shows the results for Gaussian Scenario 2 which are 
plotted in Figure 7. Note that where the bars go off the 

top of the chart, in both figures, the error is greater than 
the background error.

Common patterns and interesting results from both 
suites of results are discussed. The term ‘effective 
observation density’ is used to refer to the density in 
the context of the other properties of the case. A high 

SCENARIO 1 OBSERVATION ERROR VARIANCE 0.1

OSTC OVTC HOVTC

GAUSSIAN (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) HTDG BACKGROUND 
ERROR 

Single ob 0.8633 0.8656 0.8647 0.8656 0.8634 0.8631 0.8633 0.8522 0.8557 0.8576 0.8558 1.0466

Spacing 33 0.5368 0.5525 0.5376 0.5366 0.5523 0.5402 0.5375 0.5804 2.4186 14.7818 0.5233 1.0462

Spacing 9 0.2440 0.2852 0.2468 0.4289 0.2855 0.2613 0.2449 1.8869 212.2495 38.626 0.2573 1.0461

SCENARIO 1 OBSERVATION ERROR VARIANCE 1.0

OSTC OVTC HOVTC

GAUSSIAN (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) HTDG BACKGROUND 
ERROR 

Single ob 0.9480 0.9502 0.9523 0.9498 0.9490 0.9506 0.9487 0.9398 0.9410 0.9411 0.9417 1.0466

Spacing 33 0.7848 0.7947 0.7911 0.7860 0.7927 0.7901 0.7854 0.7698 0.7668 0.7682 0.7669 1.0462

Spacing 9 0.5633 0.5886 0.5701 0.5641 0.5870 0.5709 0.5642 1.1460 0.5931 4.6481 0.5493 1.0461

SCENARIO 1 OBSERVATION ERROR VARIANCE 10.0

OSTC OVTC HOVTC

GAUSSIAN (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) HTDG BACKGROUND 
ERROR 

Single ob 1.0277 1.0283 1.0285 1.0283 1.0280 1.0282 1.0280 1.0252 1.0253 1.0253 1.0253 1.0466

Spacing 33 0.9977 0.9992 0.9993 0.9988 0.9985 0.9987 0.9982 0.9903 0.9906 0.9906 0.9911 1.0462

Spacing 9 0.9152 0.9220 0.9197 0.9184 0.9203 0.9184 0.9173 0.9031 0.8989 0.8989 0.8992 1.0461

Table 2 RMS error results for Scenario 1.

Figure 6 RMS errors resulting from DA with each kind of localisation in Gaussian Scenario 1. Columns show results for a range of 
observation spacing and rows show a range of observation error variance.



67Atkinson et al. Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.35

effective observation density implies that there are 
a lot of observations that have a significant impact 
on the update at a point. Specifically, the effective 
observation density is high if cross covariances occur in 
the inverse matrix, 1( )fHP H R −+ , of the gain which have 
a significant impact in determining the form of the gain. 

The number of observations, assimilation strength and 
Scenario all affect it. Increasing the assimilation strength 
increases the effective observation density as the smaller 
observation error variance means the sample covariance 
terms, in the inverse matrix of the gain, play a larger role 
in determining its magnitude. Increasing the number of 

Figure 7 RMS errors resulting from DA with each kind of localisation in Gaussian Scenario 2. Columns show results for a range of 
observation spacing and rows show a range of observation error variance.

SCENARIO 2 OBSERVATION ERROR VARIANCE 0.1

OSTC OVTC HOVTC

GAUSSIAN (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) HTDG BACKGROUND 
ERROR 

Single ob 0.8311 0.8296 0.8295 0.8295 0.8295 0.8295 0.8294 0.8068 0.8068 0.8068 0.8070 1.0469

Spacing 33 0.3701 0.3858 0.3763 0.3745 0.3856 0.3758 0.3739 0.5856 0.3495 0.3460 0.3459 1.0464

Spacing 9 0.1995 0.2175 152.6382 136.7548 0.2174 16.2293 109.381 3.4972 0.1947 0.1947 0.1940 1.0463

SCENARIO 2 OBSERVATION ERROR VARIANCE 1.0

OSTC OVTC HOVTC

GAUSSIAN (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) HTDG BACKGROUND 
ERROR 

Single ob 0.9324 0.9329 0.9350 0.9326 0.9329 0.2349 0.9326 0.9161 0.9161 0.9161 0.9161 1.0469

Spacing 33 0.7279 0.7370 0.7352 0.7289 0.7370 0.7352 0.7288 0.7215 0.6971 0.6971 0.6971 1.0464

Spacing 9 0.5089 0.5280 0.5173 0.5119 0.5280 0.5170 0.5113 1.8282 0.4846 0.4846 0.4847 1.0463

SCENARIO 2 OBSERVATION ERROR VARIANCE 10.0

OSTC OVTC HOVTC

GAUSSIAN (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) (SG;G) (C;C) (SG;C) HTDG BACKGROUND 
ERROR 

Single ob 1.0253 1.0252 0.0254 1.0252 1.0252 1.0254 1.0252 1.0207 1.0207 1.0207 1.0207 1.0469

Spacing 33 0.9897 0.9904 0.9907 0.9902 0.9904 0.9907 0.9901 0.9780 0.9782 0.9782 0.9782 1.0464

Spacing 9 0.8941 0.8998 0.8982 0.8969 0.8997 0.8982 0.8968 0.8882 0.8706 0.8706 0.8707 1.0463

Table 3 RMS error results for Scenario 2.
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observations increases the effective observation density 
by causing more sample covariance terms to occur in 
the inverse matrix of the gain. Similarly, if the Gaussian 
Scenario contains (on average) larger widths (γ), then this 
implies more significant correlations. The observation 
effects will be less separable, which therefore implies a 
larger effective observation density.

Single Observation Experiment
First, we consider the single observation cases where the 
computed (SG;G) localisations are expected to be optimal. 
In all experiments assimilating a single observation, the 
best performing computed localisation type, for any 
given application type, is HOVTC followed by OVTC which 
outperforms OSTC. The climatologically aware computed 
localisations perform better than OSTC which assumes a 
static true covariance matrix. The optimal hybrid form of 
localisation performs better than the optimal traditionally 
applied localisation. This ordering of results also occurs 
in some multiple observation cases where the effective 
observation density is low enough that optimality is still 
approximated by the computed localisations. However, 
when the effective observation density is too high, the 
computed localisation can perform poorly and this order 
can reverse.

In the single observation case, OVTC(SG;G) might be 
expected to be the best performing traditionally applied 
localisation as it optimises the gain; however this is not 
observed. Results show that OSTC(SG;C) performs equally 
as well as OVTC(SG;G) and in many cases better than it. 
This is because a localisation of the covariance can apply 
localisation more directly in all places throughout the gain. 
Specifically, it addresses the sampling error in the inverse 
matrix of the gain (in the single observation case to the 
variances) which cannot be addressed when applying 
localisation directly to the gain. In the strong assimilation 
cases, optimal localisation of the gain behaves similarly to 
optimal localisation of the correlation meaning OVTC(C;C) 
can have the advantage in addressing the sampling error 
in the variance in the denominator of the gain and is the 
best performing localisation for Scenario 1. However, 
for equal and weak assimilation the OVTC(SG;C) has the 
advantage over OSTC(C;C) because the correlations in 
the sampling error in the gain mean that the optimal 
covariance localisation does not approximate optimising 
the gain and applying the optimal gain localisation to the 
covariance applies localisation in the numerator of the 
gain that addresses these correlations whilst still applying 
some damping to the sampling error in the variance in 
the denominator of the gain. In Scenario 1 the Gaussian 
outperforms OVTC(SG;G). This cannot be explained by 
variance localisation in the denominator as the Gaussian 
applies a localisation factor of 1 to the variances. It has 
been shown that the sparse gain is biased towards zero, 
which can explain why OVTC is slightly sub-optimal and 
the Gaussian is able to perform better than it. OVTC(SG;G) 

performs similarly to the best tuned Gaussian in all cases 
and is most significantly outperformed by the Gaussian 
in the equal assimilation case where the bias in the gain 
is greatest. The success of the Gaussian shows it is an 
appropriate tuneable shape for this Scenario.

For assimilating a single observation, HOVTC(SG;G), 
which is expected to be optimal, is the best performing 
localisation in every experiment (even in the cases where 
there is a known bias in the gain). HOVTC(C;C) produces 
lower analysis errors than HOVTC(SG;C). This is, in part, due 
to the effectiveness of hybridizing the covariance which 
enables the true covariance to be better represented 
across the whole domain. The difference between 
HOVTC(SG;G) and HOVTC(SG;C) is also more significant 
than for traditionally applied localisations. They are 
still approximately equivalent if the sampling error in 
the variance is negligible, however, the construction 
of the hybrid localisation means that the mean gain is 
no longer part of the signal. Therefore, there is a finer 
balance between the noise and signal and the sampling 
error in the variance has a greater impact on the overall 
hybrid localisation factor and behaviour. HTDG performs 
better than the traditionally applied localisations and 
similarly to, but not better than, the HOVTC localisations 
in the single observation case.

Overall, in the single observation cases, the 
climatologically aware traditionally applied OVTC 
localisations perform similarly to the Gaussian. They 
do not perform reliably better because the sparse 
gain has been shown to be biased causing OVTC to be 
suboptimal. Also localising the sparse gain directly can 
be less desirable than localising the sampling error 
at source in the covariance. The HOVTC outperforms 
all the traditionally applied localisations. This shows 
that applying a hybrid localisation can improve upon 
traditionally applied localisations that damps the sample 
gain/covariance matrix towards zero.

Multiple Observation Experiments
For experiments with multiple observations assimilated, 
the computed localisations are not optimal and 
sometimes produce extreme analysis errors greater than 
the background errors. Where the effective observation 
density is low enough, they can still produce good results. 
For traditionally applied, computed localisations, with 
low or intermediate effective observation density, it is 
common for (SG;G) application types to be outperformed 
by both the (C;C) and (SG;C) application. This is because 
applying a localisation to the covariance is desirable for 
multiple observation cases as more terms with sampling 
error occur in the inverse matrix of the gain and benefit 
from being localised directly. It is also common for the 
covariance (C;C) application types to be outperformed by 
(SG;C). This is because in (SG;C), the sparse gain localisation 
is applied to the covariance in the inverse matrix of the 
gain, so the sampling error that occurs there is damped. 
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Meanwhile, it can also address properties that arise from 
the behaviour of the sampling error correlations in the 
gain due to its application in the numerator of the gain. 
For a high enough effective observation density, all the 
computed localisations are sub-optimal and may break 
down producing extreme results.

The traditionally applied optimal covariance 
localisation OVTC(C;C) breaks down and produces extreme 
analysis errors for the highest effective observation 
density case in Scenario 2, (strong assimilation, spacing 
9). This is important, because it is an example of the 
possible pitfalls of the commonly attempted approach 
of finding a localisation that optimises the covariance 
directly. Specifically, it shows that optimising the 
covariance (C;C) can be highly different to optimising the 
gain or analysis state.

The behaviour of the application types of HOVTC 
for multiple observations is different. For intermediate 
effective observation density, HOVTC(C;C) tends to 
outperform HOVTC(SG;C) and HOVTC(SG;G) (which was 
not observed for OVTC). The success of HOVTC(C;C) implies 
that the hybridised localisation of the covariance enables 
a significant improvement in the accurate representation 
of the true covariance which leads to a more accurate 
gain. The (SG;C) form performs less well, because the finer 
balance between the signal and noise in HOVTC, means 
that the sampling error in the variances play a more 
significant role in determining the localisation factor. 
This means that the difference between the optimal 
localisation of the covariance and of the gain is larger in 
a hybrid localisation compared with a traditional one and 
the penalty for applying the localisation differently from 
how it is derived is greater. For high enough effective 
observation density, all the computed localisations can 
break down.

The variability of the climatology, and whether the 
localisation is hybrid or traditionally applied, impacts on 
the ability of the localisation to represent the truth and 
hence the performance of the computed localisations. 
The small amount of variability in Scenario 2 means 
that OSTC and OVTC are very similar. In this case, the 
assumption of OSTC that the true covariance is static 
is a reasonable approximation. However, for Gaussian 
Scenario 1, with more variability in the Regime, OVTC has 
a significant advantage over OSTC. In Scenario 1, HOVTC 
localisations break down for the highest density cases 
but they do not in Scenario 2 where the mean covariance 
is closer to the true covariances and not adjusted much 
by the ensemble.

In almost every case considered, for single and 
multiple observation cases, the best performing 
localisation was a hybrid localisation (either HOVTC or 
HTDG). This shows the effectiveness of the proposed 
hybrid form of localisation. Its advantage is in separating 
out the mean gain/covariance which enables the finer 
balance between the signal, due to the climatological 

variability about the mean gain/covariance, and the noise 
to be addressed. The traditionally applied localisations 
can only damp the noise at the expense of damping the 
mean gain/covariance. The Gaussian outperforms all 
hybrid localisations in one case: the strong assimilation 
case with the highest observation density (observation 
spacing 9) in Scenario 1. This is because, for high 
observation density, overdamping the intermediate 
correlations is rewarded as making the best use of local 
information outweighs the benefits of preserving the 
mean.

The HTDG results show analysis errors closer to the 
HOVTC for single observations than any of the traditionally 
applied localisations. For denser observations, HTDG 
was retuned and was able to adapt to denser regimes 
and be the best performing localisation where HOVTC 
breaks down. This is therefore an example of developing 
an effective tuneable hybrid localisation inspired by the 
form of the optimal localisation for a single observation.

5 DISCUSSION

This paper has assessed the performance of optimally 
derived localisations to address the sampling error in 
the EnKF when performing DA for a model based on 
Gaussian shaped covariances. It addresses two related 
goals. First, to investigate what the optimal localisation 
is and what affects it. This was demonstrated through 
the single observation case, where the Kalman gain was 
simple enough for an optimal gain localisation to be 
derived. The second goal was to advance insight into the 
dense observation cases and propose how knowledge 
about optimal localisation in the sparse case, may be 
used to inform better localisation methods for the dense 
case without knowing the full optimal solution.

A number of aspects of the DA have been shown to 
be important in determining the optimal localisation. 
These include the localisation application (applied 
to the covariance or gain) and type (traditional or 
hybrid damping), the Scenario including the variability 
of its climatology, the assimilation strength and the 
observation density.

Three localisation application types (SG;G), (C;C) and 
(SG;C) were explored. It is desirable to optimise the 
analysis state, however that is complex. It is therefore 
more common to directly optimise the covariance, (C;C). 
One novel aspect of this paper is that it has attempted 
to optimise the analysis state via optimising the direct 
localisation of the Kalman gain in the sparse (single) 
observation case, (SG;G). Here, it should be noted 
that direct localisation of the gain does not apply any 
localisation directly to the sampling error in the inverse 
matrix of the gain which does occur when applied to the 
covariance. It was seen that in the intermediate density 
cases, (SG;C) which applies the localisation derived for the 
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sparse gain to the covariances, performed better than 
(C;C). (SG:C) has properties of a sparse gain localisation 
but also applies some damping in the inverse matrix of 
the gain. This emphasises that it would be most desirable 
to optimize the full Kalman gain with localisation applied 
to the covariance, however, the complexity of that 
problem is a significant deterrent. An optimal localisation 
of the full Kalman gain would have to take into account 
the behaviour of the cross correlations occurring in the 
inverse matrix of the gain. It’s possible that applying a 
different localisation in the PHT and the inverse matrix, 

1( )fHP H R −+ , of the gain could also be beneficial as the 
roles played by the covariance in each are different. A 
possible future first step to investigate such a scheme 
would be to attempt to optimize the sparse gain with 2 
localisation factors: one multiplying just the covariances 
in the denominator of the gain and one multiplying the 
whole gain.

A second choice made when designing a localisation 
scheme is the type of the localisation damping scheme. 
Traditionally, the sample covariance is damped towards 
zero, however, in this paper hybrid localisations which 
damp the covariance or gain towards its mean were 
explored. It was expected that these hybrid forms would 
be an improvement as more of the true form of the 
covariance/gain is preserved. In particular, the mean 
covariance/gain is unaffected by the hybrid localisation 
whereas in traditional forms of localisation it is 
systematically damped towards zero. HOVTC localisation 
was found to outperform the traditionally applied forms 
in all the single observation cases.

The shape of the optimal localisations produced is 
dependent on the statistics of the Scenario, thus different 
Scenarios have very different properties and optimal 
localisation shapes. The 2 Scenarios considered here 
exhibit different amounts of variability in the climatology. 
This was seen to affect the relative performance of 
different localisation types. The smaller the variability 
about the mean, the better HOVTC performs. The HOVTC 
localisation was able to address the zero variability in the 
variances that is a feature of the Gaussian model, which 
traditionally applied localisations were not able to do. 
Different Scenarios with variability in the variances would 
produce different optimal localisation forms. Future 
work exploring the forms of optimal localisation in more 
realistic Scenarios would be desirable.

Results for a single observation, showed that the 
traditional forms of optimal localisation (OSTC, OVTC) 
perform similarly to the Gaussian. However, they are 
not truly optimal as there is a non-negligible bias in the 
gain. Future work attempting to optimise the gain should 
not ignore the bias in the gain. In terms of assimilation 
strength, it was found for weak assimilation, the optimal 
sparse gain localisation has a similar form to the optimal 
correlation localisation; for strong assimilation it has 
a similar form to the optimal covariance localisation 

and for equal assimilation, its form lies somewhere in 
between. This shows that previous approaches that have 
been developed to optimize the correlation (Flowerdew 
2015) or the covariance (Ménétrier et al. 2015a) are 
approximately optimal in certain limits. For multiple 
observations, more correlation and variance terms 
appear in the Kalman gain. This implies more complex 
correlations between the sampling error in the gain and 
so for dense enough observations the optimal localisation 
for the gain in the strong and weak assimilation limits will 
also become more complex. In general, this paper has 
highlighted the significant difference between optimising 
the correlation or covariance and optimising the DA.

Optimal localisations that optimise the analysis 
were not found for multiple observation cases. The 
findings from this paper suggest that the way in which 
the sampling error in the inverse matrix of the gain 
is addressed is important. The benefits of applying 
localisation in the inverse matrix of the gain and the 
impacts of the assimilation strength on the optimum 
localisation were expected to be exaggerated in the 
multiple observation case where more terms with 
sampling error appear in the inverse matrix of the 
gain. Experiments were conducted which applied the 
computed localisation for sparse observations to denser 
cases to test their applicability beyond the optimal 
limit. It was found that if the observation density was 
increased, the computed localisations continued to 
perform well. They were outperformed by the Gaussian 
which was retuned for each change in density. At high 
enough density, the computed localisations break 
down producing large analysis errors. HOVTC reliably 
outperforms the Gaussian for sparse observations but 
also breaks down for sufficiently dense observations.

The form of the HTDG, with two peaks either side of a 
zero at zero distance, was developed based on the HOVTC 
form and is specific to the Gaussian Scenario which has 
zero variability of the variance, in the climatology. For 
different Scenarios, new tuned hybrid forms could be 
developed based on the shape of HOVTC in that Scenario. 
Further research into the form of the optimal localisations 
and the idea of developing tuned hybrid localisations in 
other Scenarios would therefore be valuable as different 
and more realistic Scenarios may imply very different 
optimal localisation shapes. Another consideration when 
developing new tuned shapes is the computational cost 
of tuning. The HTDG shown here has two parameters 
which need tuning simultaneously, making it more 
expensive to tune than the Gaussian with only one 
parameter. Specifically, in each suite of experiments, 29 
sets of parameters were tested in the tuning of HTDG 
compared with just six for the Gaussian.

The two localisations with a hybrid form used in this 
paper were shown to be very successful. Either HOVTC 
or HTDG performed the best out of all the localisations 
in every experiment conducted except for Scenario 1 
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with observation variance 0.1 and observation density 
9. This suggests a mean preserving hybrid localisation 
may be an improvement to a DA system so long as the 
observations are not too dense. It suggests the HTDG 
developed was an effective tuneable form that captured 
some useful features of the HOVTC in the sparse 
observation case and allowed it to adapt to denser 
cases. Future work could look at how a mean preserving 
ensemble covariance localisation could be implemented 
in variational methods.

It is possible, that for very high effective observation 
density, there is some advantage to the traditionally 
applied localisations ability to damp towards zero. A 
fuller understanding of optimising the gain in the dense 
scenarios is desirable. Future work aimed at addressing 
the effect of dense observations, could consider 
extending the theory to find optimal localisations 
for uniform density cases similar to that done for 
observation space localisation by Perianez et al. (2014). 
In traditionally applied Gaussian type localisations, 
very distant observations do not update a point, which 
could be advantageous where many observations are 
taken. This is also an important feature of many DA 
implementations which rely on the zero correlation 
between distant points to enable observations to be 
assimilated sequentially in batches.

One aspect of the model used in this paper is that it 
considered single variable states. Real NWP models model 
multiple variables that may be correlated and sometimes 
imply a balance between variables. Flowerdew (2015) 
suggested that the hybrid localisation would be more 
beneficial for cases with multiple correlated variables 
representing (approximately) balanced states as the 
mean covariance will not be affected by the localisation 
as is the case in traditional localisation. Hybrid localisation 
is therefore expected to introduce less imbalance into 
the states. Identifying a form for hybrid localisations, 
that produces comparable analysis error results to 
traditional methods is therefore desirable. This paper has 
shown how that may be achieved. Another aspect of the 
model used in this paper is that it explores Scenarios with 
zero climatology in the variance. This allows the hybrid 
to separate the signal and completely damp the noise 
at zero distance illustrating its benefits, however, it is not 
representative of real systems. Future work, will consider 
more complex Scenarios which include balance between 
variables and a climatology in the variance. This work 
may be the first step towards developing localisations 
which produce similar or improved analysis error results 
to traditional methods whilst introducing less imbalance 
into the states in numerical weather prediction data 
assimilation procedures.

This research is a fundamental step towards 
developing optimal localisation methods in the long 
term. It has shown that optimising the analysis is 

significantly different from the commonly attempted 
method of optimising the covariance. It has been shown 
that the optimal localisation depends on the application 
type and form of the localisation, the Scenario and 
the observation configuration. Localisation methods 
with a hybrid form (in which the covariance is damped 
towards a mean covariance and not towards zero) 
have been shown to produce improved RMS analysis 
error results when compared to traditional methods 
in the Rregimes considered in the paper. This indicates 
improvements to localisation could be made by using 
a hybrid form of localisation. This research has also 
provided an example of how the optimal localisation 
theory can be used to aid developing better tuneable 
localisation methods in the short term. A new tuneable 
hybrid form was developed based on the form of HOVTC 
and was shown to be effective for dense cases where 
HOVTC breaks down.

NOTES
1 The hybrid localisations in this paper are not the same as the 

hybrid data assimilation of Lorenc (2003) and Clayton et al. 
(2013) which combine the standard climatological covariance 
with a traditionally localised ensemble covariance. In those 
systems, the localization widths and blending weights are 
tuned as separate global parameters, whereas in HOVTC they 
are unified into a single mixing weight which varies spatially 
depending on the contents of the ensemble and climatological 
covariances.

2 Damping towards the mean multiple observation gain 
may perform better as the full properties would be better 
represented, however, computing the mean gain for every 
observation would be computationally expensive. Instead, a 
single computation of the sparse gain is used.

3 The background ensemble and truth state are drawn from the 
same distribution which has variance 1.0. The error variance 
of the true mean of the background ensemble is thus 1.0. The 
sample mean has an additional variance 1.0/N, where N = 10 
is the ensemble size. Thus, the error variance of the sample 
background ensemble mean is 1.0*(N+1)/N, causing an RMSE 
of 2 ( 1)/N N+ ~1.049. The remaining small discrepancy between 
the computed background error of 1.046 and expected 1.049, 
is presumed to be due to imperfections in the system, random 
number generator, etc.
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