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ABSTRACT

Nowcasting Meso-γ-Scale 
Convective Storms Using 
Convolutional LSTM Models 
and High-Resolution Radar 
Observations

DONG-KYUN KIM 

TOMOO USHIO

As a deep learning approach to improving precipitation nowcasting, this study 
proposes convolutional Long Short-Term Memory (LSTM) models which specifically 
target meso-γ-scale, localized convective storms although there are numerous types 
of thunderstorms across scales. A Convolutional LSTM Model (CLM) and an Encoder-
Decoder Model (EDM) were built by employing LSTM networks that perform better 
with sequential data. For training, radar reflectivity (Z) datasets of the Multi-Parameter 
Phased Array Weather Radar (MP-PAWR) for a convective storm event that occurred 
over the Tokyo metropolitan area were used as input to the models. An Advection 
Forecast Model (AFM) that utilizes an optical flow method to generate u and v motion 
vectors and the Lagrangian advection scheme was also developed to compare with 
nowcasts from the LSTM models. Model performances were assessed using statistics 
and skill score measures such as Critical Success Index (CSI) and Probability of Detection 
(POD) with lead time up to 10 min. It was found that for a total rain area with Z > 10 
dBZ, the CLM had the best skill, showing higher CSI scores and correlation coefficients 
than other models for all lead times. For a convective rain area with Z > 35 dBZ, the 
CLM showed equal to or slightly higher CSI scores than the AFM until the lead time of 
7.5 min but underpredicted the strength of convective cells with a lower CSI at 10 min. 
Both the CLM and EDM showed more negative Z biases at longer lead times, resulting 
in lower CSI and POD scores than the AFM in this convective rain category. The higher 
skill of the AFM at longer lead times is most likely because the convective cells were 
advected without changing their shapes and intensities largely in this short period.
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1. INTRODUCTION

Localized, meso-γ-scale convective storms often called 
convective showers occur frequently during summertime, 
bringing about heavy rains, flash floods or hails for a time 
period of less than about 1 h. Over the past decades, 
there has been progress in precipitation nowcasting 
techniques mostly based on radar echo extrapolation 
with retrieved velocity fields (Rinehart and Garvey, 
1978; Dixon and Wiener, 1993; Germann and Zawadzki, 
2002; Bowler et al., 2006; Ruzanski et al., 2011; Li et 
al., 2014; Bechini and Chandrasekar, 2017). Nowadays, 
many precipitation nowcasting systems such as McGill 
Algorithm for Precipitation Nowcasting by Lagrangian 
Extrapolation (MAPLE) (Germann and Zawadzki, 2002), 
Short-Term Ensemble Prediction System (STEP) (Bowler 
et al., 2006), Severe Weather Automatic Nowcast System 
(SWAN) (Hu et al., 2012) or Short-range Warning of 
Intense Rainstorms in Localized Systems (SWIRLS) (Li et 
al., 2014) are operational at different scales to prevent 
or mitigate disasters and losses caused by such storms. 

Nevertheless, it remains quite challenging to nowcast 
thunderstorms which are highly variable in time and 
space, particularly in very short periods < 6 h. In general, 
the role of observational data is quite important for very 
short-term forecasts of 0~6 h (i.e., nowcast) and short-
term forecasts of more than 6 h. Whereas, Numerical 
Weather Prediction (NWP) models have limitations in 
these time ranges due to initial spin-up issues until 
reaching a stable model state (Chung and Yao, 2020) and 
are not capable of reproducing initial target distributions 
correctly. To improve nowcasting of thunderstorms in 
less than 6 h, various observations of the atmospheric 
state from radars, satellites, or other platforms need to 
be properly and timely assimilated or blended into NWP 
models (Bowler et al., 2006; Sun et al., 2014). Doppler 
radar observations remain most useful for quantitative 
precipitation nowcasting since radars can provide 
high spatial and temporal resolution measurements 
of liquid or ice particles which backscatter intensities 
are proportional to the sum of the sixth powers of the 
diameters. Radar-based extrapolation nowcasts still 
appear to outperform very short-range NWP forecasts 
but also reveal limitations to predict the growth or decay 
of storms accurately. On the other hand, Otsuka et al. 
(2016) performed radar-based three-dimensional (3D) 
nowcasting experiments for intense rainfall areas by using 
motion vectors derived from the Tracking Radar Echoes 
by Correlation (TREC) technique (Rinehart and Garvey, 
1978) and the Continuity of TREC vectors (COTREC) (Li 
et al., 1995) which is the TREC’s variational version to 
smooth erroneous vector fields. They noted that the 3D 
nowcasting model outperformed the 2D nowcasting 
since 3D motion vectors could capture changes of 
ascending and descending convective cores in different 
phases, leading to more accurate rainfall predictions.

As such, although there have been much efforts to 
improve extrapolation-based nowcasts by blending with 
operational NWP forecasts (Bowler et al., 2006; Chung and 
Yao, 2020), it is still needed to predict heavy rain intensities 
and areas more precisely under the complex atmospheric 
state at a given place. In the last decades, there have 
been increasing studies to use Artificial Neural Networks 
(ANN) for estimating precipitation from observations 
of spaceborne platforms (Bellerby et al., 2000; Tao et 
al., 2018; Sadeghi et al., 2019). A Convolutional Neural 
Network (CNN) model proposed by Sadeghi et al. (2019) 
showed higher accuracy in estimating rainfall rates and 
capturing a more precise spatial shape and rainfall peaks. 
Predictive studies that exploit CNN models with a Long 
Short-Term Memory (LSTM) network have also been done 
by detecting motions in images or videos in successive 
frames and generating future motion frames (Shi et al., 
2015; Walker et al. 2015; Wang et al., 2017). Shi et al. 
(2015) indicated that the convolutional LSTM network 
is more efficient for processing sequential data and 
learning long-range dependencies than conventional 
Recurrent Neural Networks (RNNs). CNNs have an 
advantage for image processing by extracting important 
features from local neighborhood data via convolutional 
transformation (Miao et al., 2015).

However, a few studies that use CNN or ANN models 
for nowcasting local convective storms using radar 
observations have been conducted (Shi et al., 2015; 
Ayzel et al., 2019; Foresti et al., 2019; Kim et al., 2021; 
Wang et al., 2021). Foresti et al. (2019) noted that ANN 
predictions that take the term of growth and decay 
into account showed better performance compared 
to Lagrangian persistence which advects precipitation 
patterns along with motion vector fields. Shi et al. 
(2015) employed a convolutional LSTM network for 
2D sequential radar images of a convective storm 
to test its nowcasting capability and indicated that 
the convolutional LSTM network outperforms a fully 
connected LSTM since the convolutional LSTM network 
could detect spatial features as filters slide over pixels of 
image. Higher relationships between pixels close to each 
other are learned during training and complex features 
can be captured by deep layers of convolution (Miao et 
al., 2015; Sadeghi et al., 2019). This study proposes two 
convolutional LSTM models in different architecture that 
use unique high-resolution radar datasets from short-
lived, local convective storms. Nowcasting such small 
convective storms is examined with increasing lead 
time up to 10 min although there are various types of 
storms across scales. This paper is organized as follows. 
Section 2 describes radar datasets and a local convective 
storm event selected in this study. Section 3 explains 
the methodology and model design. Section 4 describes 
the experimental results with statistics and forecast 
skill scores and Section 5 presents the discussion and 
summary. 

https://doi.org/10.16993/tellusa.37


19Kim and Ushio Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.37

2. RADAR DATA 

As a new-generation weather radar, Multi-Parameter 
Phased Array Weather Radar (MP-PAWR) was developed to 
make very rapid volume scans as well as accurate rainfall 
estimations by dual-polarization capability and was 
installed in Saitama city, Japan (N35.8615°, E139.6090°) in 
December 2017 (Figure 1). At X-band (9425 MHz), the MP-
PAWR can complete a 3D volume scan of a precipitating 
system at every 30 s with a volume size of 60×60×15 km 
and produce polarimetric radar variables such as horizontal 
reflectivity (Zh), differential reflectivity (Zdr), differential 
phase Φdp, correlation coefficient (ρhv), etc. Such fine 3D 
volume scans of the MP-PAWR enable to resolve small 
changes in convective cells, which can contribute to better 
nowcasting by deep neural networks. The specification and 
coverage of the MP-PAWR are shown in Table 1 and Figure 

2a, respectively. Radar reflectivity (Z) data are converted to 
Constant Altitude Plan Position Indicator (CAPPI) data. Such 
horizontal data assist in detecting radar echo patterns and 
obtaining horizontal motion vectors from an optical flow 
method which will be described in the following section. 
The CAPPI images at 1.5 km above ground level (AGL) were 
used as input to all of the models. 

The case selected in this study is a localized convective 
rain event that occurred on 24 July 2018 over the Tokyo 
metropolitan area. The MP-PAWR observed a series 
of meso-γ-scale storms from 2100 to 2359 JST. Here, 
Japan Standard Time (JST) = UTC + 9. During this period, 
heavy rainfall with a Z maximum over 60 dBZ occurred 
as a few convective cells with the largest length of ~20 
km move towards the south. They showed dynamic 
changes in three stages: cumulus stage, mature stage, 

and dissipating stage during their lifetime (<1 h). Figure 

2b shows an observed Z field on 22:49:55 JST which is 
an initialized time for all model forecasts in this study. 
Several cells are shown with motion vectors obtained 
from an optical flow method. The domain size of analysis 
is 40×50 km (161×201 pixels). The x and y pixel resolution 
is 250 m. The data period is 2 h from 2200 to 2359 JST 
at 30 s time interval and thus the total number of radar 
data files is 242.

3. METHODOLOGY AND MODELS
3.1. OPTICAL FLOW METHOD AND ADVECTION 
FORECAST MODEL
In the past, various algorithms such as a cross-correlation 
method (Rinehart and Garvey, 1978), centroid method 
(Dixon and Wiener 1993), mean absolute difference 
method (Otsuka et al., 2016), Fast Fourier Transform 
(Ruzanski et al., 2011) have been used to estimate motion 
vectors between two consecutive fields. An optical flow 
method, first proposed by Horn and Schunck (1981) 
and Lucas and Kanade (1981), has been used in various 
applications such as segmentation, motion detection 
and tracking, and video prediction (Fernando et al., 2015; 
Ayzel et al., 2019). In this study, the optical flow method 
of Lucas and Kanade (1981) was used to estimate an 
apparent radar echo motion between two consecutive 
Z fields. The optical flow method assumes that flow is 
essentially constant over a small region at a small time 
interval. With the constraint of the same velocity within 
all the pixels of the region, optical flow equations can be 
solved from the least squares error criterion using the 
neighboring pixels in the considered region.

Figure 1 Photos of (a) the MP-PAWR and (b) the phased array antenna.
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We develop a 2D Advection Forecast Model (hereafter, 
AFM) which is similar to Otsuka et al. (2016) to compare 
with forecasts from the ConvLSTM models proposed 
in this study. First, the AFM begins with using the 2D 
continuity equation as follows: 

	
  

  
  

dZ Z Z Z
u v

dt t x y
� (1)

where Z is the radar reflectivity (dBZ), dZ/dt is a source-
sink term related to growth and decay. ∂Z/∂t is the local 

PARAMETERS AUTO-01 AUTO-02

Antenna element Dual-polarized patch antenna

Frequency 9425 MHz

Azimuth resolution 1.2 degree

Elevation 0.0~60.0 degrees 0.0~90.0 degrees

Elevation resolution 0.5~1.0 degrees

Number of elevation 77      114

Observation radius 80 km      60 km

Range resolution 150 m      75 m

Time resolution for volume scan 60 sec      30 sec

Pulse width
1 μs (short)      1 μs (short)

74 μs (long)      48 μs (long)

Observation variables

Radar reflectivity (Z)

Differential reflectivity (Zdr)

Differential phase (Φdp)

Specific differential phase (Kdp)

Doppler velocity (V)

Spectrum width (W)

Table 1 Specification of the MP-PAWR.

Figure 2 (a) Map of the MP-PAWR coverage (AUTO-02 mode) and (b) the observed Z field at 22:49:55 JST on July 24, 2018, which is 
an initialized time (t0) for all model forecasts. Here, Japan Standard Time (JST) = UTC + 9. In (b), the red box indicates the experiment 
domain of the CNN models (40 × 50 km) and the arrows that denote motion vectors are obtained from the optical flow method.

https://doi.org/10.16993/tellusa.37


21Kim and Ushio Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.37

rate of change and u and v is the advection vector which 
is estimated from the optical flow method. If dZ/dt is 
zero (i.e., no source-sink of Z), the Lagrangian persistence 
nowcast can be derived by the advection scheme in the 
AFM using the following forms:

	         , ,Z t m Z t m � (2)
	    U � (3)

where τ is the forecast lead time, m is the spatial location 
at (X, Y), α is the estimated displacement vector, and 
U is the velocity vector, U = [u, v]. The AFM’s nowcast 
is based on Lagrangian persistence which assumes 
that the source-sink term (i.e., growth and decay) in 
the conservation equation of reflectivity is zero. Then 
it implements the optical flow method (Lucas and 
Kanade, 1981) to estimate a motion field of radar 
echo and applies an advection scheme to generate 
an extrapolation-based nowcast (Foresti et al., 2019; 
Germann and Zawadzki, 2002). For a given lead time, Z 
and U values can be predicted following the processes 
shown in Figure 3. There are four steps of the optical 
flow method, upwind difference method (Versteeg and 
Malalasekera, 2007), Euler method, and Runge-Kutta 
method. First, u and v motion vectors are obtained from 
the optical flow method between consecutive Z images 
at t and t+Δt (Δt is the time interval). Z and U values 
are used in the upwind difference equation to calculate 
their slopes, respectively. Then using the Euler method 
which is the first-order derivative, Z and U values at 

t+Δt are predicted. To improve accuracy, we take one 
more derivative, which is the second-order Runge-Kutta 
method, over the obtained slopes of Z and U with respect 
to time. Then, a forecast is finally generated for a desired 
lead time. The Runge-Kutta method used in the final step 
is shown as below: 

        

             , , ,  
2t t t t t t

t
Z Z f t Z f t t Z t f t Z � (4)

where f is a change rate of Z at time t or t+Δt. The 
proposed models forecast Z values, not rainfall rates and 
Z is referred to as a proxy of rainfall.

3.2. DESIGN OF CONVOLUTIONAL LSTM 
MODELS 
In this study, a Convolutional LSTM Model (CLM) 
and Encoder-Decoder Model (EDM) are proposed for 
sequence-to-sequence prediction of rainfall in very 
short-term range. Both the models use a convolutional 
LSTM (hereafter, ConvLSTM) network in their 
architecture, while the EDM applies it in the reduced 
latent space. LSTM which is a specific RNN is efficient 
for keeping track of long-range dependencies between 
time sequences of input data. As shown in Figure 4a, the 
EDM follows an encoder-decoder architecture. A three-
layer ConvLSTM is implemented in the intermediate 
state between an encoder and decoder part. The input 
tensor has four dimensions of [sample (batch size), 
time step, nx, ny], where nx and ny are the number of 
pixels in the x and y direction of an input image. Here, 

Figure 3 Flowchart of the AFM nowcast.
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sample means the total number of training samples 
and a batch size determines the number of samples 
that are fed into the ConvLSTM models as a batch to 
update gradient at one time. Time step is the number 
of temporal sequences contained in each sample. The 
encoder processes sequential input data and extracts 
information using multiple convolutional filters. Through 
the convolutional layers, the shape of the input data 
reduces by half as a result of downsampling (stride = 
2). Then the encoder passes the encoded features to 
the decoder. The decoder decodes the feature vectors 
using filters that perform an inverse convolution while 
upsampling the shape of the decoded feature map 
across the layers. Maxpooling is not used. In the end, a 
cropping layer is used to match the input shape. Finally, 
a single-sequence prediction is generated for a given 
lead time. 

Figure 4b shows the schematic diagram of the CLM 
architecture with details about shapes and filter sizes. 
Like the EDM, the CLM employs the stacked ConvLSTM 
layers. Many-to-many sequence prediction is conducted 
for the CLM. The many-to-many sequence prediction 
means that the input has images at multiple time steps 
and the output is predictions at the same number of time 
steps. Whereas, the many-to-one sequence prediction 
means that the input has a sequence of images and 
the output is a single-sequence prediction. As noted, 
the many-to-one sequence prediction is performed for 
the EDM. Also, padding is used in the ConvLSTM layers 
to have the same dimensions as that of the input data. 
The ConvLSTM network can capture spatial features 
and render them to a next time step as convolution 
filters slide over a 2D field domain. For this, we used a 
‘ConvLSTM2D’ function in Keras with TensorFlow backend 

Figure 4 Schematics of (a) the EDM and (b) the CLM architecture. A bolded number indicates the number of filters used in the 
convolutional LSTM layer. In this study, the number of time steps for the EDM is 7 and for the CLM is 20. The activation function of 
ReLU was used in all the layers of convolution.
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in Python 3.7.3 version. The LSTM has a memory cell and 
forget gate that determines how much information it 
will forget or hold from a previous cell. In Figure 5, the 
schematic of the LSTM is shown. An LSTM unit consists of 
various components shown in the following equations:

	

 
 
 













    

    

    

1

1

1

t t txf hf f

t t txi hi i

t xo t t oho

f W x W h b

i W x W h b

o W x W h b

	

  

 





    

 



 



1

1

,

t xc t t chc

t t t t t

t t t

C tanh W x W h b

C f C i C

h o tanh C � (5)

where input vector xt, hidden state vector ht, cell state 
vector Ct, input gate it, output gate ot, and forget gate ft 

at time t. * is a convolution operation, ° is the Hadamard 
product, W is a weight matrix used in the convolution, and 
b is the bias. The subscripts i, f, and o denote each gate, 
respectively and c is the cell output. σ and tanh indicate 
a sigmoid activation function that has a range of [0,1] 
and a hyperbolic tangent activation function that has a 
range of [-1,1], respectively. As similar to Shi et al. (2015), 
the “ConvLSTM2D” function was applied to consecutive 
2D radar echo fields for precipitation nowcasting. A 
convolution operation between a radar image and a filter 
(i.e., kernel) is performed. The filter in a matrix applies 
to all the pixels of an image and returns a feature map 
in each layer. At the beginning of training, filter weights 
are randomly initialized and updated during training. 
Thus, the final output can be different even if there is no 
change in the model setup. The number of filters used in 
the convolutional LSTM layer is 48 for the EDM and 40, 21 
for the CLM and the kernel size is 3×3. The total number 
of trainable parameters of the EDM is smaller than that 
of the CLM since the CLM keeps input dimensions across 

layers. Thus it takes relatively less time and memory for 
the EDM to finish its run, compared to the CLM.

3.3. DATASETS
In this study, the total 2-h datasets of Z images were 
chronologically labeled from 1 to 242. Then they were 
split into train (40%) test (20%), and validation set (40%) 
in time order. The latest samples were used for creating 
the test and validation dataset. Relative to the size of 
the training dataset, we increased the proportion of the 
validation dataset a little more for a proper turning of 
hyperparameters since the total dataset is not large and 
limited in size. The optimal values of hyperparameters 
are shown in the following section. To avoid overfitting 
of the training dataset, we checked model performance 
by keeping track of train and validation’s accuracy and 
losses as the number of epochs increases. The test data 
unseen to the trained model were used without overlap 
with the train data. The test data right after the last label 
of the train data were used to make predictions with an 
expectation of higher forecast skill. Since the train and 
test datasets are sequential in time, forecast skill would 
be relatively high because there are strong temporal 
relations particularly for nowcasting such fast-varying 
convective storms. In this study, lead times considered 
are 2.5, 5, 7.5, and 10 min and the number of time steps in 
a sample is 7 for the EDM and 20 for the CLM, respectively.

Forecast lead time varies with a life cycle and scale 
of storm. Each scale has a maximum lead time at which 
storm variations can be predicted most (Germann and 
Zawadzki, 2004). A selected case is localized convective 
storms with the largest length of ~20 km (Figure 2) (i.e., 
meso-γ-scale). Considering that they were short-lived in 
less than an hour, we designed models to learn storm 
variations in a relatively mature stage, which enables us 
to have a relatively more amount of data for both training 

Figure 5 Schematic of an LSTM layer with regard to Eq. (5). The superscript l is the number of layer and the subscript t is time of 
sequences. Please refer to the text for more details.
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and validation. The high-resolution Z dataset was input 
to all of the models. Before training, we normalized the 
intensities of Z to be ranged from 0 to 1 by using Znormalized 

= (Z–Zmin)/(Zmax–Zmin). 

3.4. HYPERPARAMETERS
To find the optimal hyperparameters, various values have 
been tested on a trial and error basis through numerous 
model runs between the EDM and CLM independently. 
From the train and validation data, model accuracy and 
loss values per epoch were checked to avoid overfitting 
until they stay relatively constant. Besides, statistics and 
skill scores were also checked after prediction. Below, 
the value of hyperparameter before parenthesis is for 
the EDM and in parenthesis is for the CLM. To reduce 
variances and thus have an effect of generalization, a 
dropout rate of 0.2 (0.1) was used to drop connections 
from a layer to the next. Batch normalization is also 
used to stabilize training and dropout with this can 
prevent overfitting while training the datasets. An 
activation function of the rectified linear unit (ReLU) 
which is represented by f(x) = max(0, x) has been used 
in all the layers of convolution (see Figure 4). Learning 
rate which is used during gradient descent was set to 
0.00045 (0.0001). When the learning rate is small, 
training a model becomes slower and this mitigates loss 
gradients from oscillating or being divergent. However, 
too small of a learning rate during training can result in a 
ConvLSTM model that does not converge and can retain 
a large loss. The optimization algorithm used during 
gradient descent is Adaptive Momentum Estimation 
(ADAM) and the loss function of mean squared error 
(MSE) is employed to minimize losses. The total number 
of epochs is 2000 (2800) and the batch size is 2 (10). The 
batch size was chosen as small as possible to avoid an 
out of memory error.

4. EXPERIMENT RESULTS
4.1. STATISTIC METRICS
Model predictions are statistically assessed with lead 
time. Correlation coefficient (r), root mean square error 
(RMSE), mean bias, and standard deviation (STD) are 
calculated between observed and predicted Z fields and 
are summarized in Table 2. These metrics are calculated 
for all pixels in an observed and predicted field above a 
certain Z threshold. In this study, two Z criteria are used to 
classify the rain area into two categories. Comparisons of 
the observed and predicted Z fields and their scatterplots 
with lead time are shown in Figs. 6 and 7, respectively. 
At the initialized time (22:49:55 JST) (Figure 2b), two 
localized convective cells were observed as they move 
towards the south. One is located on the upper side and 
the other is on the lower side of the domain. 

In Figure 6, it is seen that there is no large variation 
in the observed Z fields for this 10-min range. The 
CLM could represent the detailed patterns within the 
convective cells at the lead times of 2.5 and 5 min. From 
2.5 to 7.5 min, the EDM produced the relatively more 
similar cell shapes but in lower intensities. On the whole, 
the Z intensities from both the CLM and EDM tended to 
weaken with lead time. The predicted rain areas showed 
more change in shape, compared to those from the AFM 
which almost maintained with lead time. At the lead 
time of 2.5 min (22:52:24 JST), all the model predictions 
show very high correlations with the true observations. 
The CLM and AFM showed the quite high r values of 0.88 
and 0.87, respectively. The CLM also had the lowest RMSE 
and STD at 2.5 min (see Table 2). The lowest r of 0.73 was 
found in the EDM. At the lead time of 5 min (22:54:53 
JST), the CLM again showed the highest r of 0.69 with 
the lowest RMSE and STD. In particular, the EDM showed 
the largest negative mean bias of −3.27 dB in this 10-
min period, indicating the Z underestimation and such 

LEAD TIME MODEL CORRELATION COEFFICIENT MEAN BIAS ROOT MEAN SQUARED ERROR STANDARD DEVIATION

2.5 min CLM 0.88 –0.37 6.84 6.83

EDM 0.73 –2.4 8.92 8.6

AFM 0.87 0.9 7.0 6.94

5 min CLM 0.69 0.3 9.51 9.51

EDM 0.61 –3.27 10.55 10.03

AFM 0.65 0.86 10.56 10.53

7.5 min CLM 0.58 –0.22 10.41 10.41

EDM 0.51 –1.22 10.77 10.71

AFM 0.46 2.01 12.63 12.47

10 min CLM 0.56 –0.74 8.96 8.93

EDM 0.48 –2.08 11.66 11.47

AFM 0.36 2.28 14.05 13.86

Table 2 A summary of statistics of each model with lead time.
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negative biases existed until 10 min (Table 2). By contrast, 
the AFM showed positive mean biases at all lead times. 
After 7.5 min, skewness in the Z distributions became 
more notable in the scatterplots of the CLM and EDM as 
shown in Figure 7.

At the lead time of 10 min, the larger negative mean 
bias of −0.74 dB and −2.08 dB is found in the CLM and 
EDM, respectively. The reason for the negative biases from 
both the models is not clear yet. It might be related to a 
choice of loss function which can affect predicted results 
by a different speed of convergence to reach minima of 
losses or an issue of normalization such as input data 
normalization or batch normalization (for mini-batches) 
which has effects of regularization and convergence 
during training. Also, a relatively smaller proportion of 
higher Z values in the training dataset may contribute to 
underpredicting the strength of convective rain. A weighted 

MSE loss function could be a choice for the models to 
improve the skill in high Z areas. The AFM showed the 
highest RMSEs and STDs at all the lead times as shown in 
Table 2. The last row in Figure 7 shows that the data points 
of high Z > 30 dBZ are more densely distributed along the 
1:1 line at the lead times of 7.5 and 10 min. This is well 
contrasted with the scatterplots of the CLM and EDM that 
show the skewed distributions by the negative biases as 
noted above. This might be one reason to cause relatively 
lower skill scores of the CLM and EDM for convective rain (Z 
> 35 dBZ) than the AFM since the amount of Z data greater 
than 35 dBZ becomes fewer. As expected, the degree of 
scatter has degraded more severely with lead time in all 
the model forecasts (Figure 7).

In Figure 8, the CLM showed the highest r and lowest 
RMSE values for all the lead times, implying its better 
nowcasting performance. The AFM showed the lowest 

Figure 6 Comparison of the observed (OBS) and predicted Z fields from the CLM, EDM, and AFM with lead time. 
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r of 0.46 at 7.5 min and 0.36 at 10 min. Thus, it is the 
AFM that showed the largest change in the correlation 
coefficient r from 0.87 to 0.36 in this 10-min period. 
Importantly, the EDM showed the higher r and lower 
RMSE values even at 7.5 and 10 min, compared to the 
AFM. This suggests that the EDM has better skill than the 
AFM for relatively long-range predictions. Thus, it can 
be noted that the difference in forecast skill between 
the ConvLSTM models and extrapolation-based model 
becomes more pronounced with increased lead time. 
The ConvLSTM models could learn the fast-evolving 
features of rain areas at consecutive frames through 
deep neural networks. By contrast, the AFM advected the 
existing fields of precipitation southward, almost without 
changing shape and intensity with lead time (see the 
last row in Figure 6). This contributed to keeping the high 
Z intensities (>30 dBZ), compared to the CLM and EDM 
which underpredicted the Z intensities as addressed 
above (Figure 7).

4.2. FORECAST EVALUATIONS
Performances of the proposed models are evaluated 
with lead time using three forecast metrics of Probability 
of Detection (POD), False Alarm Ratio (FAR), and Critical 
Success Index (CSI) which are common to be used for 
rainfall nowcasting and verification (Schaefer, 1990). The 

forecast metrics, ranged from 0 to 1, are calculated from 
the equations below: 

	 

Hits

POD
Hits Misses

� (6)

	 


 
 

Falsealarms
FAR

Hits Falsealarms
� (7)

	 
   

Hits
CSI

Hits Misses Falsealarms
� (8)

The POD is defined as the ratio of the number of correct 
forecasts as rain (“hits”) to the total number of observed 
events (“hits + misses”). The FAR is the ratio of the number 
of incorrect forecasts as rain (“false alarms”) to the total 
number of forecast events (“hits + false alarms”). The 
CSI is also denoted as Threat Score (TS) which is the ratio 
of the number of correct forecasts as rain to the total 
number of observed and forecast events. A perfect score 
for the POD and CSI is 1 and for the FAR is 0. In analyzing 
these metrics, we made two Z categories using different 
Z criteria that separate heavy rain areas from a given 
total rain area. Thus, one is the total rain area that covers 
all stratiform and convective rain with Z > 10 dBZ. 10 dBZ 
corresponds to approximately 0.1 mm h-1 in rainfall rate 
(R) when the relation of z = 300R1.6 is assumed, where 
z is radar reflectivity factor (mm6 m–3) and rainfall rates 
below this are considered as “no rain”. The other is the 

Figure 7 Scatterplots with correlation coefficients between observations and forecasts with lead time for the total rain area category 
of Z > 10 dBZ. 
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category of convective rain area with Z > 35 dBZ (Dixon 
and Wiener, 1993). Note that the CSI and POD are values 
related to solely a size of rain area unlike the correlation 
coefficient r which is a function of not only an area but 
also intensity. Thus, they need to be analyzed together 
with caution. 

For the two categories, the skill scores of the CSI, POD, 
and FAR with lead time are summarized in Table 3 and in 
the time series in Figure 9. It is shown that the CSI scores 
between the models in the total rain area category show no 
much difference with lead time in Figure 9a. The CSI scores 
of the persistence method were much lower than those 

Figure 8 Time series of the correlation coefficients (solid) and RMSEs (dotted) of the CLM, EDM, and AFM for the total rain area of 
Z > 10 dBZ. A legend for the symbols of the models is shown in the left-bottom corner. 

Table 3 A summary of the nowcasting metrics with lead time for the two categories of Z >10 dBZ and Z > 35 dBZ (in the bracket).

LEAD TIME MODEL POD FAR CSI (THREAT SCORE)

2.5 min CLM 0.91 (0.69) 0.08 (0.27) 0.85 (0.55)

EDM 0.88 (0.35) 0.07 (0.34) 0.83 (0.30)

AFM 0.91 (0.76) 0.09 (0.33) 0.83 (0.55)

Persistence 0.88 (0.62) 0.14 (0.35) 0.78 (0.46)

5 min CLM 0.90 (0.52) 0.14 (0.46) 0.78 (0.36)

EDM 0.84 (0.17) 0.10 (0.49) 0.77 (0.15)

AFM 0.87 (0.49) 0.15 (0.51) 0.76 (0.32)

Persistence 0.82 (0.43) 0.20 (0.62) 0.68 (0.25)

7.5 min CLM 0.87 (0.29) 0.17 (0.49) 0.74 (0.23)

EDM 0.84 (0.10) 0.17 (0.62) 0.72 (0.09)

AFM 0.87 (0.40) 0.20 (0.64) 0.71 (0.23)

Persistence 0.76 (0.35) 0.23 (0.66) 0.62 (0.21)

10 min CLM 0.81 (0.21) 0.17 (0.42) 0.70 (0.16)

EDM 0.81 (0.07) 0.17 (0.58) 0.69 (0.07)

AFM 0.85 (0.35) 0.25 (0.70) 0.66 (0.19)

Persistence 0.71 (0.31) 0.27 (0.71) 0.56 (0.17)
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of the other models. Forecast skill scores of the Eulerian 
persistence method (hereafter, persistence method) were 
obtained by assuming that the current Z field is taken to 
be a forecast for any lead time (Mandapaka et al., 2012) 
and are also shown in Table 3. In Figure 9a, the CLM CSIs 
are higher than the AFM CSIs for all the lead times. Also, 
the CLM CSIs are a little higher than the EDM CSIs, showing 

the higher r and lower RMSE values (Figure 8). Thus, the 
CLM is regarded to perform best for predictions in this 
category of the total rain area. For 2.5 and 5 min in Table 

3, the EDM CSIs are almost the same as the AFM CSIs. For 
7.5 and 10 min, however, the EDM CSIs are slightly greater 
than the AFM CSIs with the higher r and lower RMSE values 
as shown in Figure 8.

Figure 9 Time series of the scores of (a) CSI, (b) POD, and (c) FAR from the CLM, EDM, AFM, and persistence method. The solid line 
is for the total rain area and the dashed for the convective rain area. The CLM is in red, the EDM in black, the AFM in blue, and the 
persistence method in green. 
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In Figs. 9b and c, POD and FAR variations show that 
their differences between the models are smallest at 
2.5 min and tend to become larger after 5 min. In Figure 

9c, it is noteworthy that the EDM FARs are smaller than 
the AFM FARs at all the lead times. This contributed to 
increasing the EDM CSI scores particularly at 7.5 and 10 
min. Therefore, the forecast skill of the AFM was about 
equal to that of the EDM at the early lead time. However, 
the EDM showed the better skill at the longer lead times 
(7.5 and 10 min) than the AFM which skill became poorer 
with increased FARs and RMSEs. The EDM PODs, which do 
not reflect false alarms (Eq. (6)), are lower than the AFM 
PODs for all the lead times as shown in Figure 9b. It is the 
persistence method that had the lowest POD and highest 
FAR values at all the lead times.

Next, model performances for the convective rain area 
are assessed with skill scores shown in the bracket in 
Table 3. It is seen in Figure 9a that the CLM CSIs are equal 
to or slightly higher than the AFM CSIs at 2.5 ~ 7.5 min 
but lowered a bit below the AFM CSI at 10 min. The more 
notable decrease in the CLM PODs is shown at 7.5 and 10 
min in Figure 9b. This indicates that the nowcasting skill of 
the CLM started to be as high as that of the AFM but got 
poorer at 10 min. With respect to the EDM, the AFM POD 
and CSI scores were more than a double of the EDM POD 
and CSI scores at all the lead times. Even the persistence 
method’s PODs and CSIs were much higher than the EDM 
PODs and CSIs. Thus, the EDM is regarded to be the worst 
model for the convective rain category. It is considered 
that the negative biases in Z (i.e., underestimation) 
seem to have contributed to decreasing the EDM CSI 
scores because the number of data points above 35 dBZ 
became fewer due to the biases.

This resulted in the marked decrease in the CLM CSI 
and POD scores at 10 min with the largest negative bias 
(-0.74 dB) as noted in section 4.1. Eventually, the AFM 
predicted the convective rain areas fairly well in contrast 
to the lower skill for the total rain area. The higher skill of 
the AFM at longer lead times is because it has advected 
precipitation fields, almost keeping cell shapes and high 
Z intensities as noted earlier. That is, the high Z values 
helped to maintain the AFM’s high skill scores until 10 min. 
In Figure 9c, it is noted that the CLM had the lowest FAR 
scores for the convective rain area at all the lead times, 
contributing to somewhat an increase in the CSI scores. 
Overall, the AFM and persistence method showed similar 
variations to each other. Certainly, the persistence method 
showed the lower skill than the AFM at all the lead times 
since the AFM utilized the Lagrangian advection scheme 
and optical flow method.

5. DISCUSSION AND SUMMARY

In this study, we proposed the two ConvLSTM models 
and examined to nowcast the meso-γ-scale, localized 

convective storms using the unique high-resolution Z 
datasets from the MP-PAWR. The predicted Z fields with 
lead time up to 10 min were compared with those from 
the AFM which utilized the Lagrangian advection scheme 
with motion vectors from the optical flow method. For 
the total rain area, the results indicate that the CLM 
outperformed both the AFM and EDM, producing the 
highest CSI and r values and lowest RMSEs at all the lead 
times. Thus, the CLM is found to be the best nowcasting 
model in this rain area category. The higher performance 
is probably related to the CLM structure that employed 
the three stacked ConvLSTM layers and filters without 
reducing the size of the input dimensions. This helped to 
keep better tracking of spatiotemporal features in detail 
between time steps of observations. By contrast, the 
EDM reduces the dimension to its half twice by a stride 
convolution, which may lead to some losses of spatial 
information. Instead, the EDM had the merit to reduce 
computing time and memory, still capable of producing 
comparable results, due to the reduced number of 
trainable parameters. The AFM performed fairly well at 
2.5 ~ 5 min but afterward, its skill became poorer with 
increasing FAR and RMSE values. The EDM generated the 
relatively better forecasts at 7.5 and 10 min. 

For the convective rain category, the CLM CSI scores 
were equal to or slightly higher than the AFM CSI at 2.5 ~ 
7.5 min. However, the CLM became poorer with the lower 
CSI and POD scores than the AFM at 10 min. The AFM 
showed the appreciable or better performance than the 
CLM and they both outperformed the EDM for all lead 
times. It should be noted that the incorrectly forecasted 
areas of the AFM were broader than those of the CLM 
when considering the larger AFM FAR scores found at all 
the lead times (Figure 9c). The EDM had the lowest CSI 
scores among them. In this convective rain category, 
the forecast skill of the proposed ConvLSTM models was 
not as high as that in the total rain area category. There 
are some reasons for this. One is probably because the 
AFM first captured convective precipitation patterns well 
and advected them, almost keeping their 2D features 
in terms of Lagrangian advection assuming stationary 
motion. This had an effect to maintain their shapes and 
high Z intensities and resulted in the higher CSI and POD 
scores at later lead times. Also, the observed period of 
the storm in this study is more applicable to the mature 
stage of storm. Therefore, this would be the case that 
stationary advection is more dominant than a local 
source or sink of Z in 10 min. Germann and Zawadzki 
(2002) indicated that Lagrangian persistence can fail in 
local areas where a source-sink term or nonstationarities 
in the motion field becomes more important than 
advection. The Lagrangian advection in the AFM may 
not perform well in the early stage of rapidly developing 
cells since it does not consider the growth and decay of 
Z (Germann and Zawadzki, 2002). Thus, the better skill of 
the AFM particularly for the convective rain category is 
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largely attributed to the observation period of the storm 
in the mature stage. In this stage, the growth or decay 
was not as effective as in the developing or dissipating 
stage.

On the other hand, the performance of the ConvLSTM 
models relies on the 2D convolutional transformation 
by multiple filters with weights as updated across each 
convolution layer. By this merit, the CLM that keeps their 
input dimensions through the layers could predict better 
the total rain areas and intensities, showing the higher 
correlation coefficient r and CSI values. However, the CLM 
has underpredicted the areas and intensities of convective 
rain, producing the more negative Z biases at the longer 
lead times, compared to the AFM. The EDM also showed 
the same limitation by resulting in the negative biases on 
the range of higher Z, which led to the lower CSI and POD 
scores in this convective rain category. In addition to the 
issues of regularization or loss convergence, the negative 
biases may also be related to the smaller proportion of 
high Z areas in our training dataset and thus the models 
may have focused to improve the skill in relatively 
weaker Z areas (Wang et al., 2021). There are many 
more factors that affect the nowcasting skill of ConvLSTM 
models such as training data size, architecture, optimal 
hyperparameter, overfitting, and so on. Their nowcasts 
can be further influenced by rainfall type, lifetime, data 
resolution, and model domain size, etc. Germann and 
Zawadzki (2002) reported that predictability tends to 
increase with scale of thunderstorms. Higher variability 
in prediction is expected for short-lived, small convective 
storms, which is our case of this study.

A potential limitation of our study is that the proposed 
ConvLSTM models have not been evaluated with storms 
of larger scales (e.g., mesoscale convective systems). 
In this study, we used only the datasets from a series 
of small convective storms. The training data was 
not enough from the 2-h observations but the storm 
variations were resolved more finely at high temporal 
resolution (30 s) of the MP-PAWR. Such fine resolution 
data provides high potentials for nowcasting such small 
short-lived storms since short-period sequential data at 
high temporal resolution is relatively more critical than 
other large-scale prediction studies. From the given 
training data, the ConvLSTM network could learn spatial 
features and temporal correlations in sequential 2D 
images and predict Z fields comparably up to 10 min. The 
maximum lead time of 10 min is rather short but was 
able to be exploited considering the storm’s life cycle less 
than about 1 h in this study. Yet, this study is preliminary, 
still on the way to improve the ConvLSTM models to 
better nowcast meso-γ-scale convective storms using 
the high-resolution radar data. For future work, we will 
evaluate these models for other storm events with a 
larger size of training data (especially more samples in 
high Z areas). In regard to estimating and predicting up- 
and downward motion vectors closely related to the cell’s 

growth or decay, a 3D ConvLSTM model extended from 
the 2D ConvLSTM would be an alternative in the future. 
It is also worth to integrate multi-source meteorological 
data (such as re-analysis data) with the radar data as 
input to the 2D and 3D ConvLSTM models and test their 
nowcasting skill in the future.
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