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ABSTRACT

Sensitivity of forecasts with respect to initial conditions is an intermediate step in studies dealing with the

impact of features in the initial conditions, or of observations in a data assimilation system, on the quality of

the forecast. The sensitivity diagnostics however are obtained as approximations, and various formulations

have been proposed over recent years. Since the sensitivity is assessed by computing a distance measure, the

corresponding cost function can be estimated by a Taylor expansion. More recently, quadrature formulations

have also been proposed. In this paper, these two approaches are re-assessed and attention is paid to specific

assumptions made in those developments: the sometimes conflicting use of assumptions of linearity, the

way non-linear aspects are taken into account and the relative formal merits of each technique. The presence,

omission or absence of the second-order model derivative is also addressed. Eventually, a proposal for

extending sensitivity diagnostics in a non-linear iterative context is made. The various diagnostics are

illustrated and discussed in the framework of the Lorenz 96 toy model, for which both the first- and second-

order model derivatives have been implemented. Several initial condition states are obtained by the means of a

four-dimensional variational assimilation (4D-Var) algorithm. The sensitivity diagnostics are presented with

respect to the observed dynamical model regime as verification time, beyond the assimilation window, is

increased: respectively for a quasi-linear, a weakly non-linear and an early-phase, starting non-linear regime.

The numerical results suggest that quadrature-based approximations of cost function reduction are more

robust than Taylor-expansion-based ones. Furthermore, the quadrature-based diagnostics do not require the

usual omission or simplification of high-order derivatives. A straightforward extension to an iterative context

also is possible and illustrated.

Keywords: four-dimensional variational assimilation, forecast sensitivity to initial conditions, quadrature

estimates, Lorenz 96 model

1. Introduction

This note focuses on recently published material about

observational sensitivity computations in a data assimila-

tion system. The focus is however kept on the sensitivity to

the initial conditions, and the steps for extending the sen-

sitivity analysis towards observations are not taken here.

What is kept is the framework of a data assimilation algo-

rithm, for computing the variations of initial conditions by

the means of analysis increments. The sensitivity of a fore-

cast to the initial conditions is defined as a distance measure

of the forecast state with respect to a verifying state:

eðxf Þ ¼ ðxf � xtÞT Cðxf � xtÞ (1)

where C is a symmetric, positive definite matrix and x f and

xt stand for the test forecast and the verifying state,

respectively. Various recent papers have introduced this

definition or a similar one, like Langland and Baker (2004,

hereafter LB04) and Errico (2007, hereafter E07). Both

LB04 and E07 are now reference papers for applied sen-

sitivity studies in real numerical weather prediction (NWP)

and assimilation systems (Gelaro et al., 2010, or obser-

vation impact studies for the CONCORDIASI field

campaign, Nathalie Saint-Ramond and colleagues, per-

sonal communication). The sensitivity analysis consists

then in assessing which features in the initial condition,

if modified, would bring a significant reduction in the

function e. Or, put in different words, which features, if

changed, would bring a benefit in the quality of the forecast

as compared to the verification data. Thus, a key aspect in

sensitivity analyses is to be able to compute the reduction
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de, which is not in general available exactly. Daescu and

Todling (2009, hereafter DT09) performed an overview of

various methods of approximation of the forecast distance

reduction, by separating them into two families based

on either Taylor expansions or quadrature formulations.

Their proposal of quadrature formulations is a more novel

aspect for sensitivity computations in the NWP context,

though DT09 demonstrate for instance that LB04’s method

actually is one case of a quadrature approximation.

In Section 2 of this note, the two families of approximation

of the forecast distance reduction are studied. The sensitivity

analysis performed by E07 is re-assessed with a focus on two

critical steps, namely the assumption of a linear evolution of

the perturbation and the substitution of the second-order

model derivative by a difference of two first-order model

derivatives. Furthermore, the quadrature-based sensitivity

formulations introduced by DT09 are discussed. Finally, in

Section 2, sensitivity diagnostics for iterative processes are

proposed. These expressions seem consistent with iterative

non-linear assimilation algorithms, and bear similarities

with the proposals made by Trémolet (2008).

The various sensitivity diagnostics are illustrated and com-

pared in the framework of the Lorenz 96 (Lorenz, 1996,

hereafter L96) toy model (Section 3). A four-dimensional

variational assimilation (4D-Var) is used as a tool for

computing the variations of the initial conditions. The

4D-Var benefits from observations over a time window

[t0, t1]. The forecast verification period is considered to start

after this assimilation period (tv]t1). Because the accuracy

of the sensitivity formulas depends on theorder ofmagnitude

of errors and the importance of non-linear model features,

the results are interpreted in terms of dynamical model

regime for perturbation growth. A separation is made

between quasi-linear, weakly non-linear and early-phase

non-linear behaviour, as the verification forecast range

tv is extended. The results are summarized in Section 4.

2. Considerations on sensitivity computations

2.1. A Taylor expansion-based case: Errico (2007)

As a first step, the sensitivity calculations based on Taylor

expansions, as presented in Errico (2007, E07), are re-

derived and discussed. E07 handles the forecast error

measure e(xf) using the summation along individual

components of the state vectors:

eðxf Þ ¼
X

i;j

ðxf
i � xt

iÞcijðx
f
j � xt

jÞ (2)

where cij are the elements of matrix C. The sensitivity anal-

ysis in E07 consists in developing the Taylor expansion of e

with respect to a small change in the initial condition x0.

The forecast state xf is, in the general case, obtained by

integrating a model M: xf�M(x0) where M is a full, non-

linear forecast model. Eventually, we look for appropriate

estimates for the variation de(dx0)�e(M(x0�dx0))�
e(M(x0)). The first-order term of the Taylor expansion of

de is obtained by introducing the resolvent model, denoted

M.M is by definition the tangent linear model integrated in

time. The tangent linear model is obtained by a lineariza-

tion of the full model M along a trajectory defined as

the forecast started from x0. The resolvent model can be

represented by a matrix of coefficients mij, thus leading

to the following expression, which corresponds to eq. (6)

of E07:

8i;
X

j

mijdx0
j ¼ Mdx0 (3)

With these notations, the first-order derivative of e with

respect to any coordinate of the initial perturbation is

readily obtained:

8k; @e

@x0
k

¼ 2
X

i;j

mikcijðx
f
j � xt

jÞ (4)

which corresponds to eq. (7) in E07. Equation (4) provides

the vector 2MTC(xf�xt) and thus:

de1 ¼
X

k

dx0
k

@e

@x0
k

¼ 2ðdx0ÞT MT Cðxf � xtÞ (5)

is the first-order variation of measure e with respect to dx0.

This relation corresponds to eq. (14) of E07.

The variation of e may be extended to order two, which

then provides the term de2 of E07. The second-order

derivative of M can be obtained by a further derivation

of eq. (4) with respect to a second component of the initial

perturbation vector:

8n; k; @2e

@x0
n@x0

k

¼ 2
X

i;j

@mik

@x0
n

cijðx
f
j � xt

jÞ þmikcijmjn (6)

This is eq. (8) in E07. We now write for the sake of

simplicity:

de2 ¼
X

n

dx0
nð
@e

@x0
n

þ 1

2

X
k

@2e

@x0
n@x0

k

dx0
kÞ ¼

X
n

dx0
nEn (7)

The first term in the expression of de2 simply is de1. After

some rearrangements using eq. (6), En reads:

En ¼ 2
X

i;j

mincijðx
f
j � xt

jÞ

þ
X

k

X
i;j

@mik

@x0
n

cijðx
f
j � xt

jÞdx0
k

þ
X

k

X
i;j

mikcijmjndx0
k

(8)
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The first term comes from the first-order variation

[refer to eq. (4)] while the second and third terms above

come from the second-order variation [see eq. (6)]. After

rearrangements, En also reads:

En ¼
X

i;j

ðmin þ
X

k

@mik

@x0
n

dx0
kÞcijðx

f
j � xt

jÞ

þ
X

i;j

mincijð
X

k

mjkdx0
k þ x

f
j � xt

jÞ
(9)

At this stage, E07 uses the following simplifying assump-

tion [this is eq. (6) in E07]:

dxf ¼Mðx0 þ dx0Þ �Mðx0Þ ¼ Mdx0 (10)

To be more specific, it is assumed that the linear

integration term
P

k

mjkdx0
k, for any component j, is a fair

estimate of the final forecast difference dx
f
j . This partial

assumption of linearity of the forecast model is in principle

questionable, since it is otherwise assumed that the forecast

model M is non-linear, so that it should be worth to extend

and analyse its Taylor expansion beyond order one. More-

over, this assumption is stated all along the model integration

from t0, the initial time, through tv, the verifying time, since

the substitution is performed at verifying time. We also note

that this replacement is first-order accurate with respect

to dx0 for the non-linear model M, since it also can be

interpreted as a truncation of the Taylor expansion of M at

order two and above. Therefore, after substitution, the

expressions following below for de2 will be accurate at order

two, because of the extra dot product with dx0 [see eq. (7)].

In other words, the error bounds for de should be of order

three with respect to dx0. Continuing E07’s derivation, we

now introduce the analysis state with the superscript a and

write: x
f
j � xt

j�dx
f
j ¼ x

af
j � xt

j . In terms of an assimilation

system, xf is the forecast state obtained from an integration

started with the background state xb while xaf is the forecast

state started from the analysis xa.

Back to de2, we now can further rearrange its expression:

de2 ¼
X

n

dx0
n½
X

i;j

ðmin þ
X

k

@mik

@x0
n

dx0
kÞcijðx

f
j � xt

jÞ

þ
X

i;j

mincijðx
af
j � xt

jÞ�

¼
X

i;j

½
X

n

mindx0
n þ

X
k

ð
X

n

@mik

@x0
n

dx0
nÞdx0

k�cijðx
f
j � xt

jÞ

þ
X

i;j

ð
X

n

mindx0
nÞcijðx

af
j � xt

jÞ

(11)

Noting that:

X
n

@mik

@x0
n

dx0
n ¼ dmik (12)

which is eq. (5) of E07, and reusing the partial assumption

of linearity of the forecast model discussed previously:

dx
f
i ¼

X
n

mindx0
n (13)

we can further write:

de2 ¼
X

i;j

ðdx
f
i þ

X
k

dmikdx0
kÞcijðx

f
j � xt

jÞ

þ
X

i;j

dx
f
i cijðx

af
j � xt

jÞ

¼
X

i;j

½dx
f
i cijðx

f
j � xt

j þ x
af
j � xt

jÞ

þ ð
X

k

dmikdx0
kÞcijðx

f
j � xt

jÞ�

(14)

Since dmik contains the derivatives of the resolvent with

respect to the initial state components, we eventually obtain

the following expression for de2:

de2 ¼ ðdx0ÞT MT Cðxf � xt þ xaf � xtÞ
þ ðM2ðdx0; dx0ÞÞT Cðxf � xtÞ

(15)

This expression represents the second-order accurate

variation of e in the lines of E07. It involves the second-

order derivative of the forecast model, present in the bilinear

term M2(dx
0,dx0). This bilinear term also involves an

integration along a trajectory, which is precisely the same

as for the resolvent model, namely the non-linear forecast

M(x0) started from x0. The prevalence of this second-order

model derivative is a well-known feature of sensitivity

computations [see for instance in Le Dimet et al., 2002, or

in Trémolet, 2008, his section 3.3]. It is in general ignored,

since its computation is out of range in NWP systems.

To proceed further, E07 has substituted in the following

way:

dx
f
i þ

P
k

dmikdx0
k ¼

P
k

mikdx0
k þ

P
k

dmikdx0
k

¼
P

k

ðmik þ dmikÞdx0
k

¼ ððMþ dMÞdx0Þi

(16)

By this substitution, the second-order model derivative

disappears and is replaced by a perturbed model resolvent

M�dM which is interpreted as the resolvent matrix inte-

grated along the trajectory started from the analysis

xa, as opposed to the resolvent M which is integrated

from the background initial condition xb (at verifying time:

xf�M(xb) and xaf�M(xa)). Introducing the notations

Mb�M and Ma�M�dM and substituting in the above

relationships leads to:

de2 ¼ ðdx0ÞT ððMbÞ
T

Cðxaf � xtÞ þ ðMaÞ
T

Cðxf � xtÞÞ (17)

which is equivalent to eq. (17) of E07.

SENSITIVITY OF FORECASTS WITH RESPECT TO INITIAL CONDITIONS 3



It is worth to stress here that the substitution of eq.

(16) corresponds to a first-order approximation for the

resolvent model. This assertion can be seen by the relation-

ship: ~Mdx0 ¼ Mdx0�M2ðdx0; dx0Þ, where M̃ is the resol-

vent along the trajectory started from x0�dx0. Indeed,

M2(dx
0,dx0) will by definition converge to the finite differ-

ence ð ~M�MÞðdx0Þ when dx0 becomes infinitesimal. Thus,

the substitution of eq. (16) is a new case of partial assump-

tion of linearity of the forecast system, but the subs-

titution now consists in replacing the (bi-)linear term by a

(non-linear) finite difference. Therefore, this substitution

has the opposite effect compared to the substitution in

eq. (10) where high-order terms are removed. In this respect,

the two substitutions are of conflicting nature and an

error is in principle introduced. The substitution in eq.

(16) again is taken to be valid all along the model

integration from t0 through tv. By construction, the error

bound of this replacement in the non-linear forecast

model formulation is of third order with respect to dx0

(i.e. its precision is of second order). Thus, the substitu-

tion actually leads to a fourth-order error bound in dx0

for de2, as can be seen for instance with the left product

by dx0 in eq. (17).

In E07, the replacement of the second-order derivative

by the perturbed resolvent model is an essential step for

introducing the effect of a varying trajectory of lineariza-

tion. As we have illustrated above, this interpretation is

correct, but its derivation in E07 makes an explicit use of

assumptions of quasi-linear behaviour for several simplifi-

cations [based on eqs. (10) and (16)] that do have opposite

impacts in terms of accounting for or ignoring high-order

terms. In addition, these assumptions of quasi-linear model

behaviours must hold all along the time integration of

the models (from t0 through tv), because the simplifying

substitutions are done at verifying times. This aspect will

be illustrated in Section 3. As an intermediate conclusion,

the sensitivity formulations of first- and second-order given

in E07 have been re-derived, with an emphasis on corner-

stones of E07’s developments. The presence of the second-

order model derivative has been explicitly formulated.

Those steps where some type of quasi-linear assumption

is made, with conflicting effects on accounting for or

discarding high-order terms, have been highlighted. These

effects should not become sensitive at the same time, how-

ever, since they apply on error truncations of different

order: the substitution in eq. (10) affects de at order three

(accuracy is second order) while the substitution in eq. (16)

affects de at order five (fourth-order accuracy). The first-

order variation de1 and the second-order variation de2 of

E07 are further illustrated for the L96 model (Lorenz,

1996) in Section 3.

2.2. Quadrature-based estimates of a forecast

distance difference: Daescu and Todling (2009)

An alternative approach for the calculation of forecast

distance sensitivities has been proposed by Daescu and

Todling (2009, DT09). Besides Taylor expansion calcula-

tions, DT09 introduce a quadrature-based estimation by

considering the variation de�e(M(xa))�e(M(xb)) as a

parametric function along the segment [xb,xa]. The para-

meter is a single scalar s � [0,1] such that any initial state

x0 on this segment can be defined as x0�xb�s(xa�xb).
A new parametric distance function is then derived as:

êðsÞ�eðMðx0ÞÞ and the change of e between background

and analysis forecasts becomes:

êð1Þ � êð0Þ ¼
Z 1

0

ê0ðsÞds (18)

where the fundamental theorem of calculus is invoked.

Several high-order approximations of the integral com-

putation can be obtained, by using various quadrature

estimates. Each estimate is based on a specific rule of

approximation (Trapezoidal, midpoint, Simpson) and is

associated with a specific formulation of its error bound.

In particular, DT09 show that the term [(xf�xt)TCMb�
(xaf�xt)TCMa](x

a�xb) corresponds to a numerical quad-

rature approximation of de following the Trapezoidal

rule. Furthermore, DT09 identify this expression with the

sensitivity formulation proposed by Langland and Baker

(2004, LB04). It is also worth to notice that this expres-

sion is based on two computations of the gradient of e

with respect to the initial condition variable x0, denoted g,

respectively, at points xb and xa, and using as trajectory

of linearization the forecast started from xb and xa, res-

pectively. This assertion is demonstrated by the property:

g(x0)T�2(M(x0)�xt)TCMx0 with Mx0 the resolvent model

along the trajectory M(x0). This relationship is valid at

any point x0 along the segment [xb,xa], and furthermore

ê0ðsÞ ¼ gðx0ÞT ðxa � xbÞ. Thus, an equivalent formulation

for the Trapezoidal rule quadrature estimate, as first pro-

posed by LB04, reads: deLB�1/2(gb�ga)
T(xa�xb). Note

also the close resemblance between the formulations of

de2 [eq. (17)] and deLB, with only a difference through

swapping Mb with Ma. They are very similar, but not

equivalent. DT09 use fundamental properties of integral

calculus for single-variable functions to prove that the

estimate is second-order accurate (the residual can be

expressed as a third-order term in xa�xb).
Several other alternative estimates of de are proposed in

DT09. The midpoint rule quadrature estimate is second-

order accurate and reads:

demid ¼ 2ðMðxmidÞ � xtÞT CMmidðxa � xbÞ (19)

4 C. FISCHER



In eq. (19), the point is that the gradient is evaluated at

the midpoint xmid�(xa�xb)/2. The resolvent accordingly

is linearized along the trajectory M(xmid). Simpson’s rule

quadrature estimate provides a fourth-order accurate

formula:

deSimp ¼ 1
6
f½ðMðxaÞ � xtÞT CMa þ ðMðxbÞ � xtÞT CMbÞ�
þ4ðMðxmidÞ � xtÞT CMmidgðxa � xbÞ
¼ 1

3
ðdeLB þ 2demidÞ

(20)

deSimp actually is readily computed if deLB and demid are

known, since it is a linear combination of both. An

advantage of the quadrature-based estimates over Taylor-

based formulations like in eq. (15) certainly is that no

second-order model derivative M2 appears, since the accu-

racy of each formulation is obtained by computing and

combining first-order gradients at prescribed positions.

One possible drawback, conversely, is that the expressions

and their error bounds in principle only hold for variations

along the given segment [xb,xa]. We illustrate these various

sensitivity formulas in the framework of the L96 (Lorenz,

1996) toy model in Section 3.

2.3. Varying trajectories of linearization as a

result of an iterative process

Yet, other possibilities for addressing the dependency of

sensitivity diagnostics with respect to the trajectory of

linearization do exist. In the spirit of Taylor expan-

sions, the trajectory is naturally provided by the integra-

tion of the non-linear model started from the reference

initial condition. Successive small corrections of a given

initial state provide then new Taylor expansions, and the

associated sensitivity is obtained in iterative steps. Let

us consider [x0, x1,. . .,xm] a set of such initial conditions,

with 8i 2 ½0;m� 1�;dxi ¼ xiþ1 � xi and each dxi is a small

variation. We consider each distance measure ei as the

difference of the respective forecasts with a verifying

state xt: ei ¼ eðMðxiÞÞ�ðMðxiÞ � xtÞT CðMðxiÞ � xtÞ;
dei ¼ eiþ1 � ei and the total variation de ¼ em � e0.

Keeping only approximations at order one with

respect to the small successive variations of the input

dxi:

em¼e0 þ
Pm
i¼1

2ðMðxi�1Þ � xtÞT CMi�1dxi�1

,
em � e0¼

Pm
i¼1

gT
i dxi�1 ¼ F m

1

8>>><
>>>:

(21)

In eq. (21), Mi�1 stands for the resolvent model

linearized along the trajectory started from xi�1. Thus, in

this iterative process, the dependency of the sensitivity with

respect to successively changing trajectories of linearization

becomes visible through the cumulative terms added at

each new loop. Such a sensitivity diagnostic might apply in

the context of multiple analyses, where x2 would be a re-

analysis with respect to x1. Another possible application of

this approach is in a multi-incremental assimilation, where

each xi�1 is an iterative correction of the previous solution

xi. Equation (21) bears similarities with the formulation

of the first-order variation denoted I1 in Trémolet (2008),

as Fm
1 is obtained by iteratively adding first-order con-

tributions computed as simple vector multiplications.

Each vector gi is obtained by applying the adjoint model

linearized along the trajectory started from xi�1 to the

iteratively forecasted departure Mðxi�1Þ � xt (weighted by

C). A difference in the derivation for eq. (21), with respect

to Trémolet (2008), is that the data assimilation system

itself has not been made explicit here, while Trémolet was

interested in making the operators of the incremental

assimilation process visible.

A second-order evaluation of the variation of e can be

obtained by furthermore considering the square products

between all first-order terms of the type Mi�1dxi�1, since

e is quadratic. In addition, one also should take into

consideration the terms involving the second-order model

derivative, which is done here formally although these

terms would not be accessible in an NWP context (these

terms are provided in the framework of our toy model, for

illustration, in Section 3). Omitting these terms, as dis-

cussed for eq. (15), is for instance done in Trémolet (2008)

in the context of an NWP data assimilation system. In

its complete form, the second-order term of the variation

de reads:

Sm ¼
Pm
i¼1

ðMi�1dxi�1ÞT CMi�1dxi�1

þ
Pm
i¼1

ðMðxi�1Þ � xtÞT CM2ji�1ðdxi�1; dxi�1Þ
¼ Sm

1 þ Sm
2

8>>>><
>>>>:

(22)

leading to the second-order approximation of the variation

of e at step m:

em � e0 ¼ F m
1 þ Sm ¼ F m

2 (23)

Equation (23) bears similarities with the formulation of

the second-order variation denoted I2 in Trémolet (2008),

as F m
2 is obtained by iteratively adding a second-order

variation of the functional e to a corresponding first-order

contribution. In Trémolet (2008), however, the functional e

actually represents the distance function to the background

state of the assimilation Jb and an explicit formulation

involving the operators of the assimilation process is

searched. Note that for m�1, if dx0 is taken as the

SENSITIVITY OF FORECASTS WITH RESPECT TO INITIAL CONDITIONS 5



(single-step) analysis increment, then the RHS of eq. (23)

is equivalent to eq. (29) in DT09. Note also that, at order

one, F 1
1 is equivalent to eq. (27) in DT09 and eq. (14)

in E07.

3. Results with the Lorenz 96 model

3.1. Description of the model implementation

The diagnostics of Section 2 are illustrated using the L96

toy model (Lorenz, 1996) with K�40 degrees of freedom.

The non-linear evolution of the state reads:

8j ¼ 1;K ;
dXj

dt
¼ ðXjþ1 � Xj�2ÞXj�1 � Xj þ F (24)

with the periodic boundary conditions: X�1 ¼
XK�1;X0 �XK ;XKþ1 ¼ X1. The timestep scheme is a

fourth-order Runge-Kutta scheme, with a timestep

dt�0.01. The forcing term F�8 is a usual value for this

model, and means that a highly chaotic (non-linear)

behaviour is chosen. The resolvent model is obtained by

integrating the tangent linear equation. For the L96 model,

the tangent linear model can be described by its Jacobian

matrix representation. The j-th line of the Jacobian f then

reads:

fjðxtrajÞ ¼ ð@Xj

@Xk
Þk¼1;K

¼ ð:::; 0;�X
traj
j�1 ;�X

traj
j�2 þ X

traj
jþ1 ;

�1;X traj
j�1 ; 0; :::Þ

(25)

where xtraj stands for the state of the trajectory of lineari-

zation (or any of its individual components X
traj
j ; j ¼ 1;K).

The non-zero values above span from column j�2 to

column j�1. These elements are similar to, for instance,

eq. (7) of Lorenz and Emanuel (1998). Periodic boundary

conditions are applied in accordance with the non-linear

version. The time integration of the resolvent model is

obtained by a fourth-order approximate expansion of the

matrix exponential formal definition of the resolvent

Mðt0; t1Þ�
R t1

t0
expðf :dtÞ�I þ dt:f þ dt2

2
:f 2�dt3

6
:f 3 þ dt4

24
:f 4

where an integration from t0 to t1 is assumed.

The second-order model derivative can be represented

as a series of elementary K�K (Hessian) matrices, which

eventually compose the tensor representation of this model.

The j-th ranked elementary matrix has zeroes everywhere

except on four elements:

ð
@fj

@Xk

Þk¼1;K ¼

: �1 : :
�1 : : þ1
: : : :
: þ1 : :

0
BB@

1
CCA (26)

The �1-values are located at the lines and columns (j�2,

j�1) and (j�1, j�2); the 1-values are located at the lines

and columns (j�1, j�1) and (j�1, j�1). Note that for the

L96 model, because the non-linear terms are simple second-

order cross products between individual elements of the

state vector, the second-order derivative (tendency) does

not explicitly depend on the trajectory xtraj. This depen-

dency however does exist for the second-order model

derivative, because its time integration requires com-

binations with the resolvent model (see below, chain

rule). For each elementary matrix, periodic boundary

conditions are applied in accordance with the tangent

linear and non-linear models. The time integration of the

second-order model derivative is based on the chain rule:

ðg2 � g1Þ00�ðg2
0 0 � g1Þðg1

0Þ2 þ ðg2
0 � g1Þg1

0 0.

The data assimilation system is a 4D-Var. The mini-

mization is carried out by a conjugate gradient method.

The numerical results discussed in this note are obtained

with the following experimental setup:

(1) The truth is run over 40 d, where 1 d is defined as 20dt

and is often considered as one ‘‘day’’ in the context of

the L96 model. The initial condition is 8j;Xj �F ¼ 8

plus a perturbation of F/1000 on X20. According to

individual time series of various model points Xj,

transient behaviour vanishes after about 13 d. In past

studies, Lorenz and Emanuel (1998) used 90 d to

ensure satisfactory convergence on the attractor;

Yang and Delsole (2009) used about 375 d.

(2) A background state xb is defined at day 39, as the

true state at this range plus a random perturbation

of standard deviation sb applied on all elements of

the state vector. This background state is the start of

a background trajectory from day 39 through day

40. The value sb�0.2 is used in this study, which

corresponds to a size of background errors about

two orders of magnitude smaller than the variability

of the L96 state (see for instance in Fig. 1).

(3) Observations are defined for every second point

j ¼ 1;K; 2 (every odd valued position of the state

vector), and for every 5dt in the assimilation window

from day 39 through day 40 (5dt�0.05 is considered

as a pseudo-6 hour time interval, as suggested in

previous studies with L96). The observed values are

defined as randomly perturbed values of the true

state, with a standard deviation so�0.2. The choice

so�sb�s is always kept. Thus, a total amount of

5*20�100 observations is assimilated.

(4) The background and observation error covariance

matrices B and R are simple diagonal matrices with

the constant values r2
b and r2

o, respectively. A

consequence of this choice is that the assimilation

system is specified to be optimal.

(5) A total of 10 random occurrences of the above de-

fined assimilation problem have been run successively,
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in order to assess the robustness of the results and

interpretations in a more systematic manner. There is

obviously a certain variability of the true distance

function reduction de over the set of realizations,

but this variability is not of interest per se. When

relevant, a mean percentage of difference between

various sensitivity measures is displayed in the

follow-on of this paper (see in Table 1).

With these settings, the total cost function is fairly

close to a quadratic function, and the conjugate gradient

minimization has converged after m�10 iterations. The

forecast models are assumed to be perfect, which means

that the 4D-Var problem is of strong constraint type and

model error is ignored.

3.2. Illustrations of sensitivity diagnostics

3.2.1. Aspects about various successive trajectory runs.

Figure 1 displays several L96 model integrations from

time t0�0dt (day 39 of the truth run) through time

tf ¼ 80dt�0.8 (day 43 of truth run) for point X40. The

forecasts started from the analysis (brown curve), the

background (red) and the true state (black) are shown,

along with two intermediate trajectories obtained in the

course of the minimization. It is readily seen on Fig. 1 that

all five trajectories remain very close in the first day of

integration, from t0 through t1�20dt�0.2. This period

corresponds to the one where observations are assimilated.

Beyond t1, the trajectories progressively diverge and after

three more days of forecast, at time tf, the dispersion be-

tween all five runs is of about one L96 model unit. The

period [t1,tf] is considered to be the verification period, where

the sensitivity diagnostics are evaluated and discussed.

3.2.2. Interpretation in terms of the dynamical model

regimes. The dynamical regime of perturbation growth

along the period [t0,tf] can be qualified for instance by

checking the individual components that contribute to the

Taylor expansion of the distance cost function reduction

de. Note that in this study, the norm C associated with e

simply is taken as the canonical norm: xT Cx ¼
PK
j¼1

ðXjÞ
2
.

The formulations of eqs. (21) and (22) are taken as the

basis. These formulations provide one first-order term, Fm
1 ,

and two second-order terms, Sm
1 and Sm

2 . In addition, one

third-order and one fourth-order term are accessible since

they are composed with the first- and second-order model

derivatives only (third- or higher-order model derivatives

have not been considered in this study):

Pm
i¼1

ðMi�1dxi�1ÞT CM2ji�1ðdxi�1; dxi�1Þ þ
Pm
i¼1

ðM2ji�1ðdxi�1; dxi�1ÞÞT CM2ji�1ðdxi�1; dxi�1Þ
¼ Tm

3 þ Tm
4

(27)

At time t1 ¼ 20dt ¼ 0:2, the budget of de is mostly given

by F m
1 þ Sm

1 (here, our reference value for m is after all

10 iterations have been collected, so m�10). Thus, only the

first-order term and the square term of second order

involving the resolvent model M, are significant. Terms

Sm
2 , Tm

3 and Tm
4 are about 2�3 orders of magnitude smaller

than F m
1 and Sm

1 (among all 10 test runs). Because the

higher than one-order model derivatives are negligible,

the model behaviour at t�0.2 can be considered as

quasi-linear.

At time t�40dt�0.4, the three extra non-linear terms

Sm
2 , Tm

3 and Tm
4 only are 1�2 orders of magnitude smaller

than F m
1 and Sm

1 . The approximation F m
1 þ Sm

1 provides an

estimate of de accurate to about [10�20%] only. The other

three terms, involving the second-order model M2, are of

about equal order of magnitude, and their sum is enough,

in any of the 10 test runs, to obtain a total estimate of de

up to about [1�3%]. These values indicate that the second-

order model derivative has a small but significant con-

tribution, while higher (than two) order model derivatives

are still negligible. Because of the relative magnitudes

discussed above, this dynamical model behaviour can be

considered as a weakly non-linear one.

20 40 60 80
-3

-2

-1

0

1

2

3

4

5

truth
background traj
traj after m=1
traj after m=2
traj after m=10

NL trajectories at point 40
for 80 time steps

Fig. 1. Time series of L96-values at point j�40. Time t0�0dt

corresponds to the start of the assimilation window; the end

of the assimilation window is at t1�20dt; the final forecast

range displayed is at tf�80dt. The time unit is in model iterations.

The black, red and brown curves, respectively, represent the

trajectories computed from the truth, the background and the

analysis states for run 1 out of the 10 random realizations

when so�sb�0.2. The green and blue curves show trajectories

obtained during the non-linear minimization process for

m�1,2, resp.
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The fact that the observed dynamical regime progres-

sively shifts from quasi-linear to weakly non-linear between

tv�0.2 (1 d forecast range) and tv�0.4 (2 d) is a con-

sequence of the growth of the differences between the

compared forecast states. The observed time range of this

growth seems consistent with for instance the values of the

leading Lyapunov exponent: Lorenz and Emanuel (1998)

give 2.1 d, Carrassi et al. (2009) give about 3 d. Thus,

differences of about 2.10�1 between various states at t0,

as prescribed when s�0.2, would result in differences of

about [0.5�1] after about 2 d. These estimates are in

accordance with Fig. 1 and indicate that indeed, non-linear

aspects should progressively become visible.

At time t�80dt�0.8, the truncated expansion F m
1 þ

Sm
1 þ Sm

2 þ Tm
3 þ Tm

4 (denoted ðF m
2 Þ
þ
) does not provide

anymore a highly reliable estimate of de. Model non-

linearities of high-order start to become significant. This

aspect is seen from the increasing relative role played by the

terms Sm
2 , Tm

3 and Tm
4 , whose relative ratios of absolute

values with respect to F m
1 and Sm

1 now are of about [0.2�0.4]
in the test runs. Thus, t�0.8 can be considered as cor-

responding to the starting phase of the non-linear model

regime.

3.2.3. Results in terms of sensitivity diagnostics. As

concerns the various diagnostic estimates of de discussed

in Section 2, a clear numerical distinction is seen in Table 1

between the first-order accurate approximations like de1
(E07) and F m

1 , and the second (or higher)-order accurate

formulas (de2 of E07, deLB of LB04, midpoint and

Simpson’s rules estimates of DT09, F m
2 and ðF m

2 Þ
þ
). The

first-order terms are of opposite (negative) sign with respect

to their (positive) second-order correction: compare de1
with de2�de1 or F m

1 with Sm ¼ F m
2 � F m

1 in Table 1 for

tv�0.4 and tv�0.8. In absolute values, the first-order

diagnostic terms are about twice as large (or even more)

compared with the values of their second-order corrections.

This property was found to be even more pronounced in

experiments with s�0.01, where the various forecasts of

interest would be much closer one to another.

This particular feature is due to the quasi-linear or

weakly non-linear model regime combined with the fact

that background and analysis are relatively close to the true

state in these experiments. Therefore, using the linearized

approximation MðxaÞ ¼MðxbÞ�Mbðxa � xbÞ, one may

write:

eðMðxaÞÞ � eðMðxbÞÞ ¼2ðMðxbÞ � xtÞT CMbðxa � xbÞ
þ ðMbðxa � xbÞÞT CMbðxa � xbÞ:

Here, the second and higher order model derivatives are

omitted and only the dynamically predominant resolvent

model is considered. The first term can be approximated

with another linear assumption, by introducing the analysis

error ea so that:

xt ¼Mðxa � EaÞ ¼MðxaÞ �MaE
a:

By substitution and a further linearization:

MðxbÞ � xt ¼MðxbÞ �MðxaÞ þMaE
a

¼ �Mbðxa � xbÞ þMaE
a:

Eventually, an approximate relation for eðMðxaÞÞ�
eðMðxbÞÞ is obtained, involving only the dynamically

predominant resolvent model:

�2ðMbðxa � xbÞ �MaE
aÞT CMbðxa � xbÞ

þ ðMbðxa � xbÞÞT CMbðxa � xbÞ:

The first scalar term is derived from the first-order

variation of de, and it is equal to minus two times the

second-order-derived contribution (second scalar term),

up to an additive correction depending on the orthogonality

of MaE
a with Mbðxa � xbÞ. Trémolet (2007) showed that

the equality is exact when the model is linear and the

forecast MðxaÞ minimizes the distance cost function e.

Indeed, under these assumptions, it can be shown that

MaE
a 2 kerðMT

b CÞ. Similar proportions in sensitivity results

were furthermore obtained with the GEOS-5 system in

Gelaro et al. (2007), with an atmospheric data assimilation

system. As a numerical consequence, the first-order esti-

mates of de exhibit relative errors of about 100% or more at

tv�0.4 and tv�0.8.

Table 1. Values of the various sensitivity diagnostics evaluated

at verification times tv�40dt�0.4 and tv�80dt�0.8 for the case

when so�sb�0.2. Incremental estimates for midpoint, Simpson,

Fm
1 , F m

2 and F mþ
2 are given for m�10, and thus also correspond

to the values for m�10, tv�0.8 in Figure 2. The values are for

one given occurrence out of the 10 random realizations (run 1).

The mean relative error is with respect to the true reduction and

averaged over all occurrences. It is given in percentages.

Type of Run 1 % Run 1 %

de tv�0.4 tv�0.4 tv�0.8 tv�0.8

de1 �6.96 177.55 �20.88 105.59

de2 �2.58 6.27 �11.40 10.64

deLB �2.52 4.50 �8.05 8.17

demid �2.57 4.18 �10.53 3.67

deSimp �2.56 2.05 �9.70 1.73

deincr
mid �2.60 4.43 �12.03 6.84

deincr
Simp �2.56 1.98 �9.80 1.77

Fm
1 �10.57 253.01 �33.68 170.59

Fm
2 �2.78 11.93 �14.91 23.93

Fmþ
2 �2.51 1.65 �9.27 21.95

Truth �2.64 * �10.67 *
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At verification time tv�0.4 (left side columns in Table 1),

differences between the various diagnostic formulas are

seen when the numerical values are checked in more detail.

Thus, Fm
2 provides an estimate which is of slightly poorer

average quality than de2 (E07), deLB (LB04) or the

midpoint/Simpson’s rule quadrature estimates (DT09). A

significantly better estimate is obtained when the two extra

terms, that can be computed because M2 is available in this

toy model, are added (ðF m
2 Þ
þ ¼ F m

2 �Tm
3 þ Tm

4 in Table 1).

This result is consistent with our definition of a weakly

non-linear model regime: for the extended estimate ðF m
2 Þ
þ
,

the extra high-order aspects that count in the Taylor

expansion of de are those that are derived using both

the first-order (Jacobian/tangent linear, or adjoint) and

second-order (Hessian) model derivatives.

For tv ¼ 0:8 (right side columns in Table 1), the incre-

mental estimates are of clearly poorer quality than the

simple ones. This deterioration is due to cumulated errors

with iterations m, because of the missing higher than two-

order terms (or higher than one-order terms for F1
m). Re-

member that this forecast range is in the start phase where

non-linearities become significantly sensitive. It is never-

theless worth noticing that the Simpson’s rule estimate

outperforms any other approximation for de.

In the formula for de2 of E07, the substitution of the

bilinear integration by a finite difference of the resolvent

model (which we called a ‘partial assumption of linearity’ in

Section 2) implicitly allows us to take into account some

weakly non-linear behaviour of higher order. In the cases

of LB04 and the other quadrature estimates of DT09,

the non-linear effects remain present since no truncated

development in a Taylor expansion sense is performed.

As introduced in DT09 and re-discussed in Section 2, diag-

nostics like deLB (LB04), demid (midpoint rule quadrature)

and deSimp (Simpson’s rule quadrature) are obtained by

recomputation of gradients and their combination. In this

process, the trajectory of linearization has to be adapted

and chosen as the forecast started from a given initial state

(background, analysis, their midpoint, in these cases). The

major ingredient for a fourth-order estimate in the Taylor

expansion-based F m
2 diagnostic term is the inclusion of

higher order model derivatives. In the context of the

present toy model study, these higher order terms are those

that are accessible through the availability of the Hessian

of the dynamical system, leading to the extended formula

of ðF m
2 Þ
þ
.

In quadrature-based diagnostics, the number of recom-

putations basically controls the accuracy of the estimate:

deLB combines two gradient informations computed using

the background and the analysis, and is second-order accu-

rate; demid is based on one recomputation only at midpoint

position xmid �ðxa þ xbÞ=2 and also is second-order accu-

rate; deSimp ¼ 1
3
ðdeLB þ 2demidÞ is based on three gradients

and is fourth-order accurate. The toy model results,

for rather weakly non-linear conditions, show that the

Simpson’s rule quadrature indeed provides estimates which

on average are more robust and accurate than the other

tested diagnostics. Only as long as non-linearities remain

significantly weak, do some other sensitivity formulas pro-

pose comparable alternatives, in particular deLB, demid and

ðF m
2 Þ
þ
.

For verification times that would lie within the more

settled non-linear regime (t�0.8 or other experiments not

shown here), the Simpson’s rule quadrature approximation

provides the most acceptable values. Checking directly the

form of the function êðsÞ for various values of s (with a step

of 0.1), it turns out that this cost function is monotonously

decreasing along the interval [0,1] in most cases where the

quadrature-based estimates still provide acceptable values

(not shown). On the opposite, the piecewise values of êðsÞ
indicate that this function possesses multiple maxima/

minima in those cases where for instance the Simpson’s

rule quadrature fails. This finding is consistent with

increased values of higher order derivatives, leading to an

inflation of the error bounds for the quadrature-based

estimates. This practical result nevertheless suggests that

quadrature estimates could be robust over a certain range

of verification forecast times, for various dynamical and

assimilation systems possibly of the complexity of atmo-

spheric NWP systems. This finding is in line with the

practical application of these diagnostics given in Section 4

of DT09 (with the GEOS-5 system of NCEP and NASA/

GMAO).

3.2.4. Illustration of the sensitivity diagnostics with

iteratively changing trajectories of linearization. Finally,

Fig. 2 displays values of F m
2 , ðFm

2 Þ
þ

and deSimp for

(tv ¼ 0:8, r ¼ 0:2), with respect to the iterates m of

trajectory recomputations. For Fm
2 and ðF m

2 Þ
þ
, the incre-

mental formulation is embedded in their definition [see eqs.

(21�23)]. For deSimp, each successive couple of initial and

final states ½xi; xiþ1� is considered to define one segment over

which the quadrature approximation is evaluated. Then,

like for F m
2 and ðFm

2 Þ
þ
, the successive estimates of deSimp are

summed. In this stepwise estimation of the quadrature

approximation of de, the precision of each individual

approximation should lie within the theoretical error bound

of the respective quadrature (for Simpson’s rule, fourth

order). Thus, the iterative sum is expected to provide an

estimate of the total reduction that has a comparable error

with the single-step estimate computed in one go over the

interval ½x0 ¼ xb;xm ¼ xa�, except if errors add up. This

numerical behaviour is indeed observed, both for demid and

deSimp, at tv ¼ 0:4 and tv ¼ 0:8 (see in Fig. 2 and in Table 1).

However, for tv ¼ 0:8, the iterative estimates perform
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significantly poorer than their one-go counterparts (see in

Table 1). For the term ðF m
2 Þ
þ
, the accumulation of error is

related to the term Tm
4 which is positive and tends to bring a

too large contribution to the total. Here, extra non-linear

terms that could counter-balance this contribution are

missing when the model regime starts to leave the weakly

non-linear phase.

Figure 2 nevertheless illustrates a practical possibility to

evaluate the impact of a changing reference trajectory when

computing a sensitivity diagnostic based on either a Taylor

series (and truncation) or a quadrature estimate, in the

context of an iterative correction process. In the case of

Fig. 2, the first two iterations are those that drive the

solution closest to the minimum, among all minimization

steps. Accordingly, the largest amount of reduction for the

forecast distance measure is obtained in the first two loops

m�1,2. The next loops provide fairly negligible contribu-

tions. These results are consistent with the observed

reduction of the total cost function J with each iteration

in the non-linear minimization (not shown). Figure 2 illus-

trates that the iterative estimates provide a consistent

picture of how the progressively adjusting trajectory

allows one to capture, little by little, a fairly good estimate

of the true reduction, even in a weakly non-linear model

regime. In the case of the deSimp-diagnostic, the panel also

illustrates the difference that has to be made between the

(three) different trajectories used to compute the diagnostic

itself and the (ten) different trajectories obtained in the

non-linear minimization process.

4. Conclusions

In this paper, we have readdressed sensitivity diagnostics

recently proposed in Errico (2007, E07) and Daescu and

Todling (2009, DT09). In particular, we have shown that

the formula de2 in E07 is obtained after two crucial steps

of quasi-linear assumptions: (1) when considering that the

non-linear forecast can be approximated by a linear one

for some terms, and (2) when approximating the second-

order model derivative by a finite difference of two model

resolvents integrated along slightly differing trajectories.

The first substitution is in contradiction with considering

higher order variations for the sensitivity analysis in a

non-linear system. It nevertheless allows one to continue

the developments, with an overall second-order accuracy

for the distance measure reduction de. The second sub-

stitution has an opposite effect to the previous one, since it

consists of reintroducing higher order dynamical behaviour

in the approximate diagnostic. It is otherwise within the

bounds of fourth-order precision for de, thus not too proble-

matic as long as the model regime is quasi-linear. Neverthe-

less, these two conflicting assumptions should be considered

as a theoretical weakness of formulas like E07’s de2.

DT09 have proposed sensitivity formulations for de that

only require multiple trajectory and gradient recomputa-

tions. Quadrature formulations, considering the distance

measure e as a single parameter functional on the segment

½xb; xa�, are then invoked to obtain second-, fourth-, or

higher-order estimates. In contrast to Taylor expansion-

based sensitivity approximations like E07’s, where the

second-order model derivative does quite naturally appear,

the absence of this or higher order derivative terms in

quadrature-based approximations is an advantage. Indeed,

high-order model derivatives require extra model configura-

tions to be developed (higher order individual derivatives)

and they require extra computations or storage (of gradients

for instance). Therefore, they definitely are out of the range

of NWP developments. In this paper, though, the second-

order model derivative has been displayed and used for

assessing dynamical model regimes and for comparing

Taylor expansion and quadrature-based sensitivity formu-

lations, in the framework of the simple Lorenz (1996, L96)

model. For completeness, we also recall that DT09’s

Trapezoidal rule estimate of de is equivalent to the sensitivity

diagnostic proposed by Langland and Baker (2004, LB04).

In addition to the above-described analyses of previously

published sensitivity diagnostics, the proposal is made to

assess the impact of changes in the trajectory by consider-

ing an iterative process. This iterative approach provides

incremental formulations of sensitivity with respect to in-

itial conditions and the trajectories of linearization, which

formally can apply to problems such as reanalyses or a

non-linear assimilation. These expressions are computable

iterations m

-16

1 2 3 4 5 6 7 8 9 10

-14

-12

-10

-8

F2(m)
F2(m)+
Delta(e) Simpson
Delta(e) truth

Reduction of distance function “e”
along updates of the NL trajectory

Fig. 2. Successive values of the cumulative variations Fm
2 ,

ðF m
2 Þ
þ
and DT09’s Simpson rule quadrature estimate, for the

10 successive loops m�1,10 when so�sb�0.2 (blue, red,

green, resp.). The curves are for run 1 of the 10 random

occurrences of the assimilation problem. Verification time is

tv�80dt�0.8.
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within the usual practical choices, like for instance

to ignore the second-order model derivative when it is

not accessible. They are furthermore close to proposals

formulated by Trémolet (2008) in the context of multi-

incremental outer loops in a data assimilation system [eqs.

(21�23) of this note].
The various de-estimates have been illustrated in the

framework of the L96 model, with a separation of the

results in terms of type of model regime for perturbation

growth: quasi-linear, weakly non-linear and early non-

linear. In the quasi-linear regime, first and second-order

estimates clearly are distinguished, and the knowledge of

the resolvent (or tangent linear) model is enough to provide

accurate values of any of the second-order diagnostic

formulas for de. In the weakly non-linear regime, an extra

accuracy can be gained by taking into account extra

second- and higher-order terms for de provided the non-

linearities remain sufficiently small. This extra non-linear

information is implicit in DT09’s quadrature-based esti-

mates, because gradients along differing trajectories are

consistently combined. It is, on the opposite, explicitly

computed for second-, third- and fourth-order terms that

only require the knowledge of the second-order model

derivative M2, in the extended Taylor expansion-based

diagnostic ðF m
2 Þ
þ
. As non-linearities grow, the accuracy of

the estimates decreases. In particular, rather systematic

cumulative errors in high-order terms deteriorate the

accuracy of the incremental estimates based on Taylor

expansions. Conversely, the midpoint and Simpson’s rule

quadrature estimates seem to provide the most robust re-

sults, into forecast ranges where non-linear effects become

non-negligible. This property however is not systematic, as

other runs with the L96 model have shown, and the error

bound certainly is expected to be significant in any case

with prevailing non-linearities.

The iteratively processed sensitivity calculations, with a

varying trajectory of linearization, are shown to basically

mimic the behaviour of the underlying adaptive process

of adjustment. In a non-linear minimization, the first itera-

tions may provide the largest steps towards the minimizing

solution, like in the L96 4D-Var case presented in this

study. Here, the first two loops provide the largest

reduction in the variational cost function. In the context

of the sensitivity analysis, the largest successive reductions

de also are obtained for the forecasts run from the two

initial states corresponding to the solutions of these first

two loops. The next loops then only provide some more

and more marginal convergence, and this numerical impact

also is reflected in the iterative estimates of de: F m
2 , ðF m

2 Þ
þ

and the incremental evaluation of deSimp. These findings

suggest that incremental sensitivity diagnostics can be used

to assess the benefit of trajectory recomputations in an

incremental algorithm. It is furthermore consistent with

the positive illustrations provided by Trémolet (2008) in an

NWP data assimilation context, using Jb as distance

measure. Trémolet indeed computed incremental first and

second-order diagnostics of a rather similar aspect to F m
1

and F m
2 in this paper, though not for a forecast distance

measure. However, it is worth stressing again that the

incremental versions of quadrature-based sensitivity esti-

mates seem more robust when non-linearities become

significant (demid or deSimp), when compared to the

truncated Taylor expansion sensitivity approximations

(F m
2 or ðF m

2 Þ
þ
), which quickly break.
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