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ABSTRACT

It is not clear to what extent the variations of seasonal mean winds and seasonal extreme winds are related.

We investigate this relationship for the Baltic Sea area by analysing two regional climate gridded data sets,

coastDat2 and HiResAFF, for the periods 1948�2009 and 1850�2009, respectively. Both data sets are based on

regional climate simulations incorporating information from observations with the aim of reproducing the

observed trajectory of climate variables. We compare the wind direction distribution of mean and extreme wind

events by analysing seasonal wind roses. Mean wind directions display a more isotropic distribution, with a

seasonally varying maximum. Extreme winds are much more constrained to south-westerly and westerly

directions. The co-variability in time between the wind speed along the dominant directions of seasonal mean

and the seasonal extreme winds was investigated using a complex correlation coefficient. This coefficient

enables the simultaneous investigation of the co-variability of two-dimensional variables, for example wind.

This coefficient is small for all seasons, indicating a very weak co-variance in time between seasonal mean and

seasonal extremes. Hence, deviations in the direction of the mean wind are not a good indicator for deviations in

the direction of extreme winds. We also assess the spatial structure and temporal variability of mean and

extreme wind statistics using a principal component analysis. The principal components exhibit no significant

long-term trends over the simulation periods, although multidecadal trends are detected for some periods and

seasons. In recent decades, wintertime mean and extremes shifted to a more south-westerly direction. In the

other seasons, no trends in wind directions are detected.We also investigate the possibility that seasonal patterns

of extreme winds might persist over several adjacent seasons. No such persistent patterns can be identified, and

hence extreme winds in one season are not useful to predict extreme winds in the following seasons.
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1. Introduction

The interannual variability of winds, in terms of magnitude

and direction, has been analysed much less than the vari-

ability of seasonal mean winds. In this study, we investigate

the interannual variability of extreme daily winds in the

Baltic Sea region and its relationship to the variability of

seasonal means. Specifically, we investigate the hypothesis

that the variability of directions and speed of daily wind

extremes is similar to the variability of seasonal means.

We address this problem by comparing mean and extreme

wind statistics for (1) the distribution of wind intensity and

direction, (2) regional differences in these distributions and

(3) the temporal evolution of seasonal variability.

Changes in wind directions of mean and extreme wind

statistics can be of importance for the possible economic

and societal impacts of weather conditions (e.g. Jaagus and

Kull, 2011). For European winter, a rule of thumb has been

suggested according to which westerly winds bring warm

and moist air from the Atlantic and easterly winds bring

cool and dry air from the Asian continent (e.g. Jaagus

and Kull, 2011). For other seasons this rule is not as clear,

but atmospheric parameters are known to be strongly

connected during the whole year, thus long-term changes

in wind directions can cause major changes in the regional

climate system, for example, in precipitation patterns and

cloudiness (Rutgersson et al., 2015). Rutgersson et al. (2015)

emphasise the need for understanding and specifying poten-

tial long-term changes and variability of atmospheric para-

meters, for example, wind, due to their potential impacts on

hydrological, oceanographic and biogeochemical processes

in the Baltic Sea region. A comprehensive understanding of
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changes in the wind climate is also necessary for the geo-

morphological analysis of Baltic Sea coastal stability and

aeolian erosion processes (Clemmensen et al., 2014).

Changes in wind climate can also have strong impacts

on coastal environments, either through high wind speeds

of limited life span or sustained periods of above average

mean winds. Extreme weather and climate events, such as

storms (and accompanied extreme winds speeds), can lead

to socio-economic and natural disasters. During storm

events, extreme wind speeds occur often in combination

with heavy precipitation. Storm events are linked to wind

and pressure anomalies causing coastal flooding and severe

wave action due to extreme sea level heights driven by

storm surges and higher wind waves over sea, affecting the

coastal erosion processes, especially at sandy coastlines.

At the Baltic Sea coast, however, sandy coastlines and

connected dune environments can be directly affected by

changes in wind climate due to sand transport changes

(Reimann et al., 2011). For these coastal dune environments,

sand transport is found to be more strongly determined by

long-lasting winds with above average wind speeds than by

short-lived extreme winds.

Therefore, information about the variability of wind

statistics is of increasing importance for risk management.

Historical wind climate information, for instance, is needed

for decisions concerning offshore wind logistics for the

installation of offshore wind farms (Weisse et al., 2015).

Addressing these needs, previous studies of wind statis-

tics over North-European regions have focused on changes

in mean winds (e.g. Siegismund and Schrum, 2001; Kent

et al., 2013) and/or extreme wind statistics (e.g. Raible

et al., 2007; Nilsson, 2008), but only few have addressed the

variability of wind direction (e.g. Jaagus and Kull, 2011;

Keevallik, 2011).

The Baltic Sea region, situated in the north-eastern part

of Europe, is one of the most investigated seas in the world

(Reckermann et al., 2011); however, to date, little is known

about long-term changes in wind direction statistics, the

impact on the wave climate and the consequences for coastal

stability (Seneviratne et al., 2012). Recent studies on the

Baltic Sea wave climate show different trends in average

and extreme wave conditions for different regions and it

is assumed that these changes are induced by systematic

changes in wind directions (Rutgersson et al., 2014). The

Baltic Sea region is characterised by extremely variable

weather conditions due to its position in the extratropics,

lying between arctic and subtropic air masses. It is strongly

influenced by the atmospheric circulation in the North

Atlantic European sector, which is steered by two pressure

systems, namely the Icelandic Low and the Azores High,

which define the North Atlantic Oscillation (NAO) (Hurrell,

1995). Due to the meridional pressure gradient between

these two systems, westerly winds generally prevail over the

Baltic Sea area. However, other wind directions are fre-

quently registered (Rutgersson et al., 2014).

Existing studies for the Baltic Sea region regarding

variability of wind directions are limited to the focus on

changes in frequencies of wind directions, specifically for

Estonia (Kull, 2005; Keevallik, 2008; Jaagus, 2009; Jaagus

and Kull, 2011). For example, Jaagus and Kull (2011)

investigated data from 14 Estonian stations covering the

period from 1966 to 2008 and found an increasing trend in

winds from south-west (SW) during winter. Comparable

results for the whole Baltic Sea from 1958 to 2009 were

described by Lehmann et al. (2011). Their study concluded

that during winter [December, January, February (DJF)]

the frequency of westerly wind events increased, while at

the same time easterly wind events decreased.

Different data sets, covering different periods, have been

used to assess past wind and storm activity. Time series

of wind observations can be inhomogeneous, due to, for

example, station relocations (e.g. Krueger and von Storch,

2011) and/or changes of surface roughness because of land

use changes (e.g. McVicar et al., 2012). Therefore, many

studies have resorted to mean sea level pressure (SLP) mea-

surements to derive geostrophic wind speed, which can

be then used as a proxy for surface wind speed (e.g.

Alexandersson et al., 2000; Krueger and von Storch, 2011).

An alternative to station data are reanalysis data sets

and reconstructions. In areas with a dense observational

network, as in Europe, this kind of data set has a large

advantage due to its temporal and spatial homogeneity

(Weisse and von Storch, 2009). However, most reanalysis

data sets cover only the last six decades and are too short

to allow for a conclusive discrimination between any

long-term trend and interdecadal variability (Bärring and

Fortuniak, 2009). The longest reanalysis that exist (e.g. 20CR

Compo et al., 2011) are affected by changes in the obser-

vations such as station density or measurement techniques

especially before 1948 (Krueger et al., 2013).

In this study, we use two gridded data sets, both based on

the output of regional climate models that also incorporate

information from observational data: (1) the regional re-

analysis coastDat2 (Geyer, 2014), which covers the period

from 1948 to the present and is based on a dynamical model-

ling approach and (2) the regional reconstruction HiResAFF

(Schenk and Zorita, 2012), which spans the period from

1850 to 2009 and is based on a hybrid statistical�dynamical

approach. Although, the coastDat2 data set begins only in

the mid-20th century, we decided to include this product

in our study because in 2014 it was the longest regional

reanalysis with such a high spatial (0.228) and temporal

(hourly) resolution (Geyer, 2014). Weisse et al. (2009),

for example, emphasised that coastDat1 is well suited for

the analysis of regional changes, especially in data sparse

regions such as coasts or offshore, due to its higher resolution.
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Moreover, Weisse et al. (2014) found that the validation of

wind speed for coastDat1 and coastDat2 showed compar-

able qualities. The second data set, HiResAFF, combines

the advantages of a high spatial resolution and a temporal

coverage longer than the last 16 decades, but as it was

recently introduced, it has yet to be thoroughly analysed.

Rutgersson et al. (2014) found that the variations of wind

speed in HiResAFF show comparable results to a geos-

trophic wind analysis. Due to the lack of validation studies

for HiResAFF, we include a comparison of coastDat2 re-

analysis with the long-term HiResAFF reconstruction.

This paper has the following structure: Section 2 presents

the data sets used in this study, introduces the frame of the

investigation area and applied subdivisions, and describes

the applied statistical methods. Section 3 presents a com-

parison of both data sets in terms of changes in wind

direction and speed for mean and extreme wind events.

Section 4 includes the main results of this study. Section 5

presents a discussion and conclusions.

2. Data

For this study, we analyse daily mean wind data at a height

of 10m (hereafter surface wind data) over the past decades.

We used wind information from two recent data sets. Both

are based on a combination of observational and model

simulation data, but differ in their approaches to combining

the two sources of information.Whereas one (coastDat2) is the

result of a dynamical model approach, the other (HiResAFF)

is a result of a hybrid statistical�dynamical approach. Due

to this difference, the latter data set spans a much longer

time period (around 150 yr) and therefore allow an ex-

tended analysis of long-term trends and variability in wind

direction changes from decadal to centennial time scales.

2.1. coastDat2 1948�2009

For the main investigation, wind data from the regional

reanalysis data set coastDat2 (Geyer, 2014) are used. This

data set originates from a regional climate simulation with

the non-hydrostatic operational weather prediction model

COSMO in CLimate Mode (COSMO-CLM; Rockel and

Hense, 2008) driven by meteorological initial and boundary

conditions from NCEP/NCAR Reanalysis 1 data (1948�
present; T62 (1.8758:210 km), composed of 28 levels,

Kalnay et al., 1996; Kistler et al., 2001). The simulation was

conducted, including spectral nudging (after von Storch

et al., 2000), on a regular grid in rotated coordinates with a

rotated pole at 170.08W 35.08N. It has a spatial resolution

of 0.228 and the output is available on an hourly temporal

resolution. We use daily mean wind data because of the

comparability with HiResAFF, which is only available on a

daily time scale.

The data set coastDat2 is the successor of coastDat1

(Weisse et al., 2009), which was originally conducted for a

study of the statistics of extreme events and their long-term

changes, and has been more thoroughly analysed. coastDat1

was based on a different regional model (REMO; Jacob

and Podzun, 1997). The quality of wind fields in coastDat1 is

found to be comparable to coastDat2. However, coastDat2

provides a better representation of high wind speeds (Geyer,

2014). Moreover, coastDat2 is driven by NCEP, which is

an often analysed and commonly accepted data set. In the

period and region covered by coastDat2, the changes in the

quality and coverage of the observational data have been

relatively small. Therefore, we have confidence in the wind

data of coastDat2.

2.2. HiResAFF 1850�2009

In order to investigate the longer-term variability, we use

Schenk and Zorita (2012) HiResAFF. Schenk and Zorita

(2012) introduced the High RESolution Atmospheric Forc-

ing Fields (HiResAFF) data set. This data set is based

on a two-pronged approach that combines historical sta-

tion data of daily mean SLP and monthly mean 2 meter

Temperature (T2m), available from the year 1850, and a

shorter high-resolution regional climate simulation with the

atmosphere�ocean coupled model RCAO (Rossby Centre

regional Atmosphere Ocean model) over the period 1958�
2007 (Doescher et al., 2002). This model data set has a

horizontal resolution of 0.258*0.258 (:25 km).

The HiResAFF daily atmospheric forcing fields for

Northern Europe cover the period from 1850 to 2009

and is the result of a reconstruction by the application of

the analogue method (AM; Lorenz, 1969; Kruizinga and

Murphy, 1983; van den Dool, 1994). This method is a non-

linear upscaling method in which the historical observations

(predictor) at day dobs are compared to the corresponding

data (predictand) simulated by the climate model RCAO

for each day throughout the simulation period. The simu-

lated day in which the modelled field displays the closest

similarity with the station data at day dobs is identified as

the analogue day, and all fields simulated in this analogue

day are taken as the reconstructed fields for day dobs. Thus,

the AM can be essentially seen as a resampling of the model

days in a way that has a better fit to the sequence of past

observed station data.

As the AM does not assume any specific shape for the

probability distribution of the variables, it can reconstruct

non-normally as well as normally distributed variables.

Hence, the AM reconstruction can, in principle, capture the

extremes (magnitudes, frequencies), the probability distri-

butions of the variables and the variability reasonably well

on the daily scale (Schenk and Zorita, 2012). Schenk and

Zorita (2012) also tested the sensitivity of the AM to the
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size of the analogue pool and found good agreements for

all tested pool sizes. They also investigated the influence of

a reduced number of station data and reported a high level

of confidence in a realistic reconstruction of wind.

2.3. Study area and definitions

The investigation area covers the Baltic Sea region in

the geographical window 108�258E and 518�618N. To

investigate differences in Baltic Sea subregions, we analysed

wind roses at nine points (subjectively chosen to cover the

whole region) scattered across the investigation area (Fig. 1).

The results of these nine wind roses (not shown) could be

regionally grouped into four groups, each one representa-

tive of a subregion. This result supports the decision to sub-

divide the area into four smaller regions. The subdivisions

represent the south-western (SWR, 108�188E; 518�568N),

south-eastern (SER, 178�268E; 518�568N), north-western

(NWR, 108�198E; 568�618N) and north-eastern (NER,

178�288E; 568�618N) Baltic region (see Fig. 1).

The study is based on a seasonal analysis with seasons

defined as: Winter (December, January, February � DJF),

Spring (March, April, May � MAM), Summer (June, July,

August � JJA)and Autumn(September,October,November �
SON). Autumn and winter are typically the seasons with

the highest wind speeds over the Baltic Sea (also found in

this study).

We use two definitions for mean wind. Definition (1)

considers the three events per season which are closest to

the 50th percentile of wind speed (hereafter named ‘median

wind events’). Note that this definition is not the statistical

‘median’, because we use the three events closest to the

50th percentile of wind speed. This measure is used to

ensure comparability with the definition of extreme events,

which also includes no more than three events per season.

Definition (2) considers the average of available daily data

in the time period of interest (hereafter named: ‘average

wind events’). This definition is only used for the empirical

orthogonal function (EOF) analysis in Section 4.3. We

use a different ‘mean’ for the EOF analysis to increase the

sample size and ensure robustness of the EOF patterns,

which would be smaller with only three events per season.

Nevertheless, we also conduct the analysis with the ‘median

wind events’ definition and obtained similar patterns, but

without any significant trends.

The extreme winds are defined by choosing a percentile

threshold. In Section 4.1, we define the three strongest

events per season as ‘extreme wind events’. For the

monthly analysis of wind direction frequencies in Section

4.2, the threshold to define the extremes was the 90th

percentile. Applying a higher percentile would reduce the

number of extreme events per month compromising the

robustness of this statistic. Hence, every month includes

approximately three extreme events. For the EOF analysis

in Section 4.3, the 98th percentile is used.

2.4. Statistical methods

One statistical method applied in this study is the principal

component (PC) analysis, also known as the empirical

orthogonal function (EOF). This analysis derives the

dominant patterns of variability (von Storch and Zwiers,

1999). Note that the EOF analysis is applied to anomalies,

that is, deviations from the long-term mean.

Rogers’ (1990) analysis of European SLP with the EOF

method enables the determination of four main pressure

patterns. He used this method to capture most of the vari-

ability of the daily pressure fields with just a few patterns.

In Section 4.3, we use this method to identify and com-

pare seasonal wind field patterns for mean and extreme

wind events. In case of the mean wind events, we determine

monthly anomalies of the zonal (u) and of the meridional

(v) wind component based on the available daily data.

The gridded fields of the wind components u and v are

concatenated into one field, resulting in twice the dimen-

sion of the original fields. The EOF analysis is applied to

this augmented field.

In case of the extreme events, we calculate the seasonal

98th percentile of wind speed for the field mean of the

Baltic Sea region. The u and v components on days above

Fig. 1. Area of study showing nine points which are used to

illustrate the geographical subdivisions. The black lines demon-

strate the area subdivisions (SWR, SER, NWR, NER) used in

Section 4.2.
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these percentile values are averaged, as the EOF analysis is

applied to anomalies. These averages are used to determine

the anomalies of u and v by subtracting them from the

seasonal extremes, and hence the anomalies are not cal-

culated by subtracting the long-term mean of the entire

sample of winds.

The complex correlation coefficient is a method to

determine the co-variability between two vector fields

(von Storch and Zwiers, 1999). A two-dimensional vector

time series can be represented as a complex time series,

where the real and imaginary components are given by the

first and second dimensions of the vector m�u�iv. Given

two two-dimensional vector time series m�(um(t), vm(t)),

and e�(ue(t), ve(t)), the complex correlation rc is defined as

the complex Pearson correlation between the two complex

time series:

rc ¼
P
ðmt � e�t ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðmt �m�t Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðet � e�t Þ

pq (1)

where the superscript * denotes the complex conjugate.

The result rc is again a complex number. The complex

correlation coefficient can be characterised by its magni-

tude, which describes the strength of the linear relationship

between the magnitude of the vectors, and by a phase angle,

which describes the average direction difference between

both vector time series. This phase angle is the advantage of

the complex correlation compared to a normal correlation,

allowing the determination of the directional relationship

between two vectors. Kundu (1975) applied this method to

investigate the Ekman veering in the Pacific Ocean at the

coast of Oregon (USA). In our case, the complex correla-

tion is calculated between the monthly mean winds m and

the monthly extreme winds e, and thus provides a measure

of the coupling of the variations in magnitude and direction

between mean winds and extreme winds.

3. Comparison of coastDat2 and HiResAFF

In the following, the wind characteristics in the two data

sets are compared in their overlapping period from 1948

to 2009. Although the overall aim of this study is the com-

parison of changes in wind direction statistics, the com-

parison of both data sets will also be focused on statistics of

wind speeds. This section provides a general assessment of

the comparability of the wind variable of both data sets.

Mean wind events (50th percentile of wind speed,

Section 2.3) and extreme wind events (98th percentile of

wind speed) per season were determined. As an illustration,

Fig. 2 shows the differences between mean wind speeds of

coastDat2 and HiResAFF (negative values indicate higher

values for HiResAFF) for the 50th and 98th percentiles in

winter, displaying larger differences for the 98th percentile.

These differences appear in all seasons, which leads to the

conclusion that HiResAFF produces higher extreme wind

speeds than coastDat2 during all seasons.

For winter, summer and autumn, HiResAFF system-

atically presents higher values with respect to coastDat2

for mean and for extreme winds. In spring, the mean winds

in HiResAFF are weaker, but extreme winds are stronger

than in coastDat2. All seasons show higher deviations

of HiResAFF with respect to coastDat2 in extreme wind

events. Figure 3 shows this comparison for the winter

season.

The standard deviations (STD) for the 98th percentile

are higher than for the 50th percentile for all seasons and in

both data sets. The coefficient of variation (STD/mean) of

the two data sets coastDat2 and HiResAFF is almost the

same (’ 0:47).

Subsequently, several tests were conducted to compare

the data sets more quantitatively. These comparisons

between both data sets are conducted to document the

main differences found in our analysis of the wind and

illustrate the uncertainty stemming from the use of different

gridded products. The comparisons are not meant as a

thorough critical analysis of the advantages or deficiencies

of one data set over the other, which would require a

comparison between the two underlying regional models,

CCLM and RCAO that were used to produce these data.

This is beyond the scope of the present study. For instance,

the distribution of extremes probably deviates from a

normal distribution and therefore a more sophisticated

test than the F-test would be required. Nevertheless, these

tests can provide useful guidelines for further studies.

First, a Student’s t-test, which tests the hypothesis that

two samples have equal means, is conducted. This hypoth-

esis of equal means could be rejected at the 95% level of

Fig. 2. Difference of the 50th percentiles (blue) and 98th

percentiles (red) of wind speed between coastDat2 and HiResAFF

data sets during winter (DJF). The figure displays the mean over

the area shown in Fig. 1.
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significance for most parts of the area, both for the 50th

as well as for the 98th percentile. Second, the ratio of

variances is tested with an F-test. The hypothesis of equal

variances can be rejected in about half of the area for the

50th percentile wind at the p�0.05 level and cannot be

rejected in most areas for the 98th percentile. Third, a

Kolmogorov�Smirnov test, which tests the hypothesis that

two samples are drawn from the same continuous distribu-

tion, is applied. This hypothesis of equal distributions is

rejected at the p�0.05 level for all seasons. This test is

repeated after subtracting the mean, and this reveals that,

in this case, the null hypothesis of same continuous dis-

tributions cannot be rejected (p:0.3). This indicates that

both data sets preponderantly differ in their means but not

in their distribution. However, differences between both

data sets are not surprising, as both data sets are based on

different dynamical models, each with their own systematic

biases.

Both data sets incorporate information from observa-

tions and aim at replicating the observed time evolution of

winds. Therefore, they can also be compared by the mutual

(complex) time correlation (see Section 2.4). The magnitude

of the complex correlation coefficient of the area-averaged

wind is, for all seasons, significant and higher than 0.7. This

demonstrates that the variations in wind magnitude are

coherent in both data sets. Furthermore, the phase angle of

the complex correlation is always below 0.058, meaning

that the time variations in the wind directions are coherent

in both data sets.

4. Comparison of mean and extreme wind

statistics

4.1. Differences in directions

The distribution of wind intensity and wind direction is

analysed by wind roses for each season in order to inves-

tigate differences between wind directions of median and

extreme wind events (following the definitions in Section

2.3). The results are summarised in Fig. 4. The analysis here

is based on coastDat2 wind data (1948�2009), with the

main differences obtained in the analysis of HiResAFF

presented later.

For median wind events, the main wind direction varies

across the seasons: In wintertime (Fig. 4a), median winds

are clearly dominated by SW wind. Spring (Fig. 4c) shows

two main directions, namely E and NE with a secondary

maximum for SW directions. In summer (Fig. 4e), the wind

tends to blow from W, NW and SW. In autumn (Fig. 4g),

the wind mostly blows from SW with a second maximum

from SE.

The distribution of extreme wind directions (Fig. 4b, d, f

and h) deviates from the distribution of median wind

directions. All seasons are dominated by SW winds, and

only in spring (Fig. 4d) is there a tendency of more frequent

W winds and a weak secondary maximum from north�
north�east (NNE). Thus, according to the analysis of

seasonal wind roses, median wind directions seem to have a

much more isotropic distribution than extreme wind

directions. Extreme wind directions are focused mainly

on SW and W directions during all seasons.

The analysis is repeated with the HiResAFF data set in

the overlapping period (1948�2009). In the case of median

winds, the results obtained with HiResAFF also display, as

in coastDat2, a much more isotropic distribution of wind

directions. The result confirms that the distribution of ex-

treme wind directions is skewed to the south-western directions.

Fig. 3. Scatter plot of the 50th (upper) and 98th (lower) per-

centiles of wind speed of each winter for coastDat2 and HiResAFF

for the period 1948�2009. The blue line represents the linear regres-
sion and the light grey line the one-to-one-correspondence line.

The figure shows the mean over the area displayed in Fig. 1. STD -

standard deviation; c - coastDat2; h � HiResAFF.
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The analysis of the longer period 1850�2009 in HiRes-

AFF shows more isotropic median wind events, with bins

forming almost a circle. These wind roses are smoother due

to the higher number of events included in the analysis of

160 yr (instead of 65 yr). For extreme wind events, stronger

westerly than south-westerly winds are found (not shown).

Fig. 4. Wind roses of median (left: a, c, e, g) and extreme (right: b, d, f, h) wind in coastDat2 (1948�2009). The colours show the intensity

(in m s�1) and the bins show the direction from which the wind blows. Median events are defined as the three wind events per season which

are closest to the 50th percentile of wind speed. Extremes are determined as the three strongest wind events per season.
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We analysed the co-variation between median and ex-

treme wind directions by the complex correlation coeffi-

cient between both (calculated as described in Section 2.4).

The result shows no significant temporal correlation (r50.25)

for all seasons, which points to a small co-variation be-

tween median and extreme wind directions. In conclusion,

it does not seem possible to simply infer information of

anomalous directions of extreme wind directions from the

anomalous directions of median wind.

4.2. Regional differences

So far we have compared the distributions of median and

extreme winds as averages over the whole Baltic Sea region.

In this section, we explore the possibility that these rela-

tionships may be spatially heterogeneous by investigating

differences in Baltic Sea subregions. These subregions are

hereafter indicated as south-western (SWR), south-eastern

(SER), north-western (NWR) and north-eastern (NER)

(see Section 2.3 for geographical information). Again, we

show first the main results obtained with coastDat2 wind

data (1948�2009). To reasonably separate the area into sub-

regions, we compare wind roses (not shown) at nine points

scattered across the area (Fig. 1, see also Section 2.3).

Percentile calculations are separately applied to each

month of coastDat2 (1948�2009) (see also Section 2.3). As

explained below, for median wind events (50th percentile),

differences among the subregions can rather be found

between North and South than between East and West.

For extreme wind events (three strongest days per season,

see also Section 2.3), there are no spatial differences in

autumn and winter, where all nine points are dominated by

SW and W winds. Spring and summer again show mainly

differences between North and South. This analysis thus

supports the choice of subdividing the investigation area

into North and South. However, we decided to subdivide

the whole region into four equal subregions so as to

capture possible minor differences between East and West

(Fig. 1).

For median wind directions, there is a notable absence

of a seasonal cycle in all subregions. Figure 5 shows the

annual cycle of the eight main wind directions for median

wind events for the south-western region as illustration for

the behaviour of all other regions.

Figure 6 shows the annual cycle of the eight main wind

directions (N, NE, E, SE, S, SW, W, NW) for the extreme

wind events, averaged over each of the four selected

subregions (Fig. 1). In all four subregions, W and SW are

the dominant wind directions for extreme wind events in all

seasons, with SW winds being more frequent in winter and

autumn and less frequent in spring and summer. SE and

S wind frequencies have only little variations across all

four regions. Beyond this, the regions display some specific

characteristics. The southern regions (Fig. 6c and d) show

high frequencies of W wind during spring and summer.

The northern regions, in contrast, feature a different main

direction in spring, with dominant N and NE winds (Fig.

6a and b).

The analysis for median and extreme winds is also

conducted with the HiResAFF data set in the overlapping

time period (1948�2009) to test the robustness of the results

based on coastDat2 wind data. Median winds in HiResAFF

show directions with almost the same frequency in all

subregions (comparable to coastDat2 Fig. 5) and there is

very little intra-annual variation. Extreme wind events in

the eastern regions (NER, SER) also show a predominance

of SW directions, whereas extreme winds in the western

regions (NWR, SWR) show slightly lower (5�7%) frequen-

cies for SW winds compared to coastDat2. In these western

regions, extreme winds from W show higher frequencies in

the order of 10�15%. Nevertheless, for HiResAFF, extreme

winds fromW show highest frequencies in all regions. Thus,

HiResAFF shows a stronger zonal component.

Summarising, the southern regions display higher fre-

quencies of extreme winds for SW and W winds and lower

frequencies for N, NE and NW than the northern regions,

whereas median winds generally display a more isotropic

distribution than extreme winds in all subregions.

4.3. Seasonal patterns

In this section, we analyse the spatial co-variability of the

wind directions by means of an EOF analysis. This analysis

Fig. 5. Annual cycle of the eight main wind directions of

coastDat2 (1948�2009) for the south-western Baltic Sea region

(SWR in Fig. 1). This figure only includes the three wind events per

month with intensities closest to the 50th percentile of wind speed

per month. Units are monthly mean frequency in %.
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yields the main spatial patterns of anomalies that tend to

evolve coherently in time. To conduct the EOF analysis,

the zonal wind (u) and meridional wind (v) components

are merged into one field with a doubled number of grid

cells. The patterns are based on anomalies of monthly

mean wind speeds for the average wind statistics and on

anomalies of the 98th percentile for extreme wind statistics

(see Section 2.4). The EOF analysis is applied to coastDat2

and HiResAFF in their overlapping period (1948�2009)
and on longer time scales back to 1850 to HiResAFF.

For the period 1850�2009 the leading three EOF patterns

for both average and extreme wind explain at least :82%

variance for all seasons. The explained variances per season

and data set can be found in Table 1.

As an example, Fig. 7 displays the two leading EOF

patterns together with their PC time series for average and

extreme wind events (see Section 2.3 for definitions) for the

winter season of HiResAFF (1850�2009). The correspond-
ing explained variances are displayed in Table 1.

4.3.1. EOF patterns. In the following, the resulting EOF

patterns are described for each season and time period for

HiResAFF (1850�2009), HiResAFF (1948�2009) and

coastDat2 (1948�2009). For sake of clarity, this description
is based on one polarity of the patterns, although it should

be noted that the opposite polarity (the spatial pattern

multiplied by �1) would represent the same EOF.

In winter (DJF), the first EOF derived from HiResAFF

explains 65% of the average wind event variation over the

period 1850�2009 (Table 1) and is defined by west (W)

wind anomalies (Fig. 7a). Although the W wind pattern is

similar for extreme events (Fig. 7e) the explained variance

of 41% (Table 1) is lower.

The result for extreme wind patterns is generally con-

firmed by the analysis of HiResAFF for the period 1948�
2009 (not shown) with a slightly higher explained variance

of 46%. Mean wind events indicated a shift to more south-

westerly winds in the period 1948�2009. This result is con-
firmed in the analysis of coastDat2 (1948�2009; not shown).

Fig. 6. Annual cycle of the eight main wind directions for extreme events of coastDat2 (1948�2009) in (a) north-western (NWR), (b)

north-eastern (NER), (c) south-western (SWR) and (d) south-eastern (SER) Baltic Sea (see Fig. 1). Extremes are defined by the 90th

percentile of wind speed per month. Units are monthly mean frequency in %.
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This data set results in a similar direction of wind ano-

malies as HiResAFF in 1948�2009, both for average and

extreme wind patterns. The use of coastDat2 exhibits a

predominance of SW anomalies and slightly lower ex-

plained variances of 63% for average winds and 39% for

extreme winds when compared to HiResAFF.

For spring (MAM; not shown), the EOF patterns of

average winds in all data sets show predominantly SW

anomalies, with an explained variance of approximately

56%. For extreme winds, the results differ between each

data set: whereas the HiResAFF pattern exhibits a pre-

ponderance of westerly wind anomalies (W) for the period

1850�2009 and south-easterly anomalies (SE) for the

period 1948�2009, the pattern resulting from the coastDat2

data results, as in the case of winter season, in south-west

(SW) anomalies.

The summer season (JJA; not shown), for average and

extreme winds, displays a SW pattern of wind anomalies

for all data sets and all periods. Autumn (SON; not shown)

reveals a similar pattern of anomalies of main wind direc-

tions as for winter: the HiResAFF pattern obtained in

1850�2009 mainly indicates W wind anomalies for averages

and for extremes. For the time period 1948�2009, average
and extreme wind anomaly patterns are characterised for

both data sets (HiResAFF and coastDat2) by SW wind

anomalies. Thus, autumn and winter display very similar

patterns of wind direction variability, for both the average

and extreme events. Note that this does not necessarily

mean that the temporal evolution of their variability is

correlated.

The second EOF of HiResAFF (1850�2009) displays a

pattern of southerly wind anomalies for both average and

extreme wind patterns, in all seasons (illustrated here for

winter: Fig. 7c and g), with a slightly easterly component

in summer. The dominant southerly direction of wind

anomalies, for average and extreme winds, is also promi-

nent in HiResAFF for the shorter period 1948�2009 (not

shown). However, some seasons slightly deviate from this

general rule: JJA average wind and SON extremes have an

additional easterly component and extremes for MAM an

additional westerly component. CoastDat2 (not shown)

average wind anomaly patterns show southerly winds and

westerly extreme winds with a northern component for

MAM and JJA and a southerly component for SON. For

all data sets and periods, the explained variances of the

second EOF for extreme events are higher than for average

events (Table 1). The difference between the variance

explained by the first and second EOF explained variances

is much smaller for extremes than for the average winds.

Hence the second pattern is, in relative terms, more im-

portant for extreme events than for average events.

The third EOF (not shown) is dominated by a cyclonic

rotation over the Baltic area with a centre close to the

Island of Gotland. The amount of explained variance lies

between :6% (MAM) and :12% (JJA) for average and

extreme events in all seasons. Because these values are quite

low and the EOF patterns are physically not clear, it can be

assumed that these patterns are dominated by noise.

4.3.2. PC time series. Another result of the EOF analysis

is the PC time series, which describes the variations of the

amplitude of the spatial patterns through time. The PCs

give information about long-term trends in the spatial

patterns just described, and also about possible correlations

in time of these patterns.

For average winds, the HiResAFF data set (1850�2009)
shows significant trends in winter, summer (not shown) and

autumn (not shown) for the first PC. There is a significant

negative trend in winter (negative for the polarity shown in

Fig. 7b) and also a negative trend in summer from 1850 to

1973, followed by a non-significant increase until 1990.

These trends are also visible in the period 1948�2009 (not

shown) in HiResAFF and coastDat2, however, they are

not statistically significant. In autumn, there is a significant

increase from 1990 to 2009 for HiResAFF (1850�2009) and
HiResAFF (1948�2009), coastDat2 shows a similar trend

but without statistical significance.

It is important to note that no significant trends for

extreme winds could be detected for the leading PC time

series in any season or data set. For the second PC, there

is a significant positive trend in winter season from 1940

to 1990, which is only visible in HiResAFF (1850�2009)
(Fig. 7h).

Table 1. Explained variance in % of the three leading EOF

patterns for each season derived from HiResAFF (1850�2009 and

1948�2009) and coastDat2 (1948�2009). Results for monthly mean

wind are shown as plain text and results for wind events exceeding

the 98th percentile in bold

HiResAFF (1850�2009) EOF 1 EOF 2 EOF 3 EOF 1�2�3

DJF 65, 41 25, 31 6, 11 96, 82

MAM 58, 38 28, 32 7, 12 93, 82

JJA 50, 48 30, 29 9, 8 89, 86

SON 54, 46 33, 27 7, 11 95, 84

HiResAFF (1948�2009)
DJF 64, 46 25, 25 6, 11 96, 82

MAM 59, 45 29, 31 6, 8 93, 84

JJA 50, 39 29, 33 10, 11 89, 83

SON 61, 43 27, 28 7, 11 95, 82

coastDat2 (1948�2009)
DJF 63, 39 22, 35 8, 9 93, 83

MAM 56, 43 24, 29 8, 11 88, 83

JJA 56, 47 18, 25 13, 11 87, 83

SON 55, 39 27, 36 9, 14 91, 89
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Fig. 7. First leading EOF patterns together with their PC time series for average wind [upper four panels: (a�d)] and extreme wind [lower

four panels: (e�h)] events of the HiResAFF data set (1850�2009). The left-hand side panels show the pattern of variability of the combined

u and v EOF analysis (see Section 2.4). Arrows are not scaled for the sake of clarity. The right-hand side panels show the corresponding

principal component time series. The coloured lines in (b) and (h) show trends on different time scales. The significance values (p-values) for

the green (g), red (r) and blue (b) lines are shown above the figures. Explained variances are indicated in Table 1.
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We additionally calculate the seasonal correlation be-

tween the PC time series of average winds and the PC time

series of extreme winds. This correlation shows low values

for all seasons between r� �0.23 and r�0.18 for both

data sets (coastDat2, HiResAFF) and both periods (1948�
2009, 1850�2009). This suggests that changes of average

winds cannot be used to estimate changes of extreme winds.

This is also shown in Section 4.1 with the help of the

complex correlation between average and extreme winds.

The NAO is one of the leading patterns of seasonal

climate variability in this region, especially in winter.

It is thus expected that the link between the NAO and

the variability of average wind speed is strong, but its link

to the variability of extreme wind speeds has not been

thoroughly investigated. The seasonal correlation between

the leading PC and the NAO index shows comparable

results for both time periods and data sets. Therefore,

the following correlation coefficients are only shown for

HiResAFF (1850�2009): average wind events exhibit an

expected high correlation for DJF of 0.64. However, for the

other seasons the correlations have much lower values

(MAM, 0.28; JJA, 0.17; SON, 0.22), indicating that in

seasons other than winter the NAO is not the main factor

that modulates the average wind speed. For extreme wind

events, the correlations are low for all seasons (DJF,

�0.13; MAM, �0.07; JJA, 0.01; SON, 0.04). This some-

what unexpected result indicates that the link between the

variability of average wind speed and the variability of

extreme winds is not strong.

The comparison of PCs and their corresponding EOF

patterns leads to the following conclusions:

The first EOF of average wind describes the most

important direction of wind variability. The analysis of the

longer period 1850�2009 indicates that the main direction of

variability of average winds is the zonal direction (W�E),
whereas the analysis of the period from 1948 to 2009

(HiResAFF and coastDat2) reveals that the main direction

of variability has turned in the recent decades with an

additional meridional component (SW�NE).

The EOFs of extreme winds are derived from the

anomalies relative to the average extremes, the patterns

describing variations relative to the average of the high

percentile winds. Thus, it describes variations in time

within the population of extreme winds. The analysis of

the period from 1850 to 2009 indicates that the main

direction of extreme wind variability is from W�E; how-
ever, for the period from 1948 to 2009, the direction has

turned to SW�NE. Therefore, concerning the long-term

variation of wind directions, average and extreme winds

have changed in a similar way over the last decades relative

to their long-term mean.

This raises the issue of whether an anomalous direction

of winds in a particular season contains information about

the expected direction anomalies in the following seasons.

The correlation between the seasonal PCs of average winds

in adjacent seasons is found to be small. The correlation

between the leading autumn PC with the leading winter PC

in the same year shows only small values (r50.3) for all

data sets and periods, suggesting that the intensity of the

main pattern of wind direction variability does not tend to

persist from one season to the next. This also happens for

extreme wind events. Thus, it does not seem possible to

statistically predict (with linear methods) seasonal wind

conditions from wind information from a previous season

in the same year.

The comparison between EOFs derived from HiResAFF

and coastDat2 explains a similar amount of variances, but

the EOF patterns derived from HiResAFF tend to display

a more zonal direction than in the other data sets (also seen

for the wind rose analysis in Section 4.1).

5. Discussion and conclusions

Our study focused on the question of whether the variability

of mean (median and average) and the variability of extreme

wind statistics over the Baltic Sea region are comparable.

An assumption could be made that changes in mean wind

statistics could be used to approximate extreme wind

changes. This study refuses this hypothesis, at least regard-

ing wind direction over the Baltic region.

Our study analysed two regional data sets in the time

periods 1850�2009 (HiResAFF) and 1948�2009 (coast-

Dat2) as well as their overlapping time period 1948�2009.
Two data sets were utilised in this analysis (HiResAFF and

coastDat2). As these two data sets had not previously

undergone systematic analysis, the first task necessary was

to compare the wind statistics in the common time period.

Data collection of each data set differed and different

models were used to produce the data sets. However, for

the common period of time both were consistent concern-

ing wind directions.

The second part of this study compared mean (median

and average) and extreme wind statistics, with a focus on

wind direction. Our main conclusions are as follows:

(1) Median winds show a very isotropic distribution

for all directions with a different maximum in each

season. Extreme winds are much more constrained

to SW directions for all seasons except spring where

a second maximum can be found in NE direction.

(2) We found a very weak co-variation of the anomalies

of median and of extreme wind over the Baltic Sea

region. Anomalous direction of median winds in one

particular season and year are thus not indicative

of extreme winds displaying the same anomalous

direction.
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(3) A subdivision into four parts of the Baltic Sea

region shows regional differences in the behaviour of

median and extreme events. Median wind events

have quite similar frequencies of direction in all

four regions. These frequencies also stay relatively

stable across all seasons. Extreme wind events show

differences between northern and southern regions.

The stormy seasons (DJF, SON) tend to be domi-

nated in all four regions by SW winds. In spring

and summer, the northern regions are dominated by

north-easterly winds and the southern regions by

westerly winds.

(4) We address the question of whether there is a per-

sistent annual pattern of wind direction anomalies

that persists through adjacent seasons. The temporal

evolution of the patterns of seasonal variability,

derived from an EOF analysis of the seasonal ano-

malies, does not show significant correlations be-

tween adjacent seasons. Thus it is not possible, within

a linear framework, to infer information about the

anomalous winds in one season from the anomalous

winds in the previous seasons.

Additionally, the long-term evolution of the leading PCs

also displays a different behaviour for average and extreme

winds. For the first PC (mainly zonal direction), we only

found significant long-term changes over time for average

wind events, but not for extreme winds, suggesting that

whereas the zonal pattern of variability of average winds

showed a trend, it showed no changes for extreme winds.

Conversely, the second leading PC representing variability

in the meridional direction did not change for average

winds, but indicated a trend for extremes. The second

pattern is more important in terms of explained variance

for extreme events than for average events. An increasing

trend for the first PCs of average wind is visible for shorter

time scales (1948�2009) for both data sets. When analysing

the longer time series (1850�2009) it becomes clear that this

trend is not present over the whole period. The same effect

was found, in numerous studies, for trends of wind speed.

Over Europe, many studies found an increase in storm

intensity, and therefore also higher wind speeds, between

the 1960s and the mid-1990s (Gulev and Hasse, 1999;

Gulev et al., 2001; McCabe et al., 2001; Paciorek et al.,

2002; Wang et al., 2006). Whereas Bärring and Fortuniak

(2009), on longer time scales, show that there is rather

interdecadal variability than clearly defined long-term

increasing or decreasing trends.

Moreover, we found that the connection between the

NAO and the average winds differs from extreme events.

The seasonal correlation between the first PC of extreme

wind events and the NAO index is very weak. This is in

contrast to the correlation between the NAO and the

average winds in wintertime. It is known that the NAO has

a large influence on the wind conditions over the Baltic Sea,

especially during winter (Feser et al., 2015; Rutgersson

et al., 2014), so this correlation is not surprising. However,

in the other seasons there seem to be other atmospheric

driving mechanisms for the variability of average wind

speed. Extreme wind events do not show high correlations

to the NAO in any season. We conclude that the NAO is

not the main driver for extreme winds.

Our results provide insight on the issue of whether, and

how, changes in mean wind statistics can be related to

changes in extreme wind statistics (Seneviratne et al., 2012).

The matter of the existence of long-term trends in extreme

winds is also addressed (Donat et al., 2011; Krueger et al.,

2013). In a review by Feser et al. (2015), it is stated that

trends in storm activity crucially depend on the time scales

considered. As storms produce extreme winds, this issue is

also related to the present study. Our results concerning

wind direction support the statement that trends are

dependent on the time span. The extreme events over the

longer period in HiResAFF showed the highest frequencies

for W winds, whereas for the shorter period covered by

both HiResAFF and coastDat2 the distribution of wind

direction showed a maximum of SW wind. This result is in

agreement with previous studies based on different data

sets and without regional subdivisions; for example, Jaagus

and Kull (2011) also found a shift towards SW in the wind

directions, albeit on shorter time periods (1966�2008).
Therefore, when analysing differences in wind statistics

between data sets, it is important to ensure that the time

periods are the same. Moreover, it is important to keep in

mind the different data set uncertainties. Probably, the

biggest difference between HiResAFF and coastDat2 is the

spectral nudging which is only applied for coastDat2. This

method is known to improve reconstructions and lower the

difference relative to observations. We argue that the AM

contains a higher level of uncertainties. The uncertainties

include model uncertainties; noise in the used observations

(e.g. measurement errors), also present in reanalysis data

sets; dependencies on the analogue pool size; and the link

between real and simulated predictors (Schenk and Zorita,

2012).

Furthermore, there are uncertainties due to the different

models used to conduct the two reconstructions. Neither

the regional model CCLM nor the RCAO model is perfect,

but the aim of this study was not to identify the better

data set. However, although both data sets have different

uncertainties due to different models and methods, both

show comparable results regarding the variability of wind

direction statistics of mean (median and average) and

extreme wind events.

Comparing coastDat2 and HiResAFF, the reader should

also keep in mind the impact of, for example, the bias on
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the EOF analysis. A difference in the mean would change

the distribution and hence the variability, as lower mean

values in wind speedwould induce amore skewed distribution.

Although both data sets already showed comparable

results, a bias correction could lead to even more similar

results, because the different means were identified as the

main differences in both data sets.

As mentioned above, both data sets, HiResAFF and

coastDat2, showed similar results. However, in the over-

lapping period (1948�2009) there are differences between

both data sets regarding the frequencies of the SW and W

wind directions for extreme winds. HiResAFF exhibited

higher frequencies for W winds in all Baltic Sea regions. We

suggest that this stronger zonal component may be an

artefact of HiResAFF, due to the uncertainties mentioned

above, but this question requires further study.

The overall conclusion of our study is that the hypothesis

that the statistics of mean wind can serve as a proxy for

statistics of extreme wind is rejected for the Baltic Sea

region.
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