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Abstract 
In section 1-2 a certain space-smoothing operation is defined and its usefulness in solving 

elliptic equations is demonstrated in the case of a Poisson equation. It leads to solutions in a 
closed form which possess the numerical simplicity of the ordinary iteration methods, but is 
converging more rapidly. The reverse operation of unsmoothing is also defined as far as it 
can be done, and it is mentioned that the combined processes of smoothing and unsmoothing 
are convenient tools for obtaining a spectral analysis of horizontal scalar fields, and also to 
remove systematical errors which are made when derivatives are taken as finite differences. 

In sections 3-6 the application of smoothing is shown in the barotropic forecasting problem. 
At first a general theorem is proved concerning trajectories of two-dimensional non-divergent 
flow. It  states that if the streamfunction y1 of such a flow can be decomposed into two compo- 
nents y t ,  a of which c( is individually conserved in the y,-motion, then the displacements of 
the fluid particles up to any time can be found by at first displacing in the stntionary flow 
= const and then adding from the resulting positions the displacements in the flow with the 
streamfunctionyi. The theorem is first applied to barotropic flow. In this case the first stationary 
field to displace in is the deviation between the actual and smoothed flow, while the second 
field to displace in is the smoothed flow. 

The space-smoothing is next applied to an equation expressing the individual conservation of 
a quantity s in a two-dimensional non-divergent flow. The Reynolds term belonging to the 
smoothed equation is studied and found to depend essentially upon the deformation properties 
of the velocity field. The role of deformation for the net spectral flow of energy in the s-field 
is studied. The smoothing is in particular applied to the vorticity equation to show how this 
possibly can be utilized in the integration problem. 

In scctions 7-1 I the baroclinic case is considered. In sections 7-8 is shown the fundamental 
role of deformation for the interchange of potential and kinetic energy. It is found that in the 
advective model there is direct proportionality between the change in total kinetic energy and 
total thermal wind energy, and also a direct proportionality between the change in kinetic 
energy for the vertically mean motion and the thermal wind energy. 

In section 9 is discussed the possible importance of non-linear interference for the under- 
standing of the creation and local distribution of disturbances in the atmosphere. 

The integration problem is discussed in sections 10-12. At first an extension of the barotropic 
displacement rule is given for the vertically mean motion. The trajectory problem for levels 
other than the mean level is touched in section 12, and a simple non-advective model discussed 
shortly in section 11. 

Introduction 
In an article in Tellus (FJ0RTOFT, 1952) it 

was shown that a certain operation of space- 
smoothing of the horizontal streamfield could 
be utilized in connection with the barotropic 
forecasting problem. On  the one hand it led 
to rapidly converging solutions of the elliptic 
equation appearing in the problem. On  the 

other hand the smoothing was of such a 
character that vorticity would be conserved in 
the smoothed motion as well. This reduced 
considerably the number of iterations which 
are necessary for a forecast over a certain 
period, provided the numerical problem was 
treated in a Lagrangian sense. Since the 
appearance of the mentioned article the further 
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work with the method has continued along 
the following directions: First, the method 
has been improved for the barotropic case, 
and extended to simple baroclinic models. 
Secondly, it has been tested to a number of 
50 cases of which some also have been treated 
on numerical computers. By comparison the 
results hitherto seem to be practically equally 
good. 

The application of the developed integration 
methods wdl be brought in a second part of 
this paper because all the additional problems 
which arise as soon as theory is applied to 
practical cases deserve a separate treatment. 
Instead, however, is included in this part some 
results of more general theoretical interest 
which are closely related to the integration 
problem. 

On a certain space-smoothing operation 

I. Definition of the smoothing operator 

Let /? be any function of position on a 
spherical surface, vh the spherical nabla- 
operator, and ,!Iq the eigenvalues of the eigen- 
valueproblem 

v; 8 4  + 0, B q  = 0 (1) 

Bq=unique on a spherical surface (2)  

The aq)s are, as is known, given by 

aq = - 4 ( 4 + I )  , 4 =I, 2 , .  # R2 (3)  

where R is the radius of the sphere. It will be 
supposed that /3 satisfies the conditions for an 
expansion after the eigensolutions of (I), ( 2 ) :  

00 

(4) 
q =  I 

We cow define as B ( r )  an operation performed 
on (3 which is given by 

Inserting here from (4) and using (I) we 
arrive at 
Tellur VII (1955), 4 
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Hence it is seen that the operation which has 
been introduced smooths out entirely the 
r-component of B and damps all Bg for which 
uq<urr e.i. according to (3) for 4 < r. There- 
fore if (4) is approximated by a finite series 

N 

(7) 
q=  I 

it is seen that $N will imply a smoothing of 
all components of ,8, since then 

N 

04 

U N  
where now o 5 I - - < I. 

For the following arguments it will be 
su posed that j3 is given or approximated by 
a 4 mite series (7). It should be mentioned that 
in the practical applications to be treated in 
the second part of this paper, the differential 
operation (r) will be replaced by a correspond- 
ing finite difference operation -' which satisfies 
the following conditions 

- 
= o r  'U /?(r) 4 when q 7 r (9) 

and 

In the following we shall make such use 
of the operation (r) which makes it effective 
for components ,!Iq with 4 I r only. Whether 
we use (9) or ( 5 )  will therefore not change the 
results we, arrive at essentially. However, for 
the theoretical reasoning in this pa er it will 

the simple way in which the eigenvalues uq 
enter into the coefficients of the expansion of 
B'" . 

A repeated smoothing will now imply the 
relationship 

be simpler to use the operation(') 1 ecause of 
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N 

q= I 

(I -2 )  8 4  

and thus result in a complete damping out of 
the components Bq with the indexes 4 = r ,  
s, . . .)  t .  

The identity ( 5 )  may also be written 

If we write a similar identity for p ( r )  we 
obtain 

where s may be taken equal to or different 
from r. Combining (12) and (13) we obtain 

Iterating this procedure we arrive at 

I+ p =  - [- +--+...+ _ _ _ ~  v;; p o;; p"' v f pb), (3) .  . . (0 

4 as a, 

+ B ( r )  ( 5 ) .  . . (0  (14 (14) 

(1s) 

We  observe that 

v ( r )  (4 . . . (0  = (v; p)  ( r )  (3) . . . (0  h)B 
Let us now first take r ,  s, . . ., t ,  u, . . . = N. We 
then have 

p ( r ) ( s )  ... ( t ) ( u )  ... E p ( N ) p = =  

q =  I 

whenp + m. In this case therefore, using (IS) ,  
we may write (14) in the limit as 

I p =  - -1im [ ' J ~ B +  (v~p)"'+. . . + 
'NP+O0 

In the second case we choose successively 
r = N, s = N -  I, . . ., t = 2 ,  u = I. Since now 

N 

q =  I 

( I  +). .. ( I  -:) (I -:)Bq9 

(14) can by reference to (IS) be written 

The solution of a Poisson equation 

with the boundary conditicns (2) and correct 
for the N first components can now be ob- 
tained by replacing VLp with the known 
function F i n  either (16) or (17). In the former 
case the form of the solution corresponds 
completely to the one of successive iterations 
used in Richardsons method (19). In (17), 
however, the solution is given in a closed 
form whle at the same time maintaining the 
computational simplicity which characterizes 
the method of successive iterations. The main 
advantage, however, in using (17) for numeri- 
cal purposes is explained by the fact that 
taking a few terms in (17) gives a much closer 
approximation to the solution than taking the 
same number of terms in ( 1  6). 

2. The "reverse" operation of unsmoothing 

satisfying a relation 
Suppose now that p is an unknown function 

p(N) = f (19) 

where f'is known. Whle  obviously PN cannot 
be found because 87 must be zero, the other 
components can be determined by a reverse 
process of unsmoothing. For instance is 
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N 

q =  I 
as can be verified by substituting = b, 
on both sides. It can be shown that there 
exists also a similar relationship between @, 
/ I N ,  and in a closed form. The combined 
process of smoothing and unsmoothing will 
prove very useful in the numerical work of 
obtaining a spectral analysis of a field as 
will be demonstrated in an article to appear 
later. It has also been used to remove system- 
atical errors arising when spa.:e derivatives are 
obtained by taking finite differences. 

a correspondmg accuracy by simply letting the 
fluid particles carry along the vorticities they 
possess initially. If F(r) denotes this distribution 
of v f y  at time t=t,,  r being the position 
vector for points in the considered horizontal 
surface, a solution of the Poisson equation 

0; y* = F(r) 

will yield the field yI=,, with some accuracy. 
By n iterations of the operations above we 
will obtain a forecast for the period n t,. 

According to the integration scheme out- 
lined above the integration problem consists 
of two essentially distinct parts. The second 
part has already been dealt with in some detail 
in section I. In the following section the first 
part will be considered more closely. 

4. The trajectory or displacement problem 
for barotropic flow The barotropic forecasting problem 

3. Formulation of the integration problem 

In the so-called barotropic case velocity v 
is supposed to be horizontal and non-divergent 

If p denotes the displacement of a particle 
up to a time t and pi' the corresponding 
displacement in the stationary flow v = vt=o, 
we obviously have 

lim p' lim p V =  - v h Y X k  (21) 

I - +  0-= t +  0- and the motion governed by the equation t t 

For simplicity the motion will be considered 

in an absolute coordinate system. - is defined 

from 

D 
dt 

Eq. (22) then sim ly expresses the individual 

absolute vorticity. Using (21) we can also 
write (22) as 

conservation of t \ e vertical component of 

(23) 
D 
- v; y = 0. 
dt 

Suppose now that y and hence v i y  is 
known initially. Suppose further that on the 
basis of this information the trajectories of the 
fluid particles, or rather their displacements up 
to a time t ,  are known with some accuracy. 
In accordance with (23) we will then be able 
to find the distribution of v t y  at time t, with 
Tellus VII (1955). 4 

For t 2 t, we can therefore, if t ,  is taken 
sufficiently small consider p' as a sufficiently 
good approximation to p, meaning thereby 
that p' - p then will be small of higher order 
than p itself. In other words, the approxima- 
tion 

v=v,=,;  t l t ,  (24) 

will be sufficiently accurate as a basis to find 
p, if only t ,  is taken sufficiently small. 

Applied to the atmos here we probably have 

errors in a 24 h. forecast, thus making it 
necessary with a total of 12 iterations for a 
forecast over this period. In the following a 
method will be given by means of which tl 
can be increased considerably. The method is 
based u on a certain theorem which will find 
repeatel use in this paper. For that reason it 
will be most convenient to give the proof of 
it in general terms. Let then y1 symbolize a 
streamfunction defining a velocity v, in some 
motion by 

to take t ,  not > 2 h. i P we shall avoid serious 

"1 = - vhyi k, 
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Dl . D a  
d t  dt at while - is defined from: = - + vl-  v h .  

Suppose further that it is possible to write 

Y1 ‘Y2 +a (25) 

D1a 
dt - = 0. 

we obtain 

Since now v, - v h a  = o we obtain by com- 
paring with (26): 

Hence, a which according to (26) is individu- 
ally conserved in our motion, is also so in the 
fictitious motion with the velocities v2. 

We consider now a particle which at time 
t = o is at some arbitrary point A on some 
arbitrary level line at=o=al (fig. I). In ac- 
cordance with (26) this particle moves with 
the level line and hence must at time t = T 
be at some point C at at=T=al. In the 
fictitious motion with the velocities v2 the 
“particle” which at time t = T also arrives at 
C must in accordance with (27) have originated 
from some point, say B, at the level line 
at-o = al. We can now find the point B in 
a simple way, using only the initial conditions, 
by the following arguments: We consider all 
particles which at time t = o are on the line 
at-o=aI.  The set of trajectories of these 
particles in the j k i t i o t c s  motion are next con- 
sidered. If these are labelled in some unique 
fashion by a set { I }  this will introduce a func- 
tion f(r) such that f(r) = const = I d l  
represent the equation for the trajectory 
numbered 1. Particularly we shall label the 

Fig. I .  Illustration to the text in section 4. 

trajectories through A and B with 2~ and Is, 
respectively. Now, according to definition 

D J  Hence - - = v1 c7hf. Substituting here v1 = 

= v2 + v, we obtain 
dt 

Suppose now that in particular(-&) D f/’ denotes 

A 

the individual derivative for the particle which 
initially is at A. In this case, repeating the 
arguments from earlier, v2 must be the 
velocity of a “particle” in the fictitious motion 
which is initially at =a1, and hence 
must be parallel to the trajectory f(r) = 1 
which passes through the considered point. 
Hence v2 - v h f  = 0, and accordingly (29) can 
be written when applied to the particle in 
question 

or if we recall that v, * v h j -  = v h t c  x v h f .  k 

If next v3 is defined as the stationary velocity 

v3 = - vhat-0 x k, and - is the correspond- D3. 
d t  

Tellur VII (1955). 4 
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we can find the displacements of the 
fluid particles up  to any time t by dis- 
placing at first in the stationary velocity 
field - v h & t = o  x k and then adding 
from the resulting positions the corre- 
sponding displacements in the fictitious 
motion with the velocities v2 = - 

Fig. 2. Illustration for the text below. 

* (35)  

D a  
ing “individual” derivative : -3 = - + v3 * vh, 

we obtain by reference to (28) 
at at 

or 

Here A F  is the area between the level lines 
ut = ul, at = tll + Au, some fictitious tra- 
jectory f(r) = 1, and the neighbour one 
f(r) = 1 + Al, (fig. 2), while A F ,  corre- 
spondingly is the area between the level lines 

= el, = u1 + Au, some fictitious 
trajectory f(r) = 1’, and the neighbour one 
f(r) =I‘ + nl. Let now A F 1  denote the area 
of the surface element a b c d into which A F ,  
transforms in the v2-motion. Because of (27) 
and the definition of f(r) the corners CI, b, c, d 
must be situated as the diagram shows. Since v,, . v2 = 0, AFl = A F .  On the other hand if 
in particular 1’ = I ,  from continuity reasons 
n F / A F l  -+ I when nci -+ 0. Accordingly 
also A F , l A F +  I when n u  + 0. This in 
connection with (33) ,  (32),  (31), and (30 )  gives 
Tellus VII (1955). 4 
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provided f assumes the same value on both 
sides. Since now both particles, namely the 
one of the real motion and the one of the 
stationary field tltPO, initially have the same 
value 1A for f(r), we obtain by integration of 
(34) that also at any later time the two particles 
assume identical values of f: Particularly, the 
particle moving in the stationary field will 
arrive at B on the trajectory f(r) = ‘ l ~  at the 
same time as the particle in the real motion 
arrives at C on the same fictitious trajectory. 
To summarize we have therefore obtained the 
following result: 

If a flow is determined from a stream-) 
function y1 which satisfies the conditions 

Y1 = Y2 + a 

0 DlX -= 
at 



468 R A G N A R  F J O R T O F T  

(12) applied to the streamfunction y, taking 
r = N, together with eq. (23) after this has 
been divided by - aAv. This gives 

(37) 

This system is a special case of (25), (26), as 
vi y it is seen if we let y1 + y  and a + - -. 
ah. 

We obtain therefore the following rule: 

I The displacements in barotropic flow 
up to any time niay be found by at first 
displacing in the stationary velocity field 

with the streamfunction 

and then from the resulting positions 
adding the corresponding displacements 
in the smoothed motion with the 
streamfunction y(N). 

W e  now put as an approximation 

Since there is no upper limit to the period over 
which we can find the displacements in the 
stationary field, the upper limit to the period 
over which we can find the displacements of 
the particles according to the combined dis- 
placement rule above, will be given by r,' in 
(39). Since dN) represents a smoothed flow in 
space, it must be less timevariable than the 
velocities v themselves. Accordingly we may 
take r,' in (39) larger than t ,  in (24). Precisely 
how large we can take t,' must depend upon 
the spectral distribution in space of y, partly 
because this among other things will determine 
the number N of the component at which we 
will break the expansion after eigensolutions 
y4 in (7). When applied to the flow near the 
500 mb surface experience has shown that the 
2 h. for t ,  can be increased approximately to 
24 h. for r,'. 

We may now take advantage of this in any 
forecasting problem of the following nature : 
Let s denote a quantity which is individually 
conserved in barotropic motion: 

I dt 

If now s and y are given initially the dis- 
placement rule above will determine the 
distribution of s after the period r,'. If particu- 
larly s=vHy, the first displacement of the 
level lines ( ~ i y ) ~ = ~ =  const in the stationary 

field with the streamfunction - 

yields zero changes. In this case it is therefore 
sufficient with a displacement only in the 
smoothed flow. This is simply another ex- 

-, pression of (27), which, when a + - OKW 
N 

D, D" 
- + -, after multiplication by - a N  trans- 
dt dr 

forms to 

being defined by 
at 

(41) 

For any other conservative quantity s, how- 
ever, the level lines s ~ = ~ = =  const must gener- 
allv at first be disdaced in the stationarv field 

with the streamfunction - (H"(')t=; 
5. A few studies of the dynamical equations 

The operation of space smoothing(N) was 
introduced in section I at first merely as a 
method of solving a Poisson equation. In the 
section above this operation of smoothing has 
also got dynamical interest in the sense that it 
can be utilized with considerable advantage in 
the problem of finding trajectories of fluid 
particles in barotropic motion. The question 
then naturally arises to what extent the dy- 
namics of such a smoothed motion is deter- 
mined in terms of the smoothed motion itself. 
This is essentially a question of the relative 
importance of certain additional Reynold 

of the smoothed flow 

Tellus VII (1955). 4 
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terms which appear in the dynamical equation 
as soon as they are being smoothed. Some 
inquiry into the nature and interpretation of 
the Reynold term is the chef object of this 
section. 

Suppose now that we have 

H Ds -= 
dt (43) 

where H is a source for s which is a known 
function of space and time. For the following 
argumentation it does not matter if we put 
H = 0, giving 

Ds -=o 
dt 

or alternatively 

(44) 

v; Applying here the smoothing (w = I + - 
UN 

on both sides we get after some computation 

where 

(45) 

In (47) the derivatives with respect to x, y 
refer to a locally Cartesian coordinate system 
in the considered horizontal surface. It should 
be noted that A(y,s) depends entirely upon 
the mutual deformation properties of the 
vector fields -Vky x k and - V h s x  k. 
The interpretation of A(y,s) is seen from the 

following arguments: Recalling that - = 
D 
dt 

DN 
dt = - + (V - V")) . v k ,  (45) can also be written 

Multiplying here both sides by s and integrating 
over the total spherical surface F we obtain 
by reference to (40): 

However, since v h  - (v - v")) = 0, we obtain 

and hence by Gauss's theorem 

(V - v'w) * v k  sdF=O (50) J F 

Then, after multiplication by uN in (49), 
recalling that in accordance with (5) vfs= 
= - u N ( s  - P)), we obtain 

d I - - s v i , s d F =  - z s A ( y , s ) d F  (51) 
dt F s F 

From (40), however, we obtain simultaneously 

s2dF = o 
F 

a, 

If we introduce the expansions s=L'sq and 

vis = - Zuqsq into (sI), (52) and recall the 

orthogonality properties of the sq)s, 

4 - 1  
a, 

4" I 

sqs,dF = 0, q c Y, j 
we obtain 

a, 

4-1 
Tellus VII (1955). 4 
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Under the condition (5 5 )  the displace-' 
ments in the smoothed motion with the 
velocities v ( N )  may be found up to a time 
t 5 t1" by at first displacing in the 
stationary flow with the streamfunction 

- (Vy) and then addmg from 

the resulting positions the corresponding 
displacements in the doubly smoothed 
flow with the velocities V ( ~ ) ( ~ - D ) .  

f = O  

Using these equations together with the 
condition a,+ I >a, we obtain that there will 
be a net flow of si to the hgher or lower 
kequency end of the spectrum accordmg as 
- JsA(y,  s ) d F 2  0. The term A(y,  s), which 

depends entirely upon the mutual deformation 
properties of the vector fields v and - V h s  x k, 
is therefore solely responsible for a contingent 
net flow of amplitude squared, si ,  in the one or 
other direction of the spectrum. 

If H in (43) were not zero, such net flows 
of si could of course also take place with 
A(y ,  s) = 0. However, this kind of spectral 
changes would not depend directly upon the 
properties of the velocity field. 

The interpretation of A(y ,  s) may be formu- 
lated in a somewhat different manner by using 
the following arguments: W e  have 

F 

so that by comparison with (51): 

Ds 
Further, if - = 0, then, since v h  . v = 0, the 

area between adjacent level lines s = sl, and 
s = sl + a s  must be conserved during the 

motion. Then, evidently .- s(o! ,s)2dF 2 o 

according as the lengths of the level lines 
s = const are on an average either increased 
or decreased. We  may therefore say that 
A(y,  s) may be interpreted as in an integrated 
sense to be responsible for whether on an 
average the lengths of the level lines s = const 

will increase or decrease, if - = 0, or at least 

tend to do so if - = H + 0. Whether there 

is locally an equally clear interpretation of 
A(y ,  s) is not as yet clear to the author. 

dt 

d 
dt F 

Ds 
dt 

Ds 
at 

If we put s = ~ 2 y ,  eq. (45) becomes 

(54) 

We will discuss this equation from a particular 
point of view in the next section. 

6. Further inquiry into the displacement 

While the Reynolds term in eq. (54) may 
be a very important one in characterizing 
important features of the motion, its magnitude 
on the other hand may bc such that it can be 
neglected in connection with the displacement 

roblem for a period t," which may possibly 
&e greater than the period t,' over which v ( N )  
was put constant. For the period t," we may 
now write down the approximation 

problem for barotropic motion 

It is readily seen that this equation can be used 
in connection with the displacement problem. 
For writing down the system 

the latter having been obtained by division 
by - u N - ~  in (ss), we obtain by identifying 
y1 with yN, and x with -___ viy"' in eqs. 

a N  
(4, (26): 

it will be understood that 'we can take the t,'" 
in (59) larger than the t,' in (39), because 
v ( N ( N - p )  as a doubly smoothed flow must be 
less time-variable than v ( N ) .  Let T denote the 

Tellus VII (1955). 4 
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larger of tl” and tl”’. The slight experience 
we have had hitherto with forecasting by the 
aid of this triple displacement rule seems to 

indicate that we can choose at least - = 2 ,  

and that in this case with the proper choice of 
N, T may be taken as large as about 48 h. 

A discussion of the spectral diqribution of 
y which is most unfavourable to a neglect of 
the Reynolds term in eq. (54) has been carried 
out and will be presented in a separate paper. 

We can now combine the displacement rule 
(58) above with the earlier rule (38), giving a 
triple displacement rule : 

‘ N  

‘hr-p 

To find the displacements of fluid 
particks in barotropic motion 
time t I T, we may at first 

the slationary field 
- . .  - 

from the resulting positibns add the dis- 
placements in the stationary field 
- v; y‘”) 
- (---) , and then finally add 

the disdacements in the doubly smooth- 
‘ N - p  t = o  

l ed flok y ( N ) ( N - p ) ,  which ma; be taken 
stationary and equal to y ~ ~ ~ ( N - p )  when 
t I T. 

Obviously we could continue these argu- 
ments and find the dis lacements in the 
doubly smoothed flow Ey neglecting the 
Reynolds term R ,  N - p  belonging to a doubly 
smoothed vorticity equation, 

However, since we have as yet no practical 
experience in the use of the doubly smoothed 
vorticity equation we shall abstain from a 
further discussion of this at the present moment. 

Before proceeding to the barodinic motions 
we shall mention an other aspect of thc results 
arrived at with respect to displacements of 
fluid particles in barotropic motion. Let then 
p* denote the approximate displacements up 
to any time which would be found in ac- 
cordance with the methods developed above, 
as compared to the true displacements p. 
Provided 

p*=p; t I T  (61) 
Tellus VII (1955). 4 

the distribution of v l y  at time t and thereby 
by integration y and v, will be found with a 
corresponding accuracy by simply displacing 
v$,or=o the vector distances p*. However, 
the integration of the Poisson equation 
becomes altogether unnecessary if we also have 

Now (62) does not necessarily follow from 
(61). On the other hand (61) could not be 
true if (62) was unsystematically untrue. The 
unsystematical errors. in (62) are relatively 
easy to get rid of. Provided this has been 
accomplished we should therefore expect it 
possible to find velocity v approximately, 
directly from 

Here probably, .T‘ has to be taken somewhat 
smaller than T i n  (61). 
Experience has shown that T’ at least can be 
taken as large as 24 hrs. when we use the 
triple displacement rule (60). 

The baroclinic case 

7. The equation for vertical velocity 

In the present case we shall not any longer 
have the restriction that velocity v8 shall be 
horizontal and non-divergent. We may ex- 
press this by writing 

v3 = v+v, 
where 

V =  - V h ~ x k  
vrr= -vha+wk 

We shall a priori exclude sound phenomena. 
Since we in this paper are mainly concerned 
with the matter from a theoretical point of 
view we shall do this in the simplest way by 
assuming 

The boundary conditions to be considered 
will be taken as 

w = o for x = - h, z = h (65) 

v . v 3 = o  (64) 

where h is the depth of the atmosphere. 
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We shall next make use of certain equilibri- 
um conditions, essentially in the manner 
demonstrated by CHARNEY (1948) and ELIAS- 
SEN (1948). One of the essential consequences 
of the method of Charney and Eliassen is the 
fact that the component v, of the velocity 
field cannot be chosen arbitrary, but is in fact 
instead determined from a knowledge of the 
pressure distribution and the boundary condi- 
tions alone. In this paper we shall derive the 
equations for the components of v, by at 

2ln6 2y first eliminating - and - between three 
at at 

e uations. The first of these expresses the 
re 9 ation which must exist between y and 
potential temperature 6 if the v,-com onent 
of the velocity field shall be in equili I! rium: 

I 

Here it is integrated over the total volume z 
of the atmosphere. Considering the coriolis 
parameter 2QZ as a virtual constant under the 
gradient VI, * 29,- aY 

az’ 

and considering also the convective accelera- 
tion v vhv negligible in comparison with 
20,k x v when differentiatcd with respect to 
height z ,  

it has been shown elsewhere (unpublished), 
that the necessary and sufficient condition for 
(66) is: 

(69) 
20,- aY +gln6 = k ( z ,  t )  

az 

where k is independent of the horizontal 
coordinates. 

The second of the three equations is the 
thermodynamic equation 

where Q is proportional to the supply of 
heat per unit time and mass. Using (67) and 

inclulng a horizontally constant function in 
the definition of y, elimination of ln6 between 
(69), (70) gives: 

(71) 
The third of the equations is the equation 

for the vertical component of absolute vorticity 
v h X  V ’ k = v i y ,  

. v h l V S v h X F . k  -V.vhv;W. (72) 

F denotes a horizontal frictional force. In the 
vorticity equation the only non-linear term in 
v, together with the solenoid term have been 
neglected as presumably small terms. Elimi- 
nating- 2Y between eqs. (71), (72) we then 

at 
obtain 

L(v,) = F (73) 

where L(vJ is a certain linear differential 
expression of at most second order in the 
components of v,, and F a  non-homogeneous 
term which is given by 

The two other equations for the components 
of v, are obtained from the continuity equa- 
tion and the condition that according to de- 
finition v h  x v, = 0. This gives respectively 

av, au, 
ax ay 

0. -_ -=  (75) 

The condition that the system (73), (74), (75) 
above is elliptic can be shown to be given by 

Tellus VII (1955). 4 
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This condition is usually satisfied in the atmos- 
phere. With the boundary conditions (65) we 
must therefore obtain w=o when F r o .  The 
coefficients in (73), at least in the terms which 
are the most dominating, are relatively perma- 
nent in character as compared to the non- 
homogeneous term F. The variable conditions 
for F will therefore be the main 'factor in 
creating the variable conditions for the systems 
of vertical velocities we can have in the 
atmosphere. We shall now look a little more 
closely at this non-homogeneous term. Effectu- 
ating the differentiation with respect to z it 
turns out that we can write F on the form 

space of the coefficients in (78) are negligible in 
comparison with the corresponding variations 
in the first derivatives of v,, and have been 
neglected. It is understood that for the com- 
ponents of vertical velocity which have 
sufficiently large horizontal scales, eq. (78) can 
under the boundary condition (65) be ap- 
proximated by 

(79) 

When we make the corrcsponding simplifi- 
cations in the vorticity equation (72) and in 
the eq. (71) we obtain 

where (,) is defined as in (6) and A 

is the function A(y ,  s) defined in (47) when we 

put - for s. It is an interesting fact that here 

besides heating and friction, and an advection 

av 
az 

- 
( 2) JY term (V - V(Y) - vh-, now a term (1 y ,  - az 

a pears which in accordance with (6) only 
$pen& upon the mutual deformation proper- 

ties of v and - x k. The relative 

im ortance of this and the advection term 
wiB be investigated more closely in the 
following section. 

az 

8. The importance of deformation investigated 
for a simplified baroclinic model 

By a partial elimination of u,, v, between 
(73)) (74), (75) we obtain the following 
equation for vertical velocity: 

The terms containin the first derivatives of 
u., v,, iu are small i H the relative variation in 
Tellus VII (1955). 4 

For the following arguments it does not 
matter whether we ignore friction and heating, 
or not. For simplicity we shall therefore ut 
both zero: F = 0; Q = 0. Eq. (81) can d!en 
also be written 

Let us next assume that 

We can then write 

where 
h 

- h  

A av Substituting v = v + z - in (82) and ob- 
az 
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Differentiating (86) with respect to height and 
using (83) we obtain 

r a a2y 
0, Substituting for 2Qzw the solution (88)) the 

antisymmetrical part of the solution falls out 
under the integration and we are left with the 
equation 

--= 
at 222 

showing that (83), when once satisfied will 
also be so at any later time. Substituting from 
(84) in the terms on the r.h.s. of (79) and 
recalling that dt L J L v 2 d t  2 = [ - 1 2  2 A (c, 2) at - 

A (zg, 2) = o  r 
T 

- r$ (c - ;OW). vh 
az 

in accordance with the definition (47), we 
obtain 

T 

However, using (50) this equation reduces to 

is: v 2 d t  = - - 3 / ~ - A ( G  W T )  d t  (89) 

having for convenience introduced the quantity 

4- G A ( k 2 ) ]  2 + a N z  ( z -z )  av dV(W ‘VhX aY T T 

(87) Y T  defined from 

(90) 
av With the boundary conditions (65) the yT  = h---. 

solution of (87) becomes a2 
Recalling now the definition of A(y,s) ,  we 
have obtained the result that changes in the 
total kinetic energy in our model depend 

av a v ( ~ )  entirely upon the mutual deformation proper- 
(a, -72) ’ ties of the velocity field ; = - v h $  x k and 

the “thermal” wind field V T  = - v h ? # T  x k. 
After multiplication by h eq. (86) can be 

A 

+ - A  y , -  - ( z 2 - h 2  +aN ) 
aN (A z)] 

(88) written 
* v h -  aw - ( 2 2 - h 2 ) 2 .  1 

az 6 

(91) 
D a -  *Lo; - = - + v . V h .  

This solution will now be used in order to dt dt at 
find an expression for the increase in total 
“volume” kinetic energy. Ignoring friction we 
may in accordance with a result obtained by 
Fjartoft (6) write 

iJ; v : d t  = IglnBwdt 

Substituting here for ln6 from the balance 
condition (69) obtained from (66) we also 
obtain 

In agreement with (53)  we now get 

y ~ . / l ( ; , y ~ )  dz. (92) 

r r Eq. (89) can therefore also be written 

3 dt 2 
r 

There is accordingly in the absence of friction 
and heating direct proportionality between the 
increase in total kinetic energy and total 
energy in the thermal wind field. We may 
now also take over the other results of section 
5 ,  thus giving: 

d r  
dt 2 az v i d t  = 2-i v z d t  = ./” 2Qzwdt, 

T r T 

since because of the continuity equation (64) 
and the boundary conditions (65) 

Tellus VII (1955). 4 
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with wavenumbers above N - p - I .  The func- 

by interference contain “energy” on wavenum- 
bers which are excluded in the smoothed 
fields. The distribution of the bulk of energy 
in these higher components must essentially 
depend upon the mutual deformation proper- 
ties of the smoothed ; - and vrfields. The 
author of this article has some experience in 
forecasting on the basis of initially smoothed 
fields. It has repeatedly turned out as a result 
of the displacements of the yrisolines, that 
the field yT, though smoothed initially, ends 
u with “energy” on smaller scales, the bulk 
o P which has a typical distribution relative 
to the smoothed fields. These smaller scale 
phenomena which thus enter the picture, are 
generally also verified. While we will return 
to this in the practical examples to be brought 
in the second part of this paper, we shall here 
study the same fhenomenon by investigating 
the function A(y ,  yT) for the normal maps of 
November. Using the ordinary geostrophic 

I N  W E A T H E R  F O R E C A S T I N G  

tionI.1 (y“) ... ( N - P ) ,  (N)...  ( N - P ) )  hdwever,may YT 

approximation y = --, g z  where Z denotes the 
2 0 ,  

height of a pressure surface we may write 

and 
I.1 ($3 YT) = k, ‘ (zo, z7 - zo) 

i y T A ( $ ,  yT)d7 = 

= k2 1 (Z7-zO) I.1 (Z,, Z, - Zo) dF 

where k,, k, are certain positive proportionality 
factors. Here, Z,, Z, denote the normal 
heights of the 1,000 mb and 700 mb surfaces, 
respectively, smoothed so as to give zero 
energy on wavelengths below approximately 
5,000 km. In fig. 3 the function A(Z0, Z ,  - Z,) 
is illustrated together with the normal, 
smoothed thickness field Z ,  - Z,. It is 
clearly seen that the integral above will obtain 
a negative value when F is taken as the area 
represented on the map. According to the 
results of the preceding section we can there- 
fore conclude that the normal fields of es- 
sentially pressure and temperature are such as 
to give a flow of “energy” in the horizontal 
temperature field towards the high-frequency 
end of the spectrum, thereby increasing the 
total kinetic energy. 

F 

(a) The total thermal wind energy and 
hence also the total kinetic energy increases or 
decreases in the absence of friction and heating 
according as the lengths of the isolines p ~ =  
= const, essentially the horizontal isotherms, 
are on an average either increased or decreased. 

(b) The total thermal wind energy, and 
hence also the total kinetic energy, increases 
or decreases in the absence of friction and 
heating according as there is a net flow of 
amplitude (yT); to either lower or higher 
wavelengths. - 

dv 
Substituting from (84) v = v + z -  in 22 j :  v2dt we obtain 

r 

7 7 7 

By elimination of v2dt between (93), (94) 

we get r 

r r 

All what was said above for the total kinetic 
energy is therefore also valid for the kinetic 
energy of the vertically mean flow. 

According to (b) above an increase in the 
total kinetic energy necessaril is connected 

on the larger scales. Whether actually t e 
total lunetic energy also shall decrease on the 
same scales will, however, according to (94) 
also de end upon in which direction and 
with w K at magnitude the kinetic energy of 
the vertically mean flow changes on these 
scales. The results above do, however, only 
give a clue to an understanding of the condi- 
tions for the changes in the total kinetic energ , 

mean flow, and not of the nature of the 
changes in their spectral distribution. 

a with a decrease in thermal win B kinetic ener y 

and the total kinetic energy of the vertica Y y 

9. On the possible importance of non-linear 
interference for the understanding of the 
creation and geographical distribution of 
disturbances 

Let now&V.. - W-9) and y(TN). . .O“P) denote 
repeatedly smoothed fields. We do then know 
that neither of these fields contain components 
Tellus VII (1955), 4 
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90.E 
I 

I 
I 

90' W 

Fig. 3 .  Spacely smoothed normal 700-1000 nib thickness field (full lines) together 
with the field of A (Zo ,  Z ,  - Z,) (broken lines). 

In fig. 4 we have drawn the component A' 
of A(Zo, Z, - 2,) which only have energy 
on the scales which were discluded in the 
fields 2, and 2, - Z,, themselves. 

Much remarkably the field of A' consists of 
three pairs of centers centered around localities 
which coincide rather closely with the three 
main centers of mean diurnal variability of the 
height of the 500 mb surface found by Nyberg 
(1949) for the single month of November 1947. 

The above investigations indicate that the 
phenomena of non-linear interference in the 
above sense may have a bearing on our 
understanding of the creation and local dis- 
tribution of disturbances and is now being 
taken up for systematical study. 

10. The integration problem 
When we treated the integration problem 

for barotropic motion we developed methods 
which clearly represented an advantage when 
we undertook to fmd the displacements of the 
fluid particles. When we are now turning to 
the integration problem for baroclinic flows 

our main problem wJ1 be to investigate how 
much of these advantages, if anything, can be 
maintained. The following is not a complete 
treatment of this problem. The general 
baroclinic problem is so Micult that it is best 
to start with simple models. It is thought 
however, that even these will reveal the most 
fundamental features of barochic flows, and 
that the manner in which we are going to treat 
the integration problem may be rather typical 
for more general models. 

It is an explainable fact that the barotropic 
model applies best to the vertically mean flow 
represented approximately by the horizontal 
flow between the joo mb and 600 mb 
surfaces, while the flows in greater distances 
above and below certainly are very little 
barotropic. It is therefore natural to direct the 
attention at first to the vertically mean flow 
where the results obtained for barotropic 
flow must be expected to be least altered. 

Maintaining the assumption (83) and aver- 
aging the vorticity equation (80) in the vertical, 
we obtain 

Tellur VII (1955). 4 
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90- E 
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I 0 0  
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S0.W 

Fig. 4. The field of A' defined in section 9. 

T ' Vhvi YT.  (97) 3 

For an illustration of the integration methods 
we shall at first make the advective assumption 
(94: 

DYT - 0. dt 

If, now ro denotes the position vectors at time 
t = o for particles moving with the velocities 
v, we may use r, to define the La rangian 

article variables in contrast to r w !i ich has 
fee, used to defme the coordinates of position 
on the horizontal surfaces. Eq. (96) may then 
be written in Lagrangian coordinates as 

A 

and in Eulerian variables as 

a A A 

- v i y ( r ,  t )  = - v . VhVKy + H(r, t)EI(r, t).  
at 

Let us assume that 
(99) 

If now (At) ,  and A t  denote the maximum grid 
distances in time which can be used for a 
numerical description of H(r,, t )  and I(r, t ) ,  
respectively, we could take (At ) ,  s A t  if (100) 
were true. This would so far be an advantage 
in the numerical work of integration. How- 
ever, to get a prognosis based on (98) we must 
also know where the individual particles move 
in the course of time, a problem which does 
not arise in (99). If it should now happen that 
in order to find the displacements p(ro, t ) ,  
iterative operations of some nature were 
required with a maximum iteration period T 
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time t' 5 T', we may at first displace in 
the velocity field with the streamfunc- 
tion 

which could not be taken larger than At ,  then 
there would certainly be no advantage in using 
a Lagrangian method. If, however, on the 
contrary T > A t ,  then under the assumption 
(IOO), and provided the operations involved in 
fmding p(ro, t)  are not too complicated, there 
would be an advantage in using (98), because 
the number of iterations required for a forecast 
over a certain eriod would be less than the 

In the Garotropic case where H = const = 0, 
there is no upper limit to (At), .  Further, it has 
been shown in this article that it is possible to 
fmd in a relatively simple manner the dis- 
placements p(ro, t )  using an iteration period 
T -N 24-28 hours. Since now A t  cannot be 
taken larger than between 1-2 hours because 
of the rapidity with which -v.vhv&~ 
changes in the atmosphere, there would in 
fact be an advantage in using a Lagrangian 
numerical method in the barotropic case. 

In the baroclinic case I(r, t) = - v - vhv&+ 
+ H(r, t). Since there is no general tendency 
in the atmosphere for a compensation between 
these two terms, and further because as a 
matter of observation 

one required i P we used (99). 

the assumption (100) would certainly also be 
fulfilled in the baroclinic case. Recalling that 

and letting r," denote Lagrangian particle 
variables for the smoothed motion, (98) can 
also be written 

a 
-vRy(rF, t )  = H(r,", t )  J t  (101) 

It is an observational fact that generally 

It will therefore also fror this reason be an 
advantage to connect the integration problem 
with (101). Suppose now that T' represents 
the maximum grid distance in time which can 
be used for a numerical description of H(r2, t ) .  

This means that for particles moving in the 
smoothed motion we may consider H an 
approximate constant for t 5 T' 

D N H  
0; t I T'. -= dt 

In order to utilize (101) we must now be able 
to find the trajectories in the smoothed flow, 
and next H as a function of time. Since H is 
determined when we know W T ,  and W T  is 
found in accordance with (91) when we 
know the displacements together with the 
initial conditions, we are left therefore es- 
sentially with a displacement problem. 

A relatively simple displacement rule can be 
found by considering the system (36), (96), 
and (IO~), dividing the latter equations by 
- aN: 

I ,  

a N  

and then add from the resulting posi- 
tions the displacements in the smoothed 
flow. 

It is seen that the only difference from the 
barotropic displacement rule (38) is that the 
first displacements must be carried out in a 
field which has got the additional non- 
stationary component - (Hf,,/ap$. How- 
ever, because this field maintains its form and 
also ossesses a simple de endency on time, 
the i isplacement w i U  not Ee difficult to carry 
out. In most cases it will be sufficient to dispiace 
in the stationary field 
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- ("") -(H*)< 2 
a N  I - 0  

because in most cases (H,,,/aN)t' will be 
relatively weak in comparison to - v K y t - o l a N .  

Again we should remember that the results 
depend upon the choice of a N .  For if a N  is very 
large the smoothed flow v(w wont be very 
much different from the actual flow v in the 
range of wavelengths containing most of the 
ener y. Then vcN) would be practical1 

cordingly not displace in the smoothed flow 
v ( N )  much longer than we could have done 
in the actual flow vI=@ By the proper chcise 
of a N ,  however, the time scale of v ( N )  becomes 
such that we can put as an approximation 

v(h')=v:fA'b; t <  qhours., (39) 

muc t time-variable as v, and we coul 2 ac- as 

I - 0  

like we did in the barotro ic case. 

accordance with what has been outlined above 
we proceed now in theory as follows. 

Using the displacement rule (104) we dis- 
place the "thickness"-lines ( Y T ) ~ = ~  = const to 
find yT(r, T'). This gives us also H(rr, T'). 
Thereafter, we find 

To make a prognosis P or the period T'in 

v G ( r 5  T')=vK;(r~,O)+[H(rr,O) + 

+ H(rr, T')]  T 
Knowing the displacements in the smoothed 
flow we then also know the distribution 
7; &r, T'),  say = F(r, T'). BY a solution of 

oiG(r, T') = ~ ( r ,  T') 

we find c(r, T'). The flow in any other level 
will be determined from 

11. A simple non-advective model 
If we also include the convection term in 

the thermodynamic equation it becomes 

obtained from an elimination between (80) 
and (IOS), giving 

a2w g 2ln6 
a22 2 9 ,  az 

29,-+--vc7Kw=F. (106) 

We shall now make use of the assumption 
(83). The deviations from a linear distribution 
with height for y which now necessarily must 
develop because of the inclusion of the con- 
vective term in (10s) w d  be supposed to be 
small enough to justify the use we shall make 
of (83) below. In this connection we should 
mention that in a so-called two- arametric 

linear interpolation between the values of y 
in two distinct levels, (83) is by assumption 
automatically satisfied. 

Using (83), the vertically averaged vorticity 
equation (96) will be unchanged. However, 
the deviations from a linear distribution with 
height of velocity makes it natural to define 
yJT as 

model where the solution for y is o t: tained by 

The equation for yT is obtained by integrat- 
ing(I05) from z = - k to z = k and divide by 
2. Using (83) we obtain then: 

- h  

Smoothing eq. (10s) on both sides we obtain 
in accordance with (48) and (83): 

Substituting in (106) V i w  = a N ( w ( N )  - w) and 
the expression (87) for F this equation can also 
be written: 

An equation for vertical velocity is now 
Tellus VII (1955). 4 
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Eliminating w ( ~ )  between (10s) and ( I O ~ ) ,  we 
obtain 

This equation is now solved under the earlier 

mentioned assumption that - - and hence 

may be considered as approximately &-z 
independent of height. 

a ay(N) 
at az 

If next the solution is introduced into ( I O ~ ) ,  
the unsymmetrical part of the solution falls 
out under the integration and we are left with 

Assuming an average constant value for 

, k N  becomes for the proper choice 
hz a h 6  -__ 

4.n: az 
of N equal to one half: 

I 

2 
k N = -  for the proper choice of N. 

Under these assum tions it is easy to show 
that eq. (111) can g e written 

F J 0 R T O F T  

I 
dt 

Here the source term on the r. h. s. is accord- 
ing to its nature undcr most circumstances 
negligible in its effect on the prognosis of 
the thickness lines and may be neglected with 
good approximation: 

I 

2 
Accordingly the quantity yT - - y$Y may be 

considered conserved in the smoothed motion 
y") when N is given the proper value. 
Experiments have shown that eq. (114) has 
proved useful in overcoming in a simple 
way the main errors in the thickness fore- 
casts caused by the advective assumption. 

12. The trajectory problem for levels other 

This problem can be treated with success by 
means of the theorem (35). We shall illustrate 
this for the advective model. The stream- 
function in an arbitrary level is y = y  + 
+ ( z / h )  Y T .  We have therefore the system 

than the vertically mean level 

.. 

According to the theorem (35) we may there- 
fore find the displacements in an arbitrary 
level by at first displacing in the stationary 
field ( z / h )  ( V T ) ~ = ~ ,  and then add the dis- 
placements in the motion in the mean level 
which can be found by means of any of the 
carlier rules. 
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