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Abstract 
A theoretical study is made of the density field and the associated velocity field produced in an 

unlimited ocean by a prescribed density distribution at the surface. It is assumed that all mo- 
tions take place under geostrophic and hydrostatic balance, and that the density is simply advected 
by the motions occurring. The computation is carried out for a spherical earth. The theory gives 
a depth of penetration of the surface disturbances of the order of 1000 in, if one assumes a 
relative density variation of the order 10-* and a characteristic velocity below the boundary 
layer of the order I cm. sec-’. The depth of penetration is proportional to the sine of the 
latitude. Assuming a stable ocean with a surface density increasing from the equator to the 
pole the theory gives a meridional distribution of density of the form observed in the real 
oceans. The associated zonal velocities are westerlies at high latitudes, easterlies near the 
equator . 

To permit a more precise check of the theory by laboratory experiments the corresponding 
solution is derived for a rotating “dishpan”. The solution is found to be of the same type as the 
one studied in the spherical case, but it is pointed out that fundamental differences between the 
spherical and parabolic cases are likely to occur in more general solutions than those studied here. 

I. Introduction 

In the last years there have appeared some 
interesting papers discussing theoretically the 
problem of the ocean thermocline (LINEYKIN, 
1955; STOMMFL and VERONIS, 1957). In these 
papers it was assumed that the (turbulent) 
dXusion of density ays an important role, 

parameter in the solution. The density advec- 
tion terms were not considered in their com- 
plete non-linear form but entered the problem 
only as linearized perturbation terms. The 
reason for this sim lification is, clearly, the 

linear effects. 
It should be noticed that the importance of 

diffusion processes in large-scale ocean dynam- 

and the coefficient o P’ diffusion enters as a key 

mathematical d3ic ,P ties in handling the non- 

ics has not yet been roved. It cannot be 

a fundamental role so that it seems more 
natural to start out from a purely advective 
model, in which all ddusion effects are neglect- 
ed. In the present paper a study of such an 
advective model is carried out. It appears that 
the model can ex lain the main features of the 

thickness 100-200 meters. The present com- 
putation is carried out for a spherical earth. It is 
assumed that the motions take place under 
geostrophic and hydrostatic balance and that 
all motions disap ear at sufficiently great 

in the model. Accordingly, the model cannot 
predict “Gulf Streams” and similar boundary 
phenomena. 

doubted, however, that l ensity advection plays 

ocean density fie f d below a boundary layer of 

depths. No vertica P boundaries are introduced 

The main part of the present study was carried out during the author’s stay at the Johns Hopkins Uni- 
versity, Civil Engineering Department. The work was spondered by the Office of Naval Research and the 
U.S. Weather Bureau under contracts N-onr-z4%(31) and CWB-gjo4, respectively. 
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Although the hysical model studied here 

still hampered by the non-linearity introduced 
by the density advection terms. It is possible 
to derive a single differential equation for a 
certain density function, but so far it has not 
been possible to give the general solution of 
this equation. A particular solution is derived 
which seems to yield the essential physical 
results of the model. 

As a next step in a systematic approach to 
the thermocline problem one would include 
density diffusion, at least in the boundary layer. 
If one could solve the appropriate boundary 
layer equations and match the solution to 
that for the deep water region given by the 
advective model, it would be possible to deter- 
mine the density field in the whole ocean in 
terms of the primary forcing functions acting 
at the sea surface, such as heating and cooling, 
evaporation and precipitation. One would 
also llke to investigate such factors as vertical 
boundaries, finite depth, wind-produced con- 
vergence in the Ekman layer etc. 

To test the reality of the theoretical solution 
presented here one would like to set up a corres- 
ponding laboratory experiment, using a ro- 
tating “dish-pan”. One advantage of the labo- 
ratory experiment would be the possibility of 
controlling the effects of the density diffu- 
sion. In the laboratory one couId work in the 
regime of laminar motion where only molec- 
ular diffusion, is important, and one would 
then avoid the kind of guess-work that enters 
into all estimates of turbulent diffusion effects. 

To permit quantitative comparisons be- 
tween the theory and such laboratory experi- 
ments the present analysis has been extended 
to the case where the equipotential surfaces are 
not spherical but paraboloidal. In this case, 
there occurs in the equation a new term cx- 
pressing the effect of the latitudinal variation 
of effective gravity. In the particular solution 
studied in the present paper this term changes 
nothing essentially, but it seems llkely that it 
can lead to new types of solutions in more 
general cases. 

is quite simple t l! e mathematical treatment is 

2. Formulation of the problem 

Consider an ocean of incompressible fluid 
covering the spherical earth. The earth is 
assumed to have a radius R and an angular 

velocity 8. The sum g of the acceleration of 
gravity and the centrifugal force is assumed 
to be constant in magnitude and directed 
radially. The ocean has a depth h and follows 
the earth in its rotation except for small mo- 
tions produced by surface disturbances. To 
arrive at our model, which is characterized 
by a geostrophic, hydrostatic and advective 
balance, the following spec&c assumptions 
have to be made: 

(a) The horizontal scale of the disturbances 
is much larger than the depth h. 

(b) The non-linear acceleration terms are 
much smaller than the Coriolis acceleration. 

(c) The boundary layer within which friction 
and diffusion play an important role has a 
depth much smaller than the depth h. 

(d) The Coriolis acceleration is small com- 
pared to the product of gravity and the relative 
density variation. 

If the horizontal scale of the disturbances is of 
the order L, if the density variations are of the 
order A @ ,  if the characteristic horizontal veloci- 
ties are of the order U, and if the fluid is 
characterized by its mean density, $, and the 
coefficients of (turbulent) kinematic viscosity 
and diffusion v and x ,  then the above four 
conditions can be written 

h 
-4 I 
L 

It should be noticed that our model cannot 
be applied very close to the equator; in this 
region non-linear accelerations and friction 
must come into play. 

With the above assumptions the equations of 
motion, the continuity equation, and the den- 
sity transport equation, valid in the interior 
of the fluid are 

1 JP - 2Q sin O p =  - - - rcosO 24 (2) 
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I 

r cos 0 

29sinOeu= -- 1 - aP 
r ao 

a 
G 

( 3 )  

(4) 

a (cos 0 e v )  + (@") + a I 

a 2 

ar r 
+ - (ew) + - ew = 0 

(6) 
I a@ I a@ a@ 

r coso  a+ r do ar 
u- - + v -  - - ! - w - = o  

Here r is the radial distance, + is a longitude 
coordinate and 0 a latitude coordinate, counted 
positive eastwards and northwards, respect- 
ively. u, v ,  and w are the corresponding velocity 
components, and p is the ressure. 

The above equations wiR be simplified fur- 
ther by making the realistic assumption that 
the depth h of the ocean is much smaller than 

R. In this case the term - ew in the continuity 

equation can be neglected in comparison with 
the term - (ew), and one can everywhere 

replace r by R and dr by dz, z being a vertical 

coordinate which is zero at the surface (strictly 
at a horizontal surface just below the boundary 
layer). After multiplying the density transport 
equation by e we have then 

2 

r 

a 
ar 

-zQsin@(ev)= I + (2') RsosO a+ 

2Qsin@(pu)= -- 1 - aP 
R a@ 

1 a  ___- 
R cos o a+ + I .~ 

R cos 0 
a 
ao - 

a 
az + - (@I.) = 0 

(4') 

(cos 0 ev)  + 

( 5 7  

I I ae ae 
R ao az 

* + (p) - - + (ew) - = o (6') 

Our five dependent variables are eu, ev, ew, e 
and p .  

The boundary conditions are 

where eo (4, 0) is a prescribed function. The 
condition (8) implies that e approaches a con- 
stant value, s, at z= - 00. Since the physically 
interesting solutions have a stable stratification, 
we have eos.e. 

In the beginning the ocean was assumed to 
have a finite de th h so that in a strict sense the 

the point z= - h. In the following we will, 
however, only deal with the case where the 
depth of penetration of the surface disturbances 
is small compared to h. One may then in- 
troduce the boundary condltion in the stated 
form for the sake of analytical convenience. 

It is to be noted that no condition is imposed 
on the vertical veloci at z =o. In fact, a 

an overspecification of our problem, when we 
also re uire that all velocities should vanish at 
great 1epth.s. In a complete solution there 
should enter also a boundary layer on top 
within which friction and diffusion become 
important. With this boundary layer all the 
boundary conditions can be satisfied. However, 
we are here satisfied to study only the deep 
water solution. Accordingly, z=o d not 
represent the real free surface of the ocean 
but rather a horizontal surface just below the 
boundary layer. 

boundary con cf. ition (8) should be applied at 

condition that w = o at 2.l s surface would mean 

3. Derivation of the M-equation 

From the system of equations (2')-(6') one 
can derive a single differential equation for the 
quantity 

Ad(+, 0, 2) = j !@'(dZ)Z (9) 
--8 -w 

where e'= e -e is the perturbation density. 
It is assumed that e' is given at z=o and that 
it decays to zero for large negative z ra idly 
enough to secure the convergence oP the 
integral (9). 
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Eliminating the ressure in equations (2') and 
(3') by means o f t  K e hydrostatic equation (4'), 
and using the condition (8) one finds 

2 

The continuity equation yields 

z z  

-m -@a 

ae a@' 
ao ao Replacing - by - etc., and introducing the 

function M one has 

QU = -Mez 252R sin 0 

2M 
a 0  where Me = - etc. ; furthermore 

i ( 1 3 )  

Introducing these expressions into the density 
transport equation (6') we get the desired 
equation for M :  

This equation can also be written in the form 

J(&, Mz) = cot @M#Mzzz (14') 

where J denotes the Jacobian with respect to 
$ and 0'. 

The boundary conditions for M take on the 
form 

} (15) 
M , , = Q ~ ( $ ,  0) at z =  o 

M =  o at z= - a  

where Q; ($, 0) is the given surface distribu- 
tion of the perturbation density. 

4. Derivation of a particular solution 

To avoid unnecessary mathematical com- 
plications we confine our attention only to 

the half-sphere o < O  < -. Introducing a new 

latitude coordinate 

?c 
2 

17 = log sin 0 (16) 

which runs from 0 at the pole to - 00 at the 
equator, equation (14) takes on the simpler 
form 

(I 7) 

One class of solutions which satisfies equation 

M =  M(q, 4 (1 8) 

M# ZZMqz - MqzzM# z = MG Mzzz 

(17) is obviously 

In this case, in fact, both sides of equation (17) 
vanish separately. The corresponding velocity 
field is purely zonal, v = w = 0. Since there are 
no vertical velocities the density at the bounday 
is not advected into the fluid and the solution 
has little physical interest. For the general case 
where the surface density distribution depends 
both on $ and q, one may try a solution of 
the form 

M=J'($,  7) Qh, 2) (19) 

1 It should be noted that the present M-equation could 
also have been derived in a so-called /?-plane, using 
rectangular ))quasi-coordinatem x, y, z (cf. the derivation 
in the appendix). In the /?-plane the equation becomes 

MxzzMgz - MgzzMxz= - M,Mzzz 

Putting dx=Rcos@d@, dy=RdO, f=zRsin@, /?= 
2Q 
- cos 0 we get again equation (14). 
R 

/? 
f 
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It is immediately found that (19) is a solution 
for arbitrary functions P (+, q ) ,  provided Q 
satisfies the equation 

Suitable solutions to (20) are found by putting 

Equation (20) changes then into the form 

and it is seen that (21) is a possible solution if . .  
we choose ~ ::\ -a, - or - 

1 
F(q)  = const e“ (22) 

a being an arbitrary constant. Q is now 
determined by the ordinary differential equa- 
tion 

5 [ Q’Q’” - (Q“)2] + Q‘Q“ - aQQ’” = o (23) 

z .  where 5 = ~ is the argument of Q. 
F ( r )  

Particular solutions of (23) of the form Q= 
const are easily found, with possible expo- 

nent values a = 0, a = I ,  and a = --, but these 

solutions are not sufficiently well-behaved at 
z = o  and z= --oo to be of use. For a = ~ ,  
however, the equation has the particular solu- 
tion 

2a 

a + 2  

Q = const ekC (24) 

where k is an arbitrary constant, and this 
solution represents a possible physical situation 
If k is positive Q will vanish at z= - do and 
will certainly be well-behaved at z = 0. 

In the following, the discussion will be 
confined to the solution (24), and we will 
demonstrate that it is capable of describing 
correctly the main features of the ocean 
density field. Nevertheless, it would be of 
great interest to study more complicated 
solutions of the equation (23), which possibly 
could describe finer details in the ocean density 
field. There seems to be little hope to find 
Tellus XI (1959). 3 

the general solution to (23), although it actually 
can be reduced to a first order equation’, but 
one can, of course, resort to numerical methods. 

Using the particular solution (24), M takes 
on the form 

M = P (4, q) ekt = P (4, q) ekze - ‘I (25)  

or, in terms of the original coordinates +, 0, z, 

I M = M ,  (+, 0) esin kr I (26) 

M,,(+, 0) is determined by the boundary 
condition at the surface, while the constant k, 
which is simply a scale-factor for z, is at our 
disposal. It can be fixed by prescribin some 
more hysical parameter in the prob ci em, as 
examp P e the total energy or the total angular 
momentum of the system. 

To estimate the order of magnitude of k in 
the real oceans we can relate it to the charac- 
teristic horizontal velocity. Using the pre- 
viously derived expressions for the perturbation 
density and the mass-velocities one finds 
easily that the order of magnitude of k is given 
by 

A @  
g- 

UQL (27) k - 
where, again, L is the horizontal scale of the 
disturbances, U is the characteristic horizontal 
velocity, and LIP is the characteristic density 
variation. The corresponding depth of penetra- 
tion of the disturbances is of the order 

Introducing, in succession, the following new depend- 
Q ent and independent variables: Z=--,  Z * = c Z ,  [* = 
Q 

In [, equation (23 )  transforms into the second order 
equation 

( Z * - a )  ( z Z * - j Z * ’ + Z * ” ) + ( Z * - 3 a )  ( - Z * * +  
+ Z * .  Z*’) + (I-a) Z*’+ (zZ* - Z * ’ ) .  

. ( - Z * + Z * ’ ) = O  

Introducing V=Z*’  as new dependent and x = Z *  as 
new independent variable this equation is further reduced 
to the first order equation 

dV 
(x - a) v- dx - V a  + (x’ - 3ax + 3a) v - x [ax* + 

(I - 3 a ) x  + la] = o 
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g+ e 
The neglect of the effect of the finite depth 

requires that - Q I ,  or 
D 
h 

This inequality states simply that the square 
of the internal Froude number is much smaller 
than the Rossby number. 

order I ,  but it should be noted that this value 
is obtained by using a characteristic veloci 
for the deep sea. In the boundary layer itse f 
the velocities must be one to two orders of 
magnitude larger and a more satisfactory value 
of the boundary layer thickness is then ob- 
tained. 

With the above numerical values the depth 
of penetration of the surface disturbances 
according to (28) becomes 

D -  1000 m 

This value certainly is of the correct order of 
magnitude (cf. Fig. I). 

7 

5. Numerical estimate of the characteristic 
parameters 

Assuming h = 5 .  105 cm, L = 109 cm, U =  I 

cm sec-l, g = 103 cm sec2, == I O - ~ ,  Q = I O - ~  

sec-', Y = 102 cm2 sec-l, x = 102 cm sec-', one 
arrives at the following values for the five 
characteristic parameters entering in the condi- 
tion (I) : 

A e  
e 

2 - I o - ~ ,  
h U 
L LQ 
--5.10-4, - 

Fig. I. Example of the vertical density variation in a real 
ocean. (Average value at 22' S in South Atlantic, com- 

puted from DEFANT and WUST, 1936). 

Furthermore, the internal Froude number en- 
tering in the condition (29) takes on the value 

U - 1.4- 10-3 dg$ 
One can, of course, always argue about the 
precise numerical values to be chosen 

for such quantities as L, [I,  -=-, Y andx, but 

unless the values are defmitely wrong our 
assumptions should on the whole be justified. 
The assumption that the ddiusion effects are 
limited to a thin boundary layer is certainly 
not justified by the present estimate, since 

takes on a value of the 

A e  
e 

6. The density field 

perturbation field becomes 
With the solution (26) for M the density 

kz - 
e' = e; (4, 0) esin ( 3 0 )  

where eh (4, 0) is the surface distribution. 
According to (30) the erturbation density 

the boundary layer, and such a law will 
certainly fit the oceanographic observations 
well (Fig. I ) .  The depth of penetration should 

proportional to the sine of the atitude This 
result seems also to be in qualitative agreement 
with the observations. 

should decay exponentia P ly downwards from 

increase from the equator to the PO!,, v;ying 
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0 
0 Pok 

so" 
Equator 

00 

Fig. 2. Theoretical density distribution in a meridional plane. Surface density distribution: e',, =-A@ cos2 0. 
Vertical coordinate: k x .  

From (30) the latitudinal variation of p' is 
found to be 

ae ' According to this formula - has the sign of 

at high latitudes, while at low latitudes it jo 
has the sign of pi, at points below the sur- 
face. In a realistic case one would have e; <o ,  

ao ao 
latitudes but negative at low latitudes, at 
points below the surface. Thus the density 
isosurfaces should lie at maximum depth at 

ao 

s > o ,  and - a@' should be positive at high 

middle latitudes and rise towards the surface 
both at the low and the high latitudes. This 
result seems also to be supported by the obser- 
vations. 

As a numerical exampie the meridional 
density distribution corresponding to the sur- 
face distribution e; = - d e COP 0 has been 
constructed (Fig. 2). In this case e; runs from a 
negative value -A e at the equator to a value o 
at the pole, in approximate agreement with 
conditions in the real oceans. (One should 
assume here that A e  shows some longitudinal 
variation so that the degenerated axially sym- 
metric case is avoided.) For comparison we 
show the mean meridional density distribution 
in the South Atlantic, as computed from the 
"Meteor"-data (Fig. 3) .  

Fig. 3 .  Example of the meridional density distribution in a real ocean. (Average values for South Atlantic, computed 
from DEFANT and WUST, 1936). 

Tellus XI (1959), 3 

1- Y0463!4 



316 P I E R R E  W E L A N D E R  

Epu* 
00 

lrolinrs for./?? 
A e  
a m  

Fig. 4. Theoretical distribution of the zonal velocities in a meridional plane. Surface density distribution: 
e'o = --de COS* 0. Vertical coordinate: kz. 

7. The velocity field the surface. Such a maximum is found when 

The velocity field corresponding to the 
solution (26) is given by 

kz 

sin 0 

i (31) 
where 

and the subscript o denotes surface values. In 
terms of the surface density the surface veloci- 
ties become 

1 U > I ,  i .e.  when-cot @ < -  -<o. In the 
@; ao 

aQ' 
ao realistic case where e; < 0, Lo > o a maximum 

will always occur at low latitudes. 
(b) (p), and (ew)o are proportional to-', a@' 

a+ 
ae; while (eu)o depends both on - and @A. In 

the realistic case PI, < o , O >  0, one would find 

(eu)o> o (westerlies) at high latitudes, and 
(eu) < o (easterlies) at low latitudes. 

A computation of the zonal velocity field 
has been carried out for the specific case & = 

= - A e cos2 0, and the result is seen in Fig. 4. 
The prediction by the theory of a prevailing 

westerly surface flow at the high latitudes and 
easterly surface flow at the low latitudes is cer- 
tainly in general agreement with observations. 
We cannot, of course, ho e to depict the 

present crude model, and we do not give any 
reference here to actual velocity data. 

ao 
&I' 
ao 

detailed current systems in t fl e oceans by the 

APPENDIX 
Solution for the dish-pan 

In order to make possible a numerical com- 
parison between the theory and experiments 

From the above relations one can conclude: 
(a) ev and ew decay exponentially down- 

wards, while eu may show a maximum below 
Tellur XI (19S9), 3 
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under laboratory conditions we derive here the 
M-equation for a fluid with parabolic equi- 
potentials. In this case the apparent gravity 
varies with “latitude” and some new effects 
can be expected. 

To be able to make a direct comparison 
with the spherical case studied earlier we in- 
troduce similar coordinates: a longitude coordi- 
nate +, a latitude coordinate 0, and the vertical 
height z (Fig. 5 ) .  In the derivation of the M- 

e 

aP’ f ( y ) ( e u >  = -5 
aP’ O =  -- - g * ( y ) e  
az 

(3  5 )  

/--- 

Fig. 5 .  Coordinates in the paraboloidal system. 

equation onc may, however, work more 
practically with “quasi-coordinates” x, y de- 
fined by the relations 

dx = rtl+ 
( 3 3 )  dy= R d 0  

where r is the normal distance to the central 
axis and R is the radius of curvature of the 
paraboloid. Y and R are both functions of 0. 
Introducing the velocity components u, v ,  w 
in the x, y and z-directions, the perturbation 
pressure p‘ and the perturbation density e’, 
the Coriolis parameter f = f(y) = 2Qsin0, and 
the apparent acceleration of gravity g* =g* (y) 

Expressing eu, ev ,  and QW in terms of e‘ me 
finds 

-m 

I 
i (39)  

where 

ev and ew are seen to have the same form as  
in the spherical case, where the acceleration of- 
gravity is constant, while etr contains an extra, 
term proportional to the vertically integrated 
perturbation density. Introducing the variable 
M defined by (9) in Sec. 3 one is led to the 
equation 

=- andaPPIYing the same Physical It is easily shown that for a paraboloid- B Y  = - -. f g* 
Thus equation (40) is reduced to the form 

B 
MxzxMyz - MyzzM - - (Mx Mzxz + Mz MxzJ =-f 
or, after introducing the coordinates + and 0, 

sine’ 
fications as are expressed in the spherical case by 
the conditions (Ia)-(Id) one derives the sys- 
tem of equations 

- f ( v )  (ev> = - 2 (34) 

Tellus XI (1959), 3 
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M# zz M s ~  - M ~ z z  M# -1 z = 
(41) 

= Cot O (M# Mzzz + Mz M# zz) 

T h i s  € o m  should be compared with the 
equation (14) in the spherical case. 

Introducing the new variable q =log sin 0 
(41) simplifies to 

M#zzMqz- MqzzM#z= M# Mzzz+MzM@zz 

(42) 
Attem ting a solution of the form M =  
p($, q P Q (7, 4 gives 

QzzQqr- QqzzQz= QQzzz+ QzQzz (43) 

and again solutions of theformQ=Q 
n 

exist rovided F ( q )  =const. er. Q is then to be 
foun! from the ordinary differential equation 

5 [Q' Q"' - (Q")2] + ( I  - a) Q' Q" - aQQ"' = o 

(44) 
where 

In this case an exponential solution of the form 

Q = const ekt exists if one chooses a=-. 

Thus we get 

I 

2 

or, in terms of the original coordinates, 

The solution for the dish-pan is accordingly of 
essentially the same type as for the sphere, the 
only difference being that the depth of penetra- 
tion is now proportional to the square of the 
sine of the "latitude". This cannot, however 
be expected in more general cases, due to the 
occurrence of the new term Mz M # z z  in the 
equation (41). 
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