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A bstrmt 

The number of conjugate states for the flow of a fluid system of two layers is investigated by 
means of the momentum principle. The uniqueness of the conjugate state is proved for the cases 
in which the modified Froude number for either layer is predominantly large. Specific experi- 
mental results for three special cases demonstrate the uniqueness of the state downstream from 
the hydraulic jump, and show that, for a first approximation, the simple analysis provides a 
means for determining the downstream depths, with smaller errors for lower jumps. 

Introduction 

Although fluid motion in a stratified system 
was investigated more than a century ago by 
STOKES (1847), and not long afterwards by 
HELMHOLTZ (1868), WEBB (1884), GREENHILL 
(1887) and LOVE (1891), it is only during recent 
years that it has attracted the serious attention 
of oceanographers, meteorologists, and hy- 
draulicians. As a result of the revived interest 
of the .geophysicists, the subject is at present 
enjoyng a period of intensive investigation. 
Among the recent contributors may be men- 
tioned ROSSBY (1951), CRAYA (I~sI), KUELEGAN 
(1953), STOMMEL and FARMER (1952), TEPPER 
(1952), LONG (1953), and BENTON (1953). 

In spite of the encouraging advancements of 
recent years, much is still to be learned about 
the subject and many questions at issue are yet 
to be settled. Among these the most important 
is the one concerning the determination of the 
state downstream from a hydraulic jump for a 
completely specified state upstream. It is with 
a view toward answering this question that an 
analysis based on simple assumptions was made 
for the case of two-layer flow and the relevant 
experiments were performed. The results ob- 

tained will be presented in the following 
sections of this paper. 

Analysis 

General Considerations 
The system under study consists of two 

superposed layers of fluids flowing over a plane 
bottom. The upper surface is assumed to be 
free. For simplicity, the bottom is taken to be 
horizontal. 

As indicated in Fig. I, the density, the dis- 
charge per unit width, and the depths u - 
stream and downstream from the hydra& 
jump are respectively denoted by el, q,, h,, 
and k: for the upper fluid, and by e2.' q?, k,, 
and k', for the lower fluid. The gravitational 
acceleration is denoted by g. For fixed values 
of the densities, of the discharges, and of <q, 
and for given upstream depths (k,, k,), the 
dynamically possible depths (k:, k l )  down- 
stream from the jump are said to be conjugate 
to (kl, k,), and the upstream and downstream 
states are conjugate by definition. A critical 
state is then defined as one which is conjugate 
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t 
Fig. I .  Definition sketches (a) 

to itself, corresponding to an infinitesimal 
hydraulic jump. The number of conju ate 
states and the determination thereof w d b e  
the chief concern of the present analysis. 

If a jump occurs in a fluid system of two 
layers, there is usuall rather violent mixing 
at the interface. TL e interfacial shear is 

enerally larger than the shear at the solid 
toundary, and cannot be neglected without 
introducing sizable error except under favor- 
able conditions. Furthermore, due to the mo- 
tion of the fluids the pressure distribution is no 
longer hydrostatic. As is well known, the 
distribution of the dynamic part of the pressure 
at the interface depends directly on the 
existence and location of the point of separa- 
tion and therefore indirectly on the distribu- 
tion of the interfacial shear. Since so little is 
known about the interfacial shear, it is evident 
that a rigorous theory cannot be achieved at 
present. However, if one is content with a first 
approximation, an a priori analysis can be con- 
structed b neglecting the interfacial shear and 

sure. This analysis will at least yield some 
conclusions of a qualitative nature which may 
be expected to hold even if interfacial shear is 
to be taken into account. Furthermore, for 
low jumps its conclusions may even be quanti- 
tatively correct. Thus, at the present stage of its 
development, the subject may well benefit 
from such an anal sis. 

Neglecting the s K ear, assuming hydrostatic 
distribution of pressure, and taking the mean 
head over the jump section as I/, (h,  + h : ) ,  
one has, by ap lying the momentum principle 
to the lower P ayer, 

assuming Tl ydrostatic distribution for the pres- 

Normal jump (b) Inverted jump. 

This can be rewritten as 

202 (h,  - h.:) = h 2  k :  ( k 2 + h 3  [r ( h , - h ; )  + 
+ ( k ,  - h.31 (4 

in which 

Similarly, one obtains, for the upper layer, 

2a,(h, - h:) =h ,h : (h ,+h: )  [ (h ,  - h : ) +  
( h 2  - h 3 1  (3) 

in which 
4': a,  =- 
g 

Given h,  and h,, one has to solve Eqs. (2) and 
(3) simultaneously for the conjugate de ths 
h: and h i .  Since these equations are all o P the 
third de ree in h: and h i ,  there are in general 
nine so K utions. One solution is obviously 
h:  = h,  and h i  =A,. Thus at first sight there 
may be as many as eight other solutions 
representing eight states conjugate to the given 
one. However, to have a physical meaning, 
the solutions must be real and positive. There- 
fore, the number of conjugate states is decided 
by that of the positive solutions of Eqs. (2)  
and (3), aside from the obvious one correspond- 
ing to the given state. 

It may be noted that since the critical state 
is conjugate to itself by definition, the dif- 
ferences h: - h, and h', - h, are infinitesimal, 
and may be replaced by the differentials dh, 
and dh,. Equations (2 )  and ( 3 )  then become the 
differential equations 

dh, rhg 
(4) _-  -- 

dh, a2-h;  

'5 
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from which it immediately follows that Eq. (3 a) shows that hi = - 00. With the only 
point of inflection given by Eq. (7), there can 

k:l (6) be only one maximum for positive values of 
hi. This can occur only at a value of h: smaller 
than that given by Eq. (7). Furthermore, 

'l('2 - I t : )  - 
o2 - ( I  - r)k: 

in which k ,  and k ,  are now the critical depths. 
Ths equation was already given by BENTON 
(1953) in an elegant manner from a somewhat 

of a critical state is equivalent to that of 

= - O0 for h: = - '1 - 0, and the 
is monotonic for < - '1. From the fore- 

Or (3a)-With branches ' 9  '1, and lll-can be 
different approach. Thus the present definition 

Benton. 
To investigate the number of conjugate 

states, one starts by tracing the graphs of 
Eqs. (3) and (2 ) ,  using k :  and h,: as the 
variables. For t h s  purpose these equations are 
rewritten as: 

going considerations7 the graph Of Eq* (3) 

traced, and is shown in Fig. 2 in dimension- 
less terms. 

Similarly the graph of Eq. (2) or (2.) can be 
traced, as shown in Fig. 2 with branches IV, 
V, and VI. It is evident that I intersects IV 
and VI, VI intersects 111, and the lower branch 
of VI intersects the left branch of 111. The 
intersections will be denoted by A, B, C, and 
F. Furthermore, it should be noted that the 
left branch of 111 and the lower branch of VI 

2 ~ 2 ( h :  - h2) have no point of inflection. These facts will 
rh,h:(h, + h i )  r ( 2  a) prove useful in the investigation of the number 

of intersections of 111 and VI, which of all 
possible intersections, alone have positive 
coordinates and thus determine the number of 
conjugate states. 

If one writes 

I 2o,(k:--h,) I" = h l h ,  -'- ( h ,  + K )  - + h 2 - ( k '  - h l )  (3 a) 

k.: - 112 A ' =  +kl-- 

From Eq. (3 a), it can be Seen immediately 
that kS. has a discontinuity at hi = - h i  and 
h: = o in such a way that k :  = - 00 for 
h' = -- h , - o and for h:  = +o, and h.: = + 00 

for h:  =-- k,+ o and for k :  =-0. Further- 

like- k : .  
Now if h: in Eq. (3 a) is differentiated twice 

and the result equated to zero, the following 

more, for large values of lk:I, h: behaves 

equation is obtained: 2Fl 

A h ,  = h.: - ht ,  A h l  = h :  - h1 (9) 

and equates the expressions for d k 2 / d k 1  ob- 
tained from Eqs. (2) and (3), one has 

2F, I = T  
2F2 -- Y(Y + 1) k;3-  3k:2- 3k:h;  - h: = o  .(q - 

the only real root of which is in which 

F ,  =al/ky, F2 = a,/h;, x = h:/h, ,  y = h: /h ,  (11) h ;  = h1(21i3 -- 1)-1 (7) 
corresponding to a point of inflection of the 

k:-axis. Differentiating Eq. (3 a) once with 
respect one has to k :  and setting the result to zero, 

20, ( h i  + 2k,k: - k :  ') - k,k: '(Al + h:) ,  = o (8) 

the roots of which correspond to the maxima 
and minima of k: .  The left side of Eq. (8) 
is definitely negative for k :  < -- h,, so that 
there can be no maxima or minima for such 
values of k:. Since k :  = + 00 for k :  = -0 
and h: = - h,  + 0, and since there is no point 
of inflection for negative values of h : ,  there 
is only one minimum of h i  in the range 

B~ a translation of coor&nates E ~ .  (Io) can be 

[p-- (: + 2 F i 2 ) ]  [ q z - ( i + 2 F : 2 ) ]  = 

graph Of Eq* ( 3 1 9  located to the right Of the reduced to the symmetrical form 

4rFiF: 
(I--)~ 

in which F :  and F ;  are the 
numbers defined by 

(12) =- 

Froude 

F : ~ = F ; ( I - - ~ ) - ~ ,  F : 2 = F :  (~-r)-, (13) 

and 
I I 

2 2 
t = x  +-, q = = y + -  - h ,  < k :  < 0. For k :  = + o and h: = + 00, 
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Fig. 2.  Graphs of the momentum equations and of Eq 
(10) or (12) 

The solutions of Eqs. (2)  and (3), except the 
one corresponding to the given state, are those 
of Eqs. (2) and (10), or those of Eqs. (3) 
and (10). 

The graph of Eq. (10) can be easily traced, 
and is shown in Fig. 2-branches VII to XI. 
It is symmetrical with respect to the lines 

x =  --and y =-2 and consists of one 

closed convex piece around the center 

- f )  and four branches of a hyperbolic shape 

with asymptotes 

I I 

2 

(- :> 
2 

I 1 / 2  
x = - -  2 f (1 + 2 F : 2 )  

It is immediately clear that IX must intersect 
I11 at a point D and XI must intersect VI at a 
point E. Since there are already five inter- 
sections A, B, C ,  D, and E which are not 
those of 111 and VI, these two branches can 
intersect in four points at most. That is, for a 
Tellus VII (1955). 3 

given state, there can be at most three con- 
jugate states. 

Since there is no point of inflection on I, IV, 
the left branch of 111, and the lower branch of 
VI, these can intersect VII (which is convex) 
only at A, B, C ,  and F, as shown in Fig. 2. 
It is then obvious that III, VI, and VII cannot 
intersect simultaneously at any point other 
than F. For otherwise the point, being on 111, 
would lie to the right of F, and being on both 
VI and VII, would have an ordinate at once 
greater and smaller than that of F. Thus, if X 
does not meet III and VI, there can be only 
two points at which 111 intersects VI, namely, 
G (I,  I) and F, G representing the given state 
and F representing the unique conjugate state. 

A few silfficient conditions for the uniqueness 
of the conjugate state can be easily obtained. 
From Eqs. (8) and (3a) it is evident that the 
maximum ordinate on 111 depends on al, k,, 
and h,  only. But from Eq. (14) the horizontal 
asymptote of X can be so far above the x-axis 
for predominantly large values of F: that X and 
111, and consequently 111 and VI, do not intersect. 
Similarly if F :  is predominantly large X and 
VII and consequently 111 and VII do not meet. 
Thus, under these conditions, the conjugate 
state is unique. It should be noted that when- 
ever these conditions are satisfied, the conjugate 
depths are either both greater or both smaller 
than the corresponding depths of the given 
state-in other words, any jump that occurs 
cannot be primarily internal in character. 

The results concerning the finiteness of the 
number of conjugate states in general and the 
uniqueness of the conjugate state under special 
conditions are in direct contrast to Benton’s 
claim (BENTON, 1953) that, given a complete 
description of the upstream state, infinitely 
many downstream states are possible. It seems 
improbable that the present conclusions would 
be invalidated if shear were to be taken into 
account, since the process involved would still 
-perhaps afortiori--have a deterministic nature. 

If the conjugate state is unique, whether a 
hydraulic jump can occur is decided, as usual, 
from energy considerations. Otherwise several 
situations may present themselves. If the energy 
flux for the given state is less than that of each 
of the three conjugate states, a jump cannot 
occur, whereas if it is greater than that for 
one of the conjugate states only, a jump can 
.occur and the downstream state is unique if 
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it occurs. In all other situations a jump can 
occur but, if it occurs, the downstream state 
cannot be uniquely determined by momentum 
and energy considerations alone, and which of 
the two or three possible conjugate states will 
be realized after a jump depends primarily on 
the controls downstream. 

Since the validity of the momentum equa- 
tions and the uniqueness of the downstream 
state are to be tested for three cases of pri- 
marily internal jumps, specific results from 
Eqs. (2) and (3) will be given here for these 
cases. For the case in which the downstream 
velocities are the same for both layers, one has 

and Eq. (2) becomes 

( I  + m) ( $)3 + ( - 2 + .I) (2) - 

This equation has two positive roots: one is 
k:  = k,, corresponding to the given state, and 
the other corresponds to the conjugate state. 
If the upper layer is at rest, a, = 0, and from 
Eqs. (2) and (3) one obtains 

Similarly, if the lower layer is at rest, one has 

One notes in Eq. (16) that if k i  is greater 
than k ,  by a finite amount, F: is definitely 
greater than I. Physically, this means that the 
velocity ,/h, must be greater than the celerity 

amplitude in order to hold the finite jump in 
place, i.e., finite disturbances progress faster 
than infinitesimal ones. In this light, Eq. (16) 
can be considered as a formula giving the 
celerity of progression of disturbances of 
finite amplitudes. In fact, the greater the ratio 
Ak, /k , ,  the greater the celerity. The same 
remarks can be made in connection with 

of the 4 astest long waves of infinitesimal 

Eq. (17). 

A N D  C. R. G U H A  

It may be noted also that, if a, = 0, from 
Eq. (3) it follows that the free surface is level, 
whereas if a , = o  but a, f 0, Eq. (2) gives 
rdk, = -Ah, ,  and the free surface is not 
level. Of course, if u, = o and r is very near I, 
the change in the free-surface elevation is 
imperceptible. The truth of the foregoing 
remarks has been verified in the experiments 
performed to establish the validity of Eqs. 
(IS) to (17). These experiments will be pre- 
sented in the following section. 

Experimental results 

To test the validity of the momentum equa- 
tions and the uniqueness of the downstream 
state if a jump occurs, experiments were carried 
out for three cases1. In the first case, the upper 
fluid was at rest, and the jump of the lower 
fluid was upward (normal jump). In the 
second case, the lower fluid was at rest, and 
the jump of the upper fluid was downward 
(inverted jump). In the third case, both fluids 
were in motion, but in such a way that the 
downstream velocities were the same for both 
layers. The limitation on the downstream con- 
dition for the third case was imposed by an 
experimental artifice which had to be ado ted 

would be rather difficult and expensive to 
enable the discharges to vary independently 
and to realize a stationary jump with two 
moving layers. Instead of attempting to have a 
stationary jump, one tried to obtain a surge 
by f i lhg  a channel sealed at the downstream 
end with the lighter fluid, and discharging the 
heavier fluid into it at the bottom. As the lower 
fluid reached the end of the channel, it rose in 
height to form a surge which moved upstream 
with a celerity depending on the actual dis- 
charge of the lower fluid and the upstream 
depths. On taking velocities relative to the 
surge, the situation of two moving layers was 
achieved, but with the restriction that the 
downstream velocities were necessarily the 
same for both layers. 

Water was used for the moving fluid in het 
first two cases (stationary jumps), and for het 

for the sake of expediency. Experimenta s y it 

The experiments for Cases I and 2 wereperformed 
by the second author for his M. S. Thesis at the Iowa 
Institute of Hydraulic Research. The first author is 
responsible for the rest of the material contained in this 
paper. 
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Fig. 3 .  Experimental results 
for the normal jump I 2 3 4 5 6 

F; 

lower fluid in the third case (surge). The other 
fluid used was either stanisol (an oil prepared 
by the Standard Oil Company, with specific 
gravity 0.777), or a mixture of stanisol and 
carbon tetrachloride (specific gravity 1.59). 
Since stanisol has a kinematic viscosity of 
about 3.4 x 10-6 ft2/sec, is not highly inflam- 
mable, and mixes well with carbon tetra- 
chloride to form a homogeneous mixture, it 
was found to be quite suitable to use. For easy 
visualization of the interface, the oil or oil 
mixture was always dyed red. 

The lucite flume used was 4 feet long, 6 
inches wide, and 8 inches deep. For stationary 
jumps the depths were controlled by one up- 
stream gate and one downstream gate. The 
upstream gate was designed to ensure parallel 
flow of the water into the channel, and the 
downstream ate was designed to reduce 

controlled by a valve upstream and measured 
by a triangular weir downstream. A supply of 
oil was maintained to compensate for the loss 
due to entrainment. For the moving jump the 
total depth was controlled by horizontal slots 
on the side of the channel near the upstream 
end. As the water entered the sealed channel, 
the oil would spill over the lowest open slot, 
so that an approximately constant total depth 
was maintained at the upstream end. The de th 
of the water at entrance was not controled, P 
but was found to be about half an inch. With 

entrainment o B oil. The discharge of water was 

Tellur VII (1955). 3 

the total depth at the entrance controlled by 
the slots, different combinations of (h,, h,) 
could be achieved. The discharge was again 
controlled by an upstream valve, and was 
measured through the celerity of the moving 
jump and the water depths upstream and down- 
stream from the jump. All depths were meas- 
ured either visually or photo raphically. 

it may be noted that the variables h: and h: 

dynamic viscocities p1 and p,. If hi is taken 
as the dependent variable, a dimensional 
analysis shows that 

Before the experimental resu B ts are presented, 

depend on h,, h,, el, e2, g, gl, q2, and the 

in which F2 is the Froude number for the lower 
layer and R2 = g, ez/p, is the Reynolds num- 
ber for the same layer. Equation (18) can be 
used to correlate the data obtained for Case 3 
and Case I (for which q l /q2  = 0). For Case 2, 
a similar analysis yields 

in which F ,  and R, are respectively the Froude 
number and the Reynolds number for the 
upper layer. From Eq. (2) it follows that 
h: /h2  does not depend on p l / p 2  and R, 
according to the simple theory. Furthermore, 
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Eqs. (16) and (17) indicate that in Cases I and 
2, respectively, the ratios h [ / h ,  and h: /h ,  
depends only on F ,  and F:.  In other words, 
according to the simple theory, the param- 
eters h,/h,, ,ul/,uz, and R, or R, have no 
effect on h ; / h ,  or h:/h,, the effect of r and 
F ,  are embodied in F: in Case I, and those of 
r and F ,  are embodied in F :  in Case 2. To 
what extent the theoretical predictions are 
valid will be shown by the experimental 
results. 

The results for the normal jump are shown 
in Fig. 3 ,  from which it can be seen that the 
ratio h: /h ,  depends not only on the modified 
Froude number F : ,  but also on the density 
ratio r. But F: and r seem to determine h: /h ,  
uniquely in the range of experimentation. The 
points all lie below the theoretical curve, 
with increasing deviation for increasing r and 
F : .  The results show that for increasing 
modified Froude number and density ratio, 
the effect of shear (chiefly interfacial shear) 
becomes increasingly important. The free 
surface was found to be level as expected. 

Results for the inverted jump (Fig. 4) show 
similar trend, except that some points lie above 
the theoretical curve. The greater scatter is 
partly due to the difficulty of ascertaining the 
upstream depth h,, since an undular jump 
occurred at the free surface. The free surface 
was observed to be definitely higher after 
the jump. 

Fig. j. Experimental results for 
the inverted jump 

Figure 5 shows the result obtained for Case 
3 ,  the velocities being taken relative to the 
surge. The abscissa is the theoretical value of 
h : / k ,  computed from Eq. (IS), and the 
ordinate is the experimental value of the same 
ratio. Here it can be seen that except for very 
high jumps the theoretical prediction is very 
well verified experimentally. Since k t  was 
always large as compared with (I,, the free 
surface could be expected to be almost level 
according to Eq. (3). As can be seen from 
Plate I, this expectation was well verified. 

I 2 3 4 5 6 7 

(Theo) 
h* 

Fig. 5 .  Coinparison of experimental results for the surgc 
with theoretical predictions according to Eq. ( I S )  

Tellus VII (1955). 3 
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Plate I. Photograph showing interfacial surge and the almost horizontal free surface between air and oil. 

From the same plate it can be seen that the 
appearance of the surge was fairly smooth, 
and no violent interfacial mixing existed. 

Because of the lack of violent interfacial 
mixing in Case 3 the neglecting of interfacial 
shear in the analysis is more nearly justified, 
and the agreement between theoretical and 
experimental results is consequently better than 
in Cases I and 2,  in which rather violent mixing 
usually occurred at the interface. In this connec- 
tion it may also be mentioned that because of the 
simplicity of the experimental technique em- 
ployed in Case 3,  the experimental limitations 
encountered in that case are much less severe 
than in the cases of steady jumps. Why the 
data for Cases I and 2 show a dispersion ac- 
cording to the density ratio whereas those for 
Case 3 does not, cannot be convincingly ex- 
plained. This does not, however, prevent one 
from making the points in regard to the several 
questions at issue. 

From the experiments it is evident that, for 
the special cases investigated, to a given up- 
stream state there corresponds only one down- 
stream state. Aside from this, it seems that the 
analysis previously presented provides a means 
for determining k : / k 2  or hi/k , ,  at least to a 
first approximation, the absolute errors being 
small for small theoretical values of dk,/h, or 
dh,/h,-which correspond to small values of 
F:-I or Fi-I in Case I or 2 .  

Conclusions 
From the foregoing investigation of the 

hydraulic jum in a fluid system of two layers, 
it can be conc f uded that: 
Tellus VII (1955). 3 

I. According to a simple analysis based on 
the momentum principle and the neglecting 
of shear, there can be at most three states 
conjugate to a given one. These states can be 
determined from Eqs. (2)  and (3). If the 
modified Froude number of either layer is 
predominantly large, there is only one con- 
jugate state. If the conjugate state is unique, 
and if a jump can occur from the considera- 
tion of energy and does occur, the state down- 
stream from the jump is completely deter- 
mined. If there are more than one conjugate 
states, merely from momentum and energy 
considerations it may not be possible to de- 
termine uniquely the state downstream from a 
hydraulic jump. 

2. Specific results of experiments performed 
on primarily internal hydraulic jumps for three 
special cases, shown in Figs. 3 to 5 ,  demonstrate 
the uniqueness of the downstream state in these 
cases, which is expected from the analysis. 
Furthermore, these results show that the 
simple analysis provides means for determi- 
ning the downstream depths to a first approxi- 
mation, the absolute errors in h i / h ,  or h : / h 2  
being small for small theoretical values of 
dk,/h, or dh,/h2. 
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