
THE OCEANIC THERMOCLINE 

Authors’ Foreword to the Two Following Papers on the Ocennii Thermocline 

Each of the two following papers attempts to provide a theor-tical framework for 
explaining the oceanic thermocline, and the associated thermohaline circulation of the 
ocean. They were developed independently, and then the authors exchanged copies of 
their papers. As they stand, the two theories are not compatible; but the results of each 
are similar in certain respects, and apparently resemble the actual ocean insofar as we 
actually know it. Becauje of the basic differences in the two theories we have decided 
not to try to combine them into a single paper, but to publish them together in the 
same number of this journal, so that they should both appear in the literature simultane- 
ously, and so that the marked contrasts in the basic formulation should be immediately 
evident to the reader. 

Allm Robinsofi, Henry Stommel, Pierre Welander 

The Oceanic Thermocline 
and the Associated Thermohaline Circulation’ 
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(Manuscript received November 1s. 1958) 

Abstract 
A study is made of the thermal structure of an ocean which is dynamically geostrophic, 

bounded by an eastern coast, and driven by an imposed surface temperature distribution 
and wind-stress. The heat equation contains vertical diffusion in the form of a virtual 
eddy mixing parameter and non-linear terms of vertical and north-south advection. Com- 
parison of the results with the North Atlantic shows an agreement with the observed 
temperature distribution in the thermocline region, including the deepening of isotherms 
in mid-latitudes. The value of the vertical component of velocity at the bottom of the 
thermocline is predicted, and a numerical value for the eddy-conductivity obtained. 

I. Introduction 

Ninety years ago the question of whether 
the wind-stresses or thermally produced differ- 
ences of density are the predominant cause 
of oceanic circulation was a subject of public 
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debate.3 Since that time, t h s  central issue 
of physical oceanography has been treated 
with more caution, and is only indirectly 
alluded to in present-day textbooks. That the 

The exchange of letters in NATURE during the 
1870’s between W. B. Carpenter and James Croll shows 
how futile simple verbal arguments can be in discussing 
such issues. The reader with a morbid interest in fallacious 
verbal theories may find it entertaining to look over the 
work of the English eccentric William Leighton Jordan, 
“The Ocean, its tides and currents and their causes”, 
Longman’s Green and Co., London, 1873. 
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vertical integral of mass transport of the ocean 
can probably be attributed to the wind-stress 
acting upon the surface was established by 
SVERDRUP in 1947. This important concept, and 
its further elaboration in the hands of MUNK 
( I ~ s o ) ,  HIDAKA ( I ~ s o ) ,  and others, aredescribed 
in a survey article by STOMMEL (1957). Compu- 
tation of a vertical integral, however, gives no 
idea of the distribution of a property in the 
vertical, whereas the geostro hic calculation of 

data gives only the vertical distribution of 
the velocity vector, but not its integral. More- 
over, the vertical integration completely cancels 
the contribution of the thermohaline circula- 
tion. Consequently, there was a tendency, 
starting in 1950, to minimize the possible role 
of the thermohaline circulation. 

The first attempts to formulate a model 
containing an active thermal-convective proc- 
ess were 
(I) an important Russian paper by P. S. LINEY- 

(2) an unpublished doctoral dissertation by 

(3) chapter XI in a book on the Gulf Stream, 
written in 1954-5 by STOMMEL (published 
in 1958). 

Studies ( I )  and (2) had no meridional boundary 
-the key feature of the Sverdrup wind-driven 
model-and so were not directly applicable to 
actual oceanic basins. Study (3) treated only 
the horizontal patterns of flow that would 
ensue in a meridionally bounded basin on 
the assumption of a fixed vertical mass flux at 
mid-depth, and I d  not treat the important 
vertical heat flux portion of the problem. 

Later, VERONIS and STOMMEL (1957) and 
LINEYKIN (1957) were able to modify study ( I )  
so that the important influence of the variation 
of the Coriolis parameter with latitude could 
be incorporated; and obtained expressions for 
the depth of the thermocline which seemed 
more related to reality. On  the basis of these 
models STOMMEL (1958) indicated how they 
might be applied to give a rather detailed 

icture of the patterns of flow in the thermo- 
!,line circulation of the world-ocean. Never- 
theless, as explained in the survey article (STOM- 
MEL, 1957) neither of these models imitates 
the actual oceanic density distribution very 
closely; hence it was desirable to construct a 
theoretical model of the oceanic thermohaline 

currents from observed hy B rographic station 

KIN (195s) 

FOFONOFF (1954) 

circulation with an eastern wall to inhibit zonal 
flow, driven by a meridional temperature 
gradient fixed at the surface, and without 
using the totally unrealistic large vertical 
temperature gradient imposed by both LINEY- 
KIN and VERONIS and STOMMEL on the models 
mentioned above for the sake of lineariza- 
tion of the convection equation. 

The present paper is an attempt to construct 
such a model, and we believe it is a substantial 
improvement upon previous studies. However, 
it contains-as they also do-a parametric 
treatment of the mixing processes embodied 
in an “eddy thermometric conductivity” aram- 
eter x.  This parameter is assumed to I! e uni- 
form and constant over the entire ocean basin 
-in contradistinction to other studies which 
attribute the oceanic thermocline essentially to 
variations in x (for exam le, DEFANT, 1936; 
MUNK and ANDERSEN, 19487. Thus we envisage 
the ocean as being slowly and evenly stirred 
by some physical process which we cannot 
specify, and the necessity for so doing is a 
measure of how far short we are of actually 
being able at present of giving a complete 
physical account of the thermal convective 
circulation of the ocean. 

2. Formulation 

We consider an ocean thermally driven by 
an imposed north-south temperature distri- 
bution on the surface. The constraint of rotation 
is represented by a Coriolis parameter varying 
linearly with latitude. The ocean is taken to 
be infinitely deep and bounded only by an 
east coast. We  inquire into the non-linearly 
coupled temperature and velocity fields in 
the steady state. 

Let (x, y,  z )  re resent the east-west, north- 
south, and vertica res ectively, with (u, v ,  w )  

origin is fixed in the east coast at mid-latitudes. 
The region of interest is x < 0, y1 < y < yz, 
z -: 0. The fluid system to be considered is 
defined explicitly by the following assump 
tions. 

The equation of state of the fluid varies 
linearly with temperature only. Furthermore, 
the coefficient of thermal expansion, a, is con- 
sidered zero except when coupled with g, 
the acceleration of gravity. In the equations of 
motion we neglect all viscous and inertial 

the corresponding f f  ve ocity components. The 

Tellur XI (1939). 3 
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terms, balancing by the ressure gradient the 
gravitational force in t K e vertical and the 
Coriolis accelerations in the horizontal. In 
summary we use purely geostrophic dynamics 
together with the Boussinesq approximation. 
The equations of motion and of mass con- 
tinuity take the form 

g(eo)(I - a T ) + - = o  aP 
az ( 3 )  

(4) 
au av aw 
a x  ay az 
- + - + - = o  

where f = f o  + By, the Coriolis parameter, Q 

is the mean density, p the pressure, and T 
the temperature. 

In the heat equation we assume a balance 
between diffusion in the vertical by a constant 
eddy-conductivity x ,  and vertical and north- 
south advections, 

The choice of x will be discussed later. The 

negiect of u - can be justified only in terms 

of boundary conditions and anticipated results. 
The z boundary conditions on the temperature 
will be to specify T as a function of y only at 
z = 0, and to require that T approach a constant, 
zero, asymptotically a s z  -+ - 00. The horizontal 
velocities, both of the same order of magnitude, 
will be largest at the surface and go to zero 
asymptotically. Thus, near the surface, u, v ,  and 

T have their largest values while - IS speci- aY d X  

aT 
ax 

a T .  

2T fied as zero. Clearly v - will dominate over 

u-. The inclusion of a western boundary 
2Y 

JT 
ax 

would, of course, change the above considera- 
tions locally. 
T e l h  XI (1959). 3 

The fields of primary interest are T and w ;  
two equations in these alone can be obtained. 
B cross-differentiation of (I)  and (2) and use 
o f? (4), we obtain 

J W  

az 
@ V - f - = O  

Cross-differentiation of (I)  and (3) yields 

a V  2T 
az ax 

f - - q  - = o  (7) 

Inserting v from (6) into (5) and (7) yields 
the desired equations, 

(9) 

The boundary conditions imposed at z = o 
are T =  To + TI y, and w =o; asr - t -m,  T-to, 
and w remains finite, i.e. w -+ wu, (x, y). The 
boundary condition at x = o  is taken, for 
mathematical convenience, as T = 0. This 
assures no flow through the plane x = 0, but 
is otherwise physically unrealistic. However, 
in no real fluid or ocean would the above 
equations describe the region near such a 
boundary; therefore our detailed results very 
near the coast will not be valid. Anticipat- 
ing carrying the y-dependence garametrically , 
we reserve discussion of this oundary con- 
dition. 

3. The Similarity Transformation 

T and w are specified at z = o  and ap- 
proach arbitrarily close to their asymptotic 
values along some curve z = f ( x ) .  In related 
problems it is often found that at a given xo 
the approach of the fields to their asym - 

actual depth to the value f ( x o ) ,  of the curve 
at this point (GOLDSTEIN, 1938). The formal 
analogy to these boundary layer problems 
occurs because only vertical mixing is allowed, 
so that only higher order derivatives with 
respect to x are present. Formally, we seek 
separated solutions of the form T= G(x)6(5), 
w = H ( x ) o ( l ) ,  where 5 = z F ( x ) ,  and all func- 

totic values depends only on the ratio o f t  R e 
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tions are tacitly functions of y. This transfor- 
mation is also convenient for satisfying the z 
boundary conditions, e.g., at x = 0, 5 = o and 
T becomes a function of x. In the following a 
prime denotes differentiation with res ect to [, 
and a subscript y, differentiation wit1 respect 
to y. 

Taking x and z derivatives in terms of x 
and 6, and inserting these in (8) and (9), we 
obtain 

HF2co"- (y!)  [C'~+---&Y' F = O  (11) 
GF' 1 

The condition for separability of (10) in x and [ 
is merely that H be a constant times F ;  this 
constant can be absorbed into cu, so we require 
F =  H. For equation (11) to separate all three 
terms must have the same x-dependence. The 
second and third terms require that G'/G be 
a constant times F'/F, or that G be an arbi- 
trary power of F. The first and second terms 
then require that F be some power of x+c 
where c is a constant. 

In summary, under the general transforma- 
tion 

E =  Z ( X +  c ) ~ ,  T= (X + ~)~~+16(5) ,  
w =  (x+c)"(E) 

(8) and (9) take the form 

x6"-w#'-  - 0'6,=0 (12) (9 
The constants k and c are determined by the 
particular boundary conditions. To make 
the surface temperature independent of x, 
we choose k =  -4. The choice of c=o gives 
t=zx-'ls; t +m for both z - f -m  and x+o, 
and the east coast temperature will automati- 
cally correspond to the bottom temperature. 

4. Order of Magnitude Considerations 

Equations (12) and (13) are still too compli- 
cated to be solved exactly. However, from 

them we can determine certain gross properties 
of the temperature and velocity fields : their 
general structure, the asymptotic value of w, 
and the scale of 5 within which all asymptotic 
values are essentially obtained. Moreover, it 
would not be much more meaningful to 
have the details of the exact solutions because 
the mathematical model which we are using is 
itself not detailed, and also because the results 
are to be compared with the averaged observa- 
tions of the real ocean. 

In seeking unknown orders of magnitude, 
it is convenient to introduce known magni- 
tudes in terms of slightly _. . different parameters. 

Let r j  = 108y, y (y )  =j.@ 110-8, andE(y) = - . 
B 3 t 2 f Y )  ." .-, 

r j  and y are of order unity while E is of order 
I O - ~ .  We expect x also to be order unity. To 
determine how E affects the amplitude of cu 
and scale of 5 we write [= E ~ S  and W=e-b,. 
We assume that the scale of c and am litude of 
W are of order unity, and further t K at 6 and 
W are smooth functions of [, i.e. the functions 
and all their derivatives are also of order unity. 

Under these assumptions, (12) and (13) 
become, with a prime now denoting differ- 
entiation with respect to c 

Emxf)" - & a t  b w6' - Ea+ b yW'6,=0 (14) 

E2a+b W" + EC6' = 0 

Requiring that the dynamical equation (IS) 
always retain both terms gives 24+  b = ~ .  In 
the heat equation (14), we notice that both 
advections are necessarily the same order of 
magnitude. Insisting that vertical eddy-diffusion 

be comparable to the advections yields a = b = -. 
3 

The parameter E now disappears from (14) 
and (Is), which now contain only terms of 
roughly unit magnitude. From the similarity 
transformation we have obtained the depend- 
ence of the asymptotic value of w and the 
scale depth on x, from the above considera- 
tions the order of magnitude and major part 
of the y dependence of these quantities. 

(1 5) 

I 

5. Parametric Linearization and Solution 

The mathematical difficulties remaining are 
inherent in the two nonlinear terms of (14). 
To obtain approximate results, we shall replace 

Tellur XI (1959). 3 
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tedious to calculate p from the exact solutions. 
At t h i s  point, with the howled e of the exact 

of the detailed form of the solutions W and 6, 
we again proceed a proximately. 

The quantities o P primary interest are the 
depth L and the value of W,. To find these 
roperties of the solutions, we shall use forms 

!or Wand 8 which exactly satisfy the bound 
conditions and exactly satisfy the first integr s 
of the differential equations, i.e. have the exact 
average properties. Most simply, we take 

T H E R M O C L I N E  

solutions, and with the lack o H real meaning 

7 

these actual terms by linear terms, a technique 
which has found frequent use in convection 

roblems (LEWIS and CARRIER, 1949). In the 
Lst term of (14) we allow for convection 
with an average temperature gradient instead 
of the actual 6,. In the next to the last term 
we allow for convection by an average ver- 
tical velocity instead of the actual W. The 
averages are not to be taken over the full range 
of 5, but only from the surface to a depth L at 
which asymptotic values are obtained arbitra- 
rily closely. For convenience we define L 
explicitly as the de th at which the fields have 
ap roached to w i t k  e-2 of their asymptotic 

oint the difficulty arises that the 

However, we do know that 8, ranges from Tl 
at the surface to essentially zero at the depth L. 
We therefore crudely take Tl/z as the average 
8,, although the true average will vary in y 
with the shape of 6. However, we have abso- 
lutelv no information about W. Therefore. 

va P ues. 

average va P ues of 8, and W are unknown. 
At this 

a -iC 
6 =  6,e 

we shall allow the unknown average value of 
W to enter the equations and parameterize 
the solutions. Then, consistently taking the 
average of the parameterized solution actually 
obtained will yield an algebraic equation in 
the average W. Finally, the solution of the 
algebraic equations, in terms of the external 

arameters, is inserted back into the solutions 
o r6  and W. 

Replacing (14) and rewriting (IS), the final 
s 
linear set of equations is 

TI x6" - p6' - y - W'= o (16) 2 

W" + CS'= 0 (17) 
where 

A defining equation for L in terms of p and 
the external parameters will be immediately 
available from the solutions of (16) and (17). 

Exact solutions of (16) and (17) for 6 and 
W have been found. These solutions consist 
of exponentials times Airy functions of purely 
complex argument, containing p in an involved 
manner. The solution 6 and W have the 
desired properties, i.e. they can satisfy all the 
boundary conditions. It would be possible but 
Tellur XI (1959). 3 

3-904639 

Multiplying (16) and (17) by dC, integrating 
from zero to infinity, 

YTl -x6'(0)+p6,-- 2 Woo=o (21) 

In (21) and (22) the derivatives and integral 
can be substituted from the forms (19) and 

W, 
(20). From (20) we also have simply v =  -. 

Solving the algebraic equations, we obtain 
2 

which is independent of y, and 

The above results could of course be improved 
by taking higher moments of eq. (16) and 
(17) and introducing addtional constants in- 
to the forms (19) and (20). 

The approximate forms for the temperature 
and vertical velocity are 
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6. Finite depth 

It is apparent that in mid-latitudes the ther- 
mocline is so shallow that it occupies only a 
small fraction of the actual ocean depth, and 
that the assumption of infinite depth is justified 
in making the calculations of 6 and W in 
the thermocline region itself. James Crease 
showed us in private correspondence concern- 
ing an earlier form of the thermocline model 
that this was likely to be the case. But the real 
ocean in fact has a bottom, and if this bottom 
were flat the vertical component of velocity 
W must vanish there. Thus we regard the 
quantity W, as being a measure of the vertical 
velocity just beneath the thermocline (that 
is, at infinity so far as the thermal boundary 
layer is concerned). The form of the similarity 
transformation does not permit us to fix the 
bottom at z =constant; instead, it is necessary 
to put the bottom at 5 = [ b  where &, > L, a 
very mild compromise. Evidently we can 
still use the form of solution for temperature 
given by equation (19) and need modify 
equation (20) only as follows 

where the quantities e-icb are so small at c = c b  

that they are truly negligible (-,-lo) and we 
can assert that these solutions very closely 
satisfy the boundary conditions W= 0,6 = o at 
the bottom 5 = ( b .  In the region of the thermo- 
cline the quantity I -T/&, is so nearly unity 
that the formal results given in equations (21) 
and (22) and (23) are not changed except that 

in (21) the t e r m A W ,  will vanish alto- 

gether unless we restrict this approximate 
form of 9q, T1/2 to depths shallower than 5 = L, 
and set it equal to zero for 5: L. This is quite 
reasonable to do under the circumstances. Thus 
the computation of L and Q, is not affected by 
the presence of a bottom at a depth of several 
times the depth of the thermocline and the 
temperature field is essentially unaffected 

- 
2 

throughout the ocean. The only modification 
of the vertical distribution of the vertical com- 
ponent of velocity W is that instead of a p  
proaching a constant as r p t o t i c  value W, at 
great depths it ap roac es a maximum value 
just beneath the t K ermocline, which we find 
convenient to call W, nevertheless because 
this is still infinite depth so far as the ther- 
mocline depth is concerned, and then varies 
linearly from this maximum just under the 
thermocline to zero at the bottom. However, 
so far as horizontal components of velocity 
below the thermocline are concerned, the 
presence of a finite depth has a major effect: 
it ives them a finite amplitude (in the case of 

mocline). They are calculated from equation 
(6) the terms of which no longer tend to zero 
under the thermocline. 

The depth of no meridional motion is at 
the depth at which v = o or at W'= 0, hence at 

in s mite depth they vanish beneath the ther- 

L -  2cb (=- In -. Since throughout most of the 2 L  
oceans in mid-latitudes 25b/L 2 5 ,  the depth of 
no meridional motion (or reference level for 
"dynamic calculations") is L L, or 
distinctly at the bottom of the thermoc me 
In the absence of wind-stress at the surface, W 
must vanish at both top and bottom of the 
ocean, so that the vertically integrated value 
of v, by equation (6) must vanish. This is 
consistent with Sverdrup's earlier wind-driven 
model. The thermohaline circulation is entirely 
an internal mode and does not contribute to 
vertical integrals of horizontal velocity com- 
ponents-but it is important in trying to 
understand the oceanic circulation just the 
same. 

7. Inclusion of wind-stress 

The dynamical equations (I) and (2) are 
non-viscous. For the wind stress to work upon 
the ocean it is necessary to allow viscosity 
to play a role somewhere, and this has generally 
been done by a boundary-layer analysis of the 
form of Ekman. Experience suggests that the 
Ekman viscous boundary layer is confined to 
an upper one hundred meters in the ocean. 
At any point in the ocean the total vertically 
integrated mass transport in the Ekman layer 
is to the right (in Northern hemisphere) of the 
direction of the applied wind-stress, t, and of 

Tellur XI (19J9). 3 
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magnitude z$ Since both t andfvary as func- 
tions of position over the ocean, the mass 
transport of the Ekman layer also varies from 
place to place. If we form the horizontal 
divergence of the Ekman layer, we find that 
this im lies by equation (4) a vertical compo- 

layer of an amount 
nent o P velocity at the bottom of the Ekman 

In regions of dwergence of the Ekman layer, 
this vertical velocity is directed upward, and 
we need merely adopt this value instead of 
the value W=o in forming the function given 
in equation (20). In regions where the vertical 
component of velocity beneath the Ekman 
layer is downward-as in the centers of the 
mid-latitude oceanic current gyres-the ver- 
tical velocity actually must pass through zero 
as a function of de th before it reaches the 

thermocline. Since, in forming the parameter 
v we take a vertical average of W it would be 
inappropriate to try to treat this case by 
proceeding as before. 

Case I :  we < 0, We > o (the Ekman layer is 
divergent; x is positive upward, is positive 
downward). The forms of the solution (19) 
and (20) are rewritten as follows 

upward directed v a f  ue W, just beneath the 

The two cases are treated separately: 

At ( = o ,  W = W W ( ~ - a ) = W ,  ( 2 8 )  

hence a < I. The definition of a, is now 

L 

The first integrals are now of the form 

- X S ' ( 0 )  + q76, + 7 Y Tl (We- W,)= 0 (21") 

W 

W' (0) + f 6dT = o (22") 
0 

and with the indicated substitutions the fol- 
lowing relations obtain 

YTl ( 3  2 

2% --6,+w, L I - -  6 , + - ( W e - W , ) = 0  

zaW, L 
L 2  

+-6,=o 

The definition of a is given by (28). 
In these equations x ,  I, T,, We, tY0 are 

regarded as known, the quantities a, L, W, 
are to be found. In this case the value of L is 
given by the cubic 

L S  - (6, - yT,) - LW, = 2% 8 (23') 

instead of the simple cube root (23). Once 
having obtained this we find 

L2 60 W , = W e - -  
4 (24") 

Case 2: w,<o, W,>o(theEkmanlayer isconverg- 
ent). Here there is a reversal of the vertical 
component of velocity, W, with depth, and 
therefore we must divide the ocean into two 
layers: one from 5 = o where W= We to 5 = h 
where W= o ; and the other from 5 = h to 5 = 00 
where W= W, which we treat exactly as be- 
fore. For our purposes, if we define the un- 
known temperature at h as 6, we can write 
the temperature and vertical velocity in the 
lower layer as: 

The quantity h is also unknown, of course, 
however, we can write the quantities L and 
W, in terms of 6, by equations (23) and (24). 
The only change here i s  that we can probably 
drop the advective term y T,  in the expression 
for L, because we wdl incorporate the merid- 
ional advection mostly in the upper layer. 
As we have already seen, this term does not 
play a major quantitative role in the results. 
If the upper layer is not very thick a very 
rough .approximation of the vertical velocity 

Tellus XI (1959). 3 
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is given by a linear relation (see numerical 
computations, STOMMEL (1956)). 

W -  We(l  - C/h)  (29) 
The average of Wfrom 5 = o to C = h is obviously 
We/2 and the vertical derivative We/h; more- 
over the approximate form of aT/ay in the 
upper layer is T,, so that we now can insert 
these approximations in the non-linear tem- 
perature equation and obtain (we can obtain a 
more accurate form for W later by solving 
the dynamical equation (22)) 

The solution of this equation is of the form 

6 =  C,e + C,+2yTl ( ; )  ( 3 1 )  

where C, and C, are constants of integration. 
The temperature must be equal to 6, at (= o 
and to 6, at 5 = h ;  therefore 

w.c 

c, + c,= 6, (32) 

(3 3)  

h We - 
C,e 2x + C,= 6, - 2yT1 

Also, the temperature radients at 5=h must 
equal each other in b o i  layers 

and so must the vertical derivative of the 
vertical velocity component : 

( 3  5 )  

Eliminating the constants of integration, C, 
and C, and also W,, we obtain three equa- 
tions in which there are three unknowns h. 
L, and gl: 

+ 6, + 2yT1 - 6, = O  (36) 
we L6 
h 2  

-1 ( 3  7) 

L = 2 (2%/8,)* 

One of these is, unfortunately, transcendental 
so that a general solution cannot be obtained, 

(3 8) 

but different methods will be appropriate for 
different values of the parameters, involved. 
Rather than delving into a lot of algebra, we 
would like to point out that when dealing 
with the application of these ideas to the 
ocean, we do not really know x to begin 
with. Instead we form an estimate of h, L, 
and 6,, from the shape of the vertical tempera- 
ture sounding. We obtain a rough estimate of 
We from charts of wind-transport of the 
surface layers, and then we do not use equations 
(36), (37), (38) in the same way. Equation 
(38) is used to obtain an estimate of x ;  and 
equations (36) and (37) can be used as a 
consistency check on the applicability of the 
model to the ocean. We know all the quantities 
that go into them, and they ought to be satis- 
fied if the theory is applicable. We can then 
use equation (3  5) to calculate the vertical 
velocity just beneath the thermocline, W,. 
A further point: because of the nature of the 
similarity transformation, it is not easy to 
introduce vertical velocity at the surface, we, 
with an arbitrary x dependence: in fact we 
are restricted to we distributions of the form 
x-'Is* 

8. Application to a red ocean basin 

The fact that the field of density calculated 
from equation (25)  superficially resembles 
that naturally occurring in the ocean is dem- 
onstrated in figures I and 2.  Figure I is a 
dimensionless perspective diagram of the 
solution (25) with an imposed surface tempera- 
ture distribution of the form 

6,(y) = 2ooC - 25OC x y' L, = 108 cm 
where we have introduced the non-dimensional 
lengths x', y' by the relations x=Lxx', y =  
= L,y', z = Dz'. L, and L, are dimensional 
constants defining the scales of the phenom- 
enon, and chosen so as to make the numbers 
x', y' be in a range near unity. Thus the 
actual formula used in constructing the dia- 
gram was 

L,= 5 x 108 cm 
D =  105 cm 

where 
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Fig. I .  Theoretical temperature field (see text). 
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Fig. 2. Schematic temperature field observed in the North Atlantic Ocean. 

The data for the North Atlantic Ocean is 
sketched roughly in fi ure 2. This diagram is 

temperature on the western side of the Atlantic 
presented in Wiist's (1936) monograph on 
the oceanic stratosphere, (ii) Bohnnecke's 
(1936) chart of the North Atlantic surface 
temperature for the month of March, and (iii) 
the 1957 CRAWFORD section at 8" North lati- 
tude. The deep temperature of the Atlantic is 
zo C, not oo C, so in comparing isotherms, 
we write the 17°C isotherm in figure 2 as 

based upon (i) the P ongitudinal profde of 
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15 +z, and compare it with the 15' isotherm in 
figure I. Certain similarities of the two figures 
are, of course, forced, for example we have 
chosen the surface temperature distribution in 
figure I to correspond roughly with that of 
figure 2. Also the vertical scale of figure I 
was drawn to look like that of figure 2, but 
actually matching determines the parameter 
x. Even allowing for the forced elements of 
similarity in the picture, the remaining por- 
tions correspond surprisingly well. Of artic- 
ular interest is the fact that the is0 t f  ermal 
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surfaces are deepest in mid-latitudes-a fact 
which hitherto has been attributed to the 
surface convergence of winddriven surface 
layers. Here of course, in figure I, there is no 
wind acting; whereas, in the real ocean dia- 

ram, figure 2, we must be on the lookout 
for the effect of the wind which actually does 
act on the North Atlantic. 

Before attempting to account for the effect 
of the wind, first we calculate various quan- 
tities such as the parameter x and the vertical 
component of velocity by fitting the two 
figures I and 2 as they stand. Thus the real 
Atlantic Ocean is roughly 5,000 km wide 
and 10,000 km long, and taking Lx=5,000 
km, Ly=~o,ooo km makes the horizontal 
scales of the two figures agree. Setting 
= 10-* sec-l, To =zoo, Tl = - 2.5 . I O - ~  OC/cm, 

8‘2 . 10-13 cm-1 sec-1, a = 2  x IO-~/OC, g =  
= 103 cmlsec. To fit the vertical scales we want 
the value Hz’ equal to I to correspond to the 
depth 1,000 meters at y’=o and x’= -I, 
and we obtain the value of the parameter x :  

x = 10 cmZ/sec 

The vertical velocity at the bottom of the 
main thermocline may be written in terms of 
the thermocline thickness z ,  defined as the 
depth at which the tem erature is e-1 of the 
surface temperature loc alf  y. This useful relation 

is obtained by elimination of x /  

between equations (2s) and (26). 

If the thermocline thickness were 1,000 meters 
as it a pears at first glance to be at y’ = 0, x’ = 

‘I) tl! e sub-thermocline vertical velocity is 

w(00) = 53 x I O - ~  cm sec-l 

The expression for the vertical velocity in 
terms of thermocline thickness is interesting 
because it does not involve the parameter x 
explicitly. It is very similar to the expression 
used by STOMMEL (1958) in an analysis of the 
abyssal circulation, but using the much more 
rimitive model of VERONIS and STOMMI~L 7 1957). We believe that both these values, of 

x and w(m) are an order of magnitude too 
high. The reason is that we are comparing a 

model in figure I with no winds, to a schematic 
representation of the real North Atlantic 
Ocean which does suffer being acted upon by 
winds. In mid-latitudes Montgomery (1936) 
has computed that there ought to be an 
convergent Ekman layer at the surface, directly 
beneath which there is a vertical component of 
velocity downwards, we= - 5 x I O - ~  cm sec-1. 
We expect therefore that part of the warm 
water layer in the upper portions of figure 2 
really must correspond to the wind-driven 
layer of thickness k, and that below this layer 
the proper thermohaline regime begins. The 
thickness of thermocline which we used before 
was too big. It included both k and zt. A much 
better idea of the rate of exponential decay 
of temperature in the main thermocline a x’ = 
= I ,  y’=o can be obtained from curve NA 
in figure 3 .  

Let us proceed by first writing the uantities 

nates. This is advisable because the dimensions 
of these quantities are rather odd 

L, h, and We in terms of the origina 1 coordi- 

L 

2 
- = (&/X)*%, 

where zt is the “thickness” of the thermocline, 
estimated by the shape of the temperature 
curve well below the inflection point at 
d26 /d (2  = o in the temperature curve, and %h 
is the “depth” of the wind-driven layer which 
we identify in figure 3 ,  for example, as the 
depth of the inflection point. The temperature 
at the inflection point is defined as 6,. The in- 
formation we obtain from the North Atlan- 
tic curve in figure 3 is as follows 

z, = - 3.5 x 108 cm 
z h  N - 9.0 x 104 cm 
6, N 10° c 

These estimates are for a geographical position 
corresponding to 

x=-5x108Cm 

y = o  

cs10-6  (“C sec)-l 
at which 
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Fig. 3. Temperature vs Depth 
at mid-latitudes in western 
regions of various oceans. 
N = North, S = South, A = 
Atlantic, I = Indian, P = Pa- 

cific. 

10 I 5  

and from Montgomery's wind-transport 
charts 

we= - 5 x I O - ~  cm sec-l 

The quantities for other ocean basins are 
somewhat different. Using these quantities we 
compute 
L - = 0.44 cm213 (sec "C)-1/3; 

h = 0.72 cm2/3 (sec OC)-l/3; 6, = IOOC 

According to the formulation in section 7, 
Case 2, these quantities are not all independent. 
We need only specify two, and the others are 
computable. However, there is a degree of 
uncertainty in identifying any one of these 
quantities from oceanographic data, so it is 
helpful to list them all, and then using the 
relations (36) and (37) inquiring whether they 
are mutually consistent. Thus, from equation 
(37) we have the remarkable relation 

2 
We = 4.0 cm4/3 sec-2/3 OC1/3 

Inserting the values of We, h and L/z  we 
obtain 6, = 12.6 "C which is not very different 
from the rough estimate 8' = 10" C obtained 
by inspection of figure 3. The above relation 
is indeed a rather fascinating one, because 
the applied surface temperature does not 
appear directly in it. We now calculate x and 
W, from the equations (38) and (35) and 
obtain 

x =0.8s cm2/sec w, = - 2.5 cm'h sec-'/s "C'h 

Thus the actual upwelling velocity beneath 
the thermocline obtained from by transforma- 
tion to the original coordinates is 

woD = 3.1 x I O - ~  cm sec'. 

We believe that the order of magnitude of 
the mixin parameter x and the deep u p  

Atlantic temperature distribution in this man- 
ner is much more in accord with the estimates 
of the magnitude of mixing processes and of 
the dee -ocean transports, than the numbers 

these ideas to the actual ocean it is essential to 

welling ve f ocity W, computed from the North 

obtaine B neglecting the wind. Thus in applying 
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incIude the wind stress in the model. The two 
causes of oceanic circulation (wind-stress and 
thermohaline process) are connected in a 
basically non-linear fashion and cannot be 
super-posed as additive solutions. Fofonoff 
has already pointed this out for a zonal ocean. 
Of course, in this model, vertical integrals 
of the transports depend on wind-stress alone- 
as has now been known for twelve years. 

The reader can now substitute the various 
constants into the expression for the tempera- 
ture in the upper layer and see that it affords a 
reasonable approximation to the form of that 
actually observed. 

The state of affairs in the North Atlantic 
Ocean is not markedly different from that in 
other oceans. The vertical distribution of 
temperature at 30° latitude near the western 
sides (but east of the western boundary currents) 
of other meridionally bounded oceanic basins 
is shown in figure 3. (NA, North Atlantic; 
SA, South Atlantic; S. I., South Indian; NP, 
North Pacific; SP, South Pacific.) Actually 
the thermocline in the North Atlantic is 
somewhat anomalously deep compared to 
those in other oceans, but the shape of the main 
thermoclines themselves are very similar: i.e. 
the value of zt is about the same. The fact that 
the Pacific is twice as wide as the Atlantic is 
of no consequence because width of the ocean 
a pears only as a cube root factor. Some of 
t K e complications in the temperature curves 
shown in figure 3 are due to salinity effects 
on the density field-but these are details 
which at the present stage of the theory do 
not merit immediate consideration. 

The model shown in figure I exhibits a 
number of general features which ought to 
be mentioned. First, the warm water in mid 
ocean does not tend to move toward the poles 
-but flows with an equatorward meridional 
component. At low latitudes it turns west 
(since it cannot cross the equator, according to 
equation (6)) where presumably it forms a 
western boundary current when it encounters 
the western boundary of the ocean. The western 
boundary current is a higher-order dynamical 
regime which can occur under fairly general 
conditions of stratification, so there is no reason 
to doubt that the thermal circulation can be 
“closed” on the western side by such a bound- 
ary current-although we have not attempted 
a formal demonstration for this particular mod- 

el. Everywhere in deep water there is a slow 
upward component of velocity. The way in 
which the solution for a single basin can be 
connected together with solutions for other 
basins to form a scheme descriptive of the 
general circulation of the world ocean has 
already been pointed out by STOMMEL (1958)- 

9. Comments on the parametric treatment 
of mixing, the quantity x 

The inclusion of an eddy-conductivity, x ,  
is a parametric way of including small scale 
vertical mixing processes into the theoretical 
model. Although this is a very common thing 
to encounter in the earlier oceanographical 
literature, it is a technique which present-day 
oceanographers are very reluctant to employ- 
except as a last resort. It means that we simply 
do not know anything about the physics of 
the mixing process. Despite our ignorance of 
the cause of mixing or the mechanism, we do 
have some idea, as we will show below, of the 
order of magnitude of the mixing. We take x ,  
by these other considerations, to be of order 
of magnitude unity (c.g.s.), or five hundred 
times the molecular diffusion coefficient. This 
assumption has important consequences on 
how the model is to be set up, as was shown 
in equation (14). If x were much greater than 
unity, equation (14) would become 8’ = 0, 
yielding a linear form for 6 which would have 
no thermocline-like character. If x were much 
less than unity equation (14) would become 
W& - y W‘6, = 0, which describes a purely 
advective process. This equation, together with 
(IS), has been solved by the method outlined 
in the beginning of section 4. The solution 
exhibits something llke a thermocline, but its 
dependence on latitude does not agree with 
observations. Therefore, the choice for x of 
order unity seems necessary. In the results we 
note that only the cube root of x appears in 
the depth L, so that x may vary by an order 
of magnitude without changing the results 
significantly. 

In the calculations we have taken x to be a 
constant. A more valid x would probably in 
general be a function of depth. Were this 
the case, the first term of the heat equation 
(16) would be replaced by [x(E)#(E)]’. In 
the resulting calculation, the first term of (21) 
would be replaced by x (o)6’(0), and ~ ( o )  
would replace x in all the results. This means 
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that within the validity of the above calcula- 
tions the form of x is not critical. If more 
moments of equations (16) were taken, inte- 
gral properties of x ( [ )  would enter. 

The mean distribution of many oceanic 
variables llke salinity, oxygen, carbon-14, etc., 
must de end to a large extent on the same 

those which determine the mean thermal field. 
For the most part these properties have no 
important dynamical effect-except, of course, 
salmity which can play a dominant role, but in 
subtro ical areas usually plays a definitely 

distribution. Therefore these properties are in a 
sense tracers whose distribution depends upon 
the thermal circulation and the parametric 
mixing, but which does not in turn effect 
them. Thus they provide a means for testing 
our model of the oceanic circulation for inter- 
nal consistency. In order to make such a test 
it does not seem likely that very small scale 
experiments, or transitory phenomena will be 
very convincing because we are so completely 
ignorant about the nature of the mixing process 
that we do not even know its scale or spectrum, 
or how uniformly it acts in time. Under the 
circumstances we prefer to employ tracer phe- 
nomena whose horizontal and vertical and 
time scales are all comparable to those of the 
oceanic thermocline itself; and we want these 
tracers to be located quite close to or within 
the thermocline. We offer two examples from 
the Atlantic. In both cases salinity is the tracer. 

Case I : The first case is the layer of Antarctic 
Intermediate Water in the South Atlantic 
Ocean. At Meteor Profile VII in the eastern 
half of the ocean, between Stations 177 and 
180, the salinit minimum lies at a depth of 

5' C, thus lying immediately beneath the main 
thermocline. The thickness of the layer is 
between 500 meters and 1,000 meters-depend- 
ing upon how it is defined. The salinity in 
the minimum here is about 0 . 2 % ~  lower than 
that 200 meters above and below the minimum 
(d2s/2z2 zz I O - ~  %, cm-2). The salinity gradient 
in the east direction is small ( 2 s / d x r o )  as 
compared to that in the northward direction 
(2s/2yr7 x 10-l~ %,, cm-l). WUST (1956) has 
made dynamical calculations of the velocity 
between stations 177-180 at 700 meters and 
finds a mean northward velocity of as little as 

mean ve P ocity field and parametric mixing as 

secon B ary role in determining the density 

700 meters, w il ere the temperature is about 
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v=o.2 cm secl. The mixing parameter com- 
uted from this situation is 0.14 cm2 secl P x s  ( v 2 s / 2 ~ ) / ( 2 ~ ~ / 2 z ~ ) ] .  According to our 

theory there ought to be an upward velocity 
of about 2 x 10-4 cm sec-1 at this level, so that 
we might expect the level of the minimum to 
slope upward toward the north with a slope 
of about 10-4, which indeed it does. 

Case 2 : The second case to be discussedis a layer 
of maximum salinity which covers much of the 
southern North Atlantic in the area of the 
North Equatorial Current, and passes westward 
through the entire Caribbean, during which 
passage the intensity of the maximum decreases 
by about 0.3 z0 (2s/2xg + 0.20 x I O - ~  % cm-l). 
Upon entering the Caribbean this layer is at a 
level of 125 meters and upon leaving through 
the Yucatan Channel it is 200 meters deep. 
The mean westward velocity of this layer of 
water is about 3 cm sec-l (II = - 3.0 cm set.-') 
and its salinity maximum is about 0.6 %,, 
greater than the salinity 100 meters above or 
below it (22s/2z2= 1.2 x IO-*%, cm-2); thus one 
computes x=o.s  cm2 sec-l, again a value 
more or less consistent with the requirements 
of our model. This saline layer originates at 
the surface in the subtropical surface salinity 
maximum, and sinks downward as it flows 
southward and westward. The layer is at a 
temperature of 20° C, hence it lies near to the 
top of the thermocline-and the vertical veloc- 
ity should be downward here: this latter is in 
accord with the downward slope of the layer 
as it traverses the Caribbean (slope of 5 x IO-~). 

10. The Abyssal Circulation 
As the reader can judge, this model of the 

thermohaline circulation implies many definite 
uantitative things about the circulation of the 

Ieep waters of the ocean. For example, we 
should be able to derive the total amplitude 
of the deep circulation of the ocean by inte- 
grating the deep upwelling velocity over the 
whole water-covered globe (in s herical coor- 
dinates instead of the beta-plane! In this way 
we should be able to predict the average age of 
the deep waters, a topic of current interest to 
geochemists, and a subject of much present day 
experimental enquiry, and sea-going activity. 
This further extension of the ideas here pre- 
sented is treated in a separate paper by A. B. 
Arons and Henry Stommel which is being 
prepared for publication after this one. 
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