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Some Aspects of the Flow of Stratified Fluids 
11. Experiments with a Two-Fluid System 

By ROBERT R. LONG, The Johns Hopkins University’ 

Abstract 
A description is given of the flow of two superimposed layers of fluid over a barrier. This 

represents a partial experimental investigation of a problem considered theoretically in Part I. 
In general three regimes of motion are possible: If the velocities of the fluids are sufficiently 

small the interface is  little disturbed except for a slight depression over the barrier. If the velocities 
are sufficiently high the interface swells symmetrically over the obstacle. At intermediate speeds 
a hydraulic jump occurs in the lee of the barrier and the lower layer increases in depth upstream. 
Two occurrences do not fit into the above description: If the obstacle is small compared to 

the depth of the lower layer, weak lee waves appear at low speeds, increasing in amplitude as 
the approach velocity of the fluid is increased. This seems to be the only case in which pertur- 
bation theory provides an adequate prediction of the flow. The second anomalous occurrence 
is the appearance of a “jump down” or hydraulic “drop” in the lee when the speed of the 
fluid is moderately high, the obstacle large, and the upper fluid relatively thin. 

The description of the experiments is supplemented by a theoretical discussion, employing 
the assumption of a hydrostatic pressure distribution. In general this theory provides a satis- 
factory explanation of the observed behavior. The paper concludes with a discussion of mete- 
orological implications. 

I. Introduction 

Part I of this series of papers (LONG, 1953 a) 
contained a rather general theoretical analysis 
of the two-dimensional flow of a stratified 
liquid in a gravity field. Assuming only that 
the liquid was frictionless and the flow steady, 
the equations of motion and continuity were 
integrated once to yield a second-order, 
differential equation. This equation, va id for 
any arbitrary basic density stratification and 
velocity distribution, was examined from 
several viewpoints: In the first lace it was 
assumed that a solution existeB for given 
finite configurations of the boundary. A 
sufficient condition was then obtained for this 
solution to be unique. By analogy with 

partia1 
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hydraulics a regime of flow satisfying the 
uniqueness criterion was called supercritical. 

If only infinitesimal perturbations are con- 
sidered, uniqueness implies that the flow is in 
such a state that no free wave can maintain its 
position with respect to the fixed bottom, but 
must instead be swept downstream. This means 
that the wave energy generated by an obstacle 
in the stream cannot be propagated upstream 
since the maximum group velocity in such 
systems is the phase velocity of long waves. 
In the flow of water in a channel the occut- 
rence of a supercritical regime at some section 
is a necessary condition for a hydraulic jump. 

In the problems of water flow with a free 
surface, and high speed flow of a compressible 
fluid, this shock-wave phenomenon is by far 
the most important characteristic of themotion. 
In the case of a stratified fluid such as the 
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atmos here there seems little doubt not only 

fundamental importance to meteorology. TEP- 
. PER (1952), for example, assumes that squall 

lines are really surges (moving hydraulic 
jumps) on an inversion surface in the tro o- 

matical theory of such shock waves to actual 
surface pressure observations and predicts 
motion and development. Des ite some 
objections (FULKS, I~SI), it is L e l y  that 
Tepper has given a correct physical inter- 
pretation of most if not all squall lines. 

Further evidence of the existence of hydraulic 
jumps in the atmosphere is provided by 
observations of the very violent type of 
motion that occurs in the lee of the Sierra 
Nevada Range near Bishop, California (COL- 
SON, 1952). Resemblances between this pheno- 
menon and a crude laboratory model (LONG, 
1953 b) are numerous. At Froude numbers 
roughly e uivalent in model and prototype 

cases in the lee. 
The unquestioned importance of stability in 

the atmosphere has inspired a number of 
studie; of internal gravity waves set up by 
mountain barriers and other sources of pertur- 
bations (LYRA, 1943 ; QUENEY, 1947; SCORER, 
1949; MALKUS and STERN, 1953). In these 
studies, however, it is first assumed that the 
amplitudes of the perturbations are infinitely 
small in order to linearize the differential 
equations. Streamlines are then drawn in which 
the amplitudes of the waves are finite. This 
inconsistent approach raises a number of 
questions. Such a procedure yields a shock-free 
flow of a fluid past a barrier when, in fact, it 
is not known whether such a solution really 
exists. The experiments described in this paper 
indicate that hydraulic jumps occur at very 
moderate Froude numbers from a meteoro- 
logical viewpoint, provided the obstacle is not 
too small. The experiments further indicate 
that the jumps are the only phenomenon of 
any great importance unless the height of the 
obstacle is small compared to the depth of the 
lower fluid. In such cases there are small lee 
waves which increase in am litude with the 

however, these waves do not simply change 
in wave length and amplitude but completely 
disappear at low speeds or are replaced by 

that s K ocks exist but that they are of very 

sphere. He then applies a simplhed mat K e- 

similar vio 7 ent upward motions occur in both 

fluid speed. For an obstacle o P appreciable size, 
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finite jumps at the higher speeds. It is evident 
from the experiments that a finite obstacle 
cannot be considered simply as a “big” infini- 
tesimal barrier. 

In Part I mention was made of some pre- 
liminary ex eriments with a three-fluid system 

hydraulic jump at each interface. A more basic 
approach to the experimental problem of 
investigating stradfied AOWS, however, would 
be to set up the most simple model possible 
and attempt to understand it fully before 
constructing more complex models. Obviously 
a system of two fluids is simpler than a three- 
fluid system and the former is the subject of 
this paper. The latter will be investigated at a 
later time, along with other models of interest. 

Some mention should be made of the reason 
for the choice of multiple-layer systems instead 
of those with continuous density gradient. To  

in which f f  ow over an obstacle produced a 

continuous density gradient may be obtained 
by a mixture of water and salt, for example, 
(GORTLER, 1943), and some preliminary ex- 
periments with such a set-u have already been 

considerable practical interest in meteorology. 
Rather strong temperature inversions are of 
frequent occurrence in the atmosphere and, 
dynamically, they resemble closely interfaces 
between two homogeneous fluids (adiabatic 
atmospheric layersl). 

Moreover, even the two-fluid case probably 
has considerable application to atmospheric 
problems. In the preliminary experimental 
investigation with three fluids it was suggested 
that the lower two fluids were analogous to 
the troposphere, and the upper fluid to the 
stratosphere. When the density difference was 
the same across each interface, small but 
significant effects (hydraulic jumps) were 
noticed at the “tropopause’’ for atmospheric 
values of the Froude number and obstacle sizes. 
The great stability of the stratosphere, how- 

undertaken. Yet multiple- f ayer systems have 

1 The ctfect of compressibility will be discussed in a 

Tellus VI (1954). 2 
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ever, would indicate that a closer approxi- 
mation to the atmosphere would be obtained 
by increasing the density difference between 
the middle and upper fluid. When the latter 
density difference was made four times the 
difference across the first interface, the “tropo- 
pause” was almost undisturbed for reasonable 
Froude numbers and the fluid system behaved 
very much like a two-fluid system with an 
u per rigid or free surface. At the present sta e 

as a suggestion. It is possible to arrange various 
layers of immiscible fluids to obtain density 
distributions more closely resembling those in 
the atmosphere. Such experiments will help to 
resolve some of the questions that arise in 
applications of simple stratified systems to 
atmospheric problems. 

Section z of this paper is devoted to a 
discussion of experiments with a two-fluid 
system of stratified fluids. A qualitative de- 
scription is given of the most important 
phenomena together with a number of photo- 
graphs. Section 3 contains an introduction to 
the theory of sim le stratified systems. In this 

is treated exhaustively, since a full under- 
standing of this model leads to a fuller under- 
standmg of the more complicated two-fluid 
problem. 

Section 4 presents the theory of the general 
two-fluid problem of flow over a barrier and 
a comparison with the experimental observa- 
tions. The last section discusses the meteoro- 
logical implications of this work. 

o P the research this should be regarded o 3 y 

section the flow o P a single fluid over a barrier 

2. Experimend observations 

The apparatus for the experimental work is 
a channel about 10 ft long, 5 in wide, and 20 
in high (fig. I). The fluids are mixtures of 
water and salt and of carbon tetrachloride and 
a commercial cleaning fluid. An obstacle of 
“easy shape” is drawn by a motor drive at a 
uniform speed along the bottom.1 This obstacle 
extends from one glass wall to the other. The 
density difference between layers is 0.025 gm 
~ m - ~  and is not varied. Theoretical considera- 
tions indicate that this involves little or no loss 

In the early experiments an obstacle of semi-circular 
cross-section was used. The boundary-layer separation 
effects were very marked, however, and the resulting 
large energy losses to turbulence were undesirable. 
Tellur VI (1954). 2 

Fig. I .  Experimental channel. 

of generality if interest is confined to models 
and prototypes in which density differences 
are small. 

It follows from dimensional considerations 
that the phenomena appearing in this experi- 
ment depend on a minimum of three non- 
dimensional numbers 

where Fi is the internal Froude number, h, is 
the initial height of the lower layer u stream, 
H is the total depth of the two flu& and b 
is the maximum height of the obstacle. In the 
following description we will identify each 
experiment with the values of these three 
numbers. 

(a). R, < rjz. For any R, in this range and 
for moderate values of b, a so-called absolutely 
subcritical state of flow exists provided the 
Froude number is small enough. In this state 
the fluids move over the barrier with little or 
no turbulence. The interface is level except for 
a slight symmetrical dip over the barrier. Fig. 
2 is a typical photograph of this regime of 
motion. Small values of Fi and b, and large 
values of R, are favorable for its existence. 
During the steady motion of an obstacle in the 
absolutely subcritical state, the upstream and 
downstream levels do not change sensibly and 
no deformation of thefree surface can be seen. 
The only cases for which the above description 
of the absolutely subcritical flow does not hold 
are those in which 6 is small compared to R,. 
In such cases the absolutely subcritical regime, 
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Fig. 2. Abso1utely;subcriti- 
cal flow of a two-fluid sys- 
tem. Fi = .048, & = .33,  
,!I = .zos. In all experimen- 
tal photographs of this pa- 
per the flow is from right 
to left. 

Fig. 3 .  Wave motion in 
the lee of a small ob- 
stacle. I;. = .zzo, R, = 

= . 3 3 ,  = .067. 

Fig. 4. Modcrate hydrauhc 
jump. F, =   IS^. & = .33 .  
0 = 20s. 

Tellus VI (19J4). 2 
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Fig 
no1 

for 
nu1 
the 

- - .  

.s. Undularjump phe- 
nenon. Fi = .284, & = 

.33. = .067. Except 
the higher Froude 

nber the conditions are 
same as in fig. 3 .  

Fig. 7. Absolutely supercri- 
tical flow. Fi = .583, R,= 
= . 3 3 ,  p = .205. 

Tellur VI (1954). 2 
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as indicated theoretically in section 4, may 
involve wave motions in the lee as in fig. 3. 
The Froude number, .220, is absolutely sub- 
critical for the values R, = . 33 ,  j3 = .067. 

If the fluid levels and the obstacles are kept 
constant while the Froude number is increased, 
the absolutely subcritical regime changes, at a 
certain Froude number, to one which we may 
call critical. The interface is no longer symme- 
tric about the crest of the barrier, but continues 
to lower on the lee. Instead of returning 
smoothly to the undisturbed downstream level, 
the interface jumps more or less abruptly to 
the downstream level as in fig. 4. The interface 
has a rough appearance but assumes a relatively 
constant level downstream. With small ob- 
stacles the rise to the downstream level takes 
place over a series of downstream waves, 
resembling the undular jump in open channel 
flow. This is illustrated in fig. 5 .  

If the‘ Froude number is lowered the turbu- 
lent jump moves toward the crest, diminishmg 
in intensity. The value of the Froude number 
when the jump just disa pears is taken as the 

If the Froude number is increased the jump 
moves downstream and increases in intensity. 
An example of a stronger jump is given in 
fig. 6. Unless the jum is very weak, the 

fluid upstream and the upstream depth in- 
creases markedly. This is very evident in fig. 6. 
The depth ratio was originally . 3 3 ;  at the time 
of the picture it has been increased to nearly 
.50 by this blocking action. The increase is 
accomplished by a gravity wave of elevation 
which moves further and further ahead of the 
barrier. If the channel were much longer than 

resent one this wave would eventually 
K?al!le to move so far ahead of the obstacle 
that we could neglect it and use the height of 
the lower layer just upstream to compute a new 
value of R,. Experimental comparison with 
the theory of section 4 indicates that the channel 
is too short for this, and a true unsteady state 
exists whenever a strong jump occurs. 

If the Froude number is sufficiently high 
initially, a jump, formin in the lee of the 

In this state the blocking action does not 
appear; the fluid level upstream remains at its 
initial height. The interface swells up over the 

lower limit of the critica P regime. 

obstacle acts to block t R e flow of the lower 

obstacle, is left behind as t f e barrier moves on. 
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barrier and is symmetric about the crest. This 
is called absolutely supercritical and is shown 

on the experimental conditions 
the a solute y supercritical re ime occurs for 
Froude numbers of the or er of .SO and 
greater. At such s eeds the free surface is 
sensibly undisturbecf If Fi is now raised to 
2 or 3, the free surface becomes disturbed and 
a lee jump may even occur on it (fi 
regime is considered to be outside t e area of 
interest of this paper. 

When the initial height of the lower fluid 
is less than that of the obstacle, two types of 
flow are possible: If Fi is very high the lower 
fluid moves symmetrically over the barrier in 
a swell, or for the larger obstacles, the interface 
rises over the barrier remaining high on the 
lee for some distance and then appears to 
drop down violently to a lower downstream 
level (fig. 9). This particular phenomenon is 
discussed further below. If the Froude number 
is smaller, however, the high barrier blocks 
the lower fluid completely and the lower fluid 
builds up eventually until it s ills over the 

out in figs 10 and 11. In fig. 10 the blocking 
action has increased the upstream depth con- 
siderabl . Fig. 11, taken a short time later, 

jump. 
(b). R, > 112. When the lower fluid is 

deeper than the upper, the absolutely sub- 
critical regime still exists for sufficiently small 
Froude numbers, and a very small obstacle will 
again produce lee waves in this regime. If the 
Froude number is increased, a small jump 
appears. As in the case of R, -= 112, the jum 

an increase in Fi. When the obstacle is large 
or moderately large and the Froude number 
is high, instead of an ordinary lee jump, or a 
symmetrical, absolutely supercritical ty e of 
motion, the interface rises on the upwin8 side, 
reaches a maximum at the crest and then 
appears to “drop” suddenly on the lee. An 
example of the hydraulic drop is shown in 
fig. 12. An increase in Fi merely causes the 
hydraulic drop to move downstream. In some 
cases, however, a drop is followed by an 
orthodox jump in the interface level, but this 
does not always happen. Although a hydraulic 
drop is not possible in a one-fluid system it is 

in fig. 7. 
De endin 

% E P  

8‘ *)* This 

obstacle, forming a lee jump. T L s is brought 

shows t l e spilling over the barrier and the lee 

increases in size and moves downstream wit .fl 

Tellus VI (1954). 2 



FLOW OF STRATIFIED FLUIDS 1 0 3  

Fig. 9. Hydraulic drop. 
The obstacle is higher than 
the upstream fluid depth. 
The interface remains high 
on the lee dropping with 
accompanying turbulence 
to the downstream level. 
Fi = ,577. Ro = ,339 /9 = 

= .so. 

Fig. 10. Complete block- 
ing of lower fluid by a bar- 
rier higher than the inter- 
face. 
Tellur VI (1954), 2 
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a definite theor~ical possibility in multiple 
fluids. In a two-fluid system it is favored by a 
relatively deep lower fluid (see section 4). 

3. Hydraulic analogy ' 

The theory of the flow of two fluids ovcr an 
obstacle is developed in section 4 of this paper. 
The analogous problem of the flow of water 
over a barrier is much simpler and it seems 
advisable to develop first the theory of the 
latter system. Since this problem has long been 
of interest to hydraulic engineers, the present 
section robably does not contain any original 
materiaf The procedure is quite different, 

Fig. 12. Hydraulic 
Fi = ,542. R,  = .75 
= .60. 

drop. 
9 B =  

however, from the standard approach and 
seems to contain a number of advantages.l 

Fig. 1 3  is a drawing of a channel in which 
water of basic depth, H, approaches a barrier 
of variable height, b(x) ,  over the otherwise 
horizontal bottom. The water has a vertical 
depth, h(x) ,  over the topogra hy and the 

steady. The fluid is considered frictionless and 
the pressure distribution hydrostatic. In the 
expcrimental work of this paper an obstacle is 
towed through a resting fluid. Relative motion 

flow with respect to the obstac P e is assumed 

I ani indebted to Professor George S. Benton for a 
number of invaluable suggestions regarding the material 
of this section. 

Tellus VI (1954), 2 
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Fig. 13. Theoretical model of single-fluid flow over a 
barrier. 

of the fluid and the boundaries occurs as the 
liquid passes over the barrier. It is not likely 
that the resulting energy changes will be 
important, since turbulence is largely avoided 
by using a smooth obstacle of “easy shape”. 
The hydrostatic assumption is certamly satisfied 
upstream where the vertical motion is zero. 
In the vicinity of the barrier the paths of the 
fluid particles are necessarily curved and there 
will be vertical centripetal accelerations. 

Some mention may be made of the effect of 
dissipative forces and centrifugal forces. In the 
absence of a jump there will still be some loss 
of energy, as the fluid passes over the barrier, 
by friction with the moving obstacle. This is 
accompanied in open channel flow by a loss 
of total head (total depth of the fluid). Con- 
sequently, in a steady state the water level on 
the downstream side must be somewhat lower 
than that on the u stream side. If the channel 
is infinite in lengtg, however, sufficiently far 
upstream and downstream the levels must be 
equal if the obstacle, starting from rest, has 
moved a finite length of time. The conclusion 
is inevitable that a steady state can never be 
achieved because of the continuing adjustment 
of upstream and downstream levels. While t h i s  
effect will be very small in laminar motion, a 
jump, occurring upstream or in the lee of the 
obstacle, causes considerable turbulence and an 
enormous increase in energy loss. The relative 
increase of upstream head is accomplished by 
a blocking action of the barrier. A long wave 
of elevation moves upstream, raising the 
approach level sufficiently to permit the jump 
to remain in a steady state. It follows that for 
large jumps, since the approach Froude number 
is large, the elevation wave cannot move very 
far ahead of the barrier in the limited length 
of the experimental channel. A quasi-steady 
state cannot be assumed and the theoretical 
deductions in this paper are not applicable. The 
Tellus VI (1954). 2 

blocking effect is certainly worthy of separate 
study, however, since it will be operative in 
the flow of air over mountain barriers. 

The neglect of the curvilinear nature of the 
flow by assuming a hydrostatic ressure distri- 

characteristic radius of curvature of the bound- 
ary form is considerably greater than the depth 
of the fluid. This is not fulfilled in the ex- 
perimental work and some error results. The 
centrifugal forces act u ward in the flow over 

apparently. This should tend to reduce the 
critical Froude number at which lee jum s 
begin to occur in the lee. The experiments lo 
not indicate an a preciable error in this regard 

rovided a real s R ock wave occurs for a given 
[eight of the obstacle and fluid depth. As 
mentioned in section 4 a shock wave predicted 
by hydrostatic theory does not materialize in 
the experiments if the barrier is too small. 
Instead lee waves or so-called undular jumps 
(without accompanying turbulence) are found. 
Since a truly hydrostatic pressure distribution 
permits only infinitely long waves, hydro- 
static theory obviously breaks down in such 
cases. On the whole, however, if this limitation 
is ke t in mind, the hydrostatic assumption is 
mucK more useful and valid than small 
perturbation theory. 

In the model of fig. 13 the Bernoulli equation 
for a steady state is 

bution is not completely justi P led unless the 

a barrier so that the e tp ect is to reduce gravity 

(1)  
P !12 
eg 28 
- + - + z = constant, 

where z is the height of the point in question 
above the horizontal bottom, and q is the speed 
at that point. Using the hydrostatic assumption 
to compute the pressure, and neglecting the 
vertical velocity’, (I) becomes 

(2) 

In hydraulics the sum of the first two terms of 
this expression is called the specific energy, e, 
of the fluid, 

U2 
- + h + b(x)  =constant. 
28 

112 e = - + h .  
2g 

( 3 )  

* The ratio u2/u2 = o(h2/A*), where A is the distance 
between two consecutive points at which the wave 
profile meets the undisturbed level. The hydrostatic 
assumption therefore implies that the kinetic energy due 
to vertical motion is negligible. (See LAMB 1932, p. 258) .  



I06 R O B E R T  R. L O N G  

(a) Subcritical - Subcritical - 
(b) Subcritical - Critical 
(c) Subcritical - Supercritical 

Subcritical - 
- (e) Supercritical Yes Critical 

(f) Supercritical - Supercritical l -  
1 ;:: 

(d) Supercritical Yes 

e 

Fig. 14. Specific energy diagram. 

Subcritical 
Subcritical 
Subcritical 
Supercritical 
Supercritical 
Supercritical 

Since the equation of continuity requires a 
constant discharge, Q, at each section, 

( 4) Q = uh = constant. 

Substituting for u in (3) we find that 

e = - + h =  Q 2  e(h) .  
zgh2 

Thus, for a given discharge, e is a function of 
the depth of the fluid, h. A plot of this relation- 
ship is given in fig. 14. For a given Q, any 
fluid depth is possible but at a certain depth, 
h,, the specific energy is a minimum. The 
minimum occurs when u2 = gh. Depths less 
than h, are called supercritical and the flow is 
then in such a state that a hydraulic 'ump is 

is characterized by a sudden increase in the 
depth of flow downstream, accom anied by 
turbulence. The flow downstream o P the jump 
must have a de th greater than the critical 
depth, h,, and so Hes in the upper branch of the 
specific energy curve. Some of the energy is 
lost through turbulence as illustrated qualita- 
tively b the arrow in fig. 14. It should be 

turbulent losses the specific energy changes 

possible at some downstream section. T h e jump 

noted t z at in the absence of frictional or 

Table I. Regimes of motion in flo 

only by the virtue of changes in the height of 
the bottom of the channel. As the fluid moves 
over an obstacle, for example, it loses specific 
energy on the u wind side and gains it on 
the downwind si B e. Quantitatively, from (2) 

_ = _ _ =  de dedh (~-P)dh=-dlr ( 6 )  
dx dhdx  gh3 dx dx '  

and (9, 

or 

This equation shows that u2 can equal gh (i. e. 
the flow can become critical) only where 
dbjdx vanishes. Since the specific energy 
changes only during passa e over the barrier, 

do so at the crest where 6 = h,. Moreover we 
may show that a critical condition at the crest 
necessarily implies a change of regime from 
the upstream to the downstream side of the 
barrier. Thus, differentiating (7) with respect 
to x ,  

(8 )  

at the top of the barrier. Since it is critical 
there the second term on the left vanishes. 
However, the right-hand side is not zero so 
that dhjdx does not vanish at the crest. Hence, 
if it is subcritical upstream and critical at the 
crest, it will be su ercritical just on the lee. 
If it is SupercriticaPupstream, and critical at 
the crest it must be subcritical on the lee side. 

With these considerations in mind we may 
discuss the various possibilities listed in Table 
I, not all of which are possible steady states. 
They may occur instantaneously, however, if 
a given obstacle is accelerated from zero very 
rapidly to a given speed. In (a) the obstacle 
speed is very slow and the flow is everywhere 
subcritical. This is an obvious steady state. If 

if the flow becomes critic 3 anywhere, it must 

w of single fluid over an obstacle 

I Approach I Upstream ~ i r m p  I Crest 1 Dorunstream Jump I Dowtistream I 
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single fluid system. F = 

Tellus VI (1954), 2 
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the speed is increased further (b), the flow 
will become critical at the crest of the barrier 
and, necessarily, supercritical somewhere on 
the lee. It is apparent from the specific energy 
diagram that the fluid cannot return to the 
subcritical state re uired downstream except 
by a jump on the ? ee. If the obstacle speed is 
increased further (c) the flow will become 
supercritical instantaneously at the crest, 
although remaining subcritical upstream and 
downstream. This is not asteady state, of course, 
and a wave of elevation’ will rogress upstream 
raising the upstream level su t p  iciently to permit 
a critical condition at the crest. A steady state 
will ultimately be established with a lee jump. 

If the speed of the barrier is so high that the 
flow is moderately supercritical upstream (d), 
the loss of specific energy in flowing over the 
barrier may reduce the system to subcritical at 
the crest. This is also unsteady and a jump 
upstream must form. W e  mav see this by 
considering the rate of propagation of disturb- 
ance energy originating at the barrier. Since 
the flow in the vicinity of the crest is subcritical, 
the group velocity of the longer waves, tending 
to move upstream, exceeds the fluid velocity 
and energy is propagated upstream. This 
energy cannot move indefinitely upstream, 
however, because of the postulated supercritical 
flow far upstream. The resulting convergence 
of energy is then available to support a jump. 
The fluid will then jump to subcritical some- 
where upstream followed by critical flow at 
the crest, passing smoothly to the supercritical 
condition downstream. 

The obstacle speed may now be increased 
sufficiently to permit a critical condition at the 
crest (e), and therefore, a subcritical condition 
for some distance to the lee. Since a smooth 
transition to the downstream supercritical 
condition is not possible, a discontinuity of 
flow must occur somewhere. W e  may have 
a jump u stream but it does not seem possible 

basis of the tools developed so far for analyzing 
the model. If the principle of conservation of 
momentum is employed, the drop is seen to 
require a negative dissipation of energy and 
is thus impossible. This resort is not available 
for multiple-fluid systems and in the subsequent 

to exclu B e a hydraulic drop in the lee on the 

As in fig. 17 this wave of elevation may break 
forming an upstream bore. 

R. L O N G  

sections we must employ experimental evi- 
dence to indicate which of these possibilities 
will be realized. 

The last possibility (f) for the one-fluid 
system will be obtained if the initial speed of 
the obstacle is faster than that required for (e). 
The flow will then be supercritical everywhere. 

It is of interest to consider the form of the 
free surface in the various cases of Table I. In 
case (a) there will be a slight draw-down over 
the obstacle returning to the original level 
downstream (fig. IS). In (b) and (c) the draw- 
down over the obstacle is followed by a lee 
jump and an abrupt rise to the undisturbed 
downstream level (fig. 16). In cases (d) and 
(e) the upstream jump is followed by a gradual 
lowering of the surface toward the crest (fig. 
17). In (f) the surface will rise smoothly over 
the obstacle. Such a phenomenon is called a 
“swell” in hydraulics. 

Given the undisturbed fluid level, H, the 
height of the obstacle, b,, and the speed of the 
approaching current, U, it should be possible 
to predict which of the possibilities of Table I 
will be realized. Obviously, the deciding factor 
is the condition that the flow be critical at the 
summit. Using this, plus the energy and con- 
tinuity quations we have, at the crest, 

tr,h,= UH. 

Eliminating u, and h,, 

F 2 -  3F2/a=2 (2- I ) ,  F 2 =  Uz/gH. (12) 

A graph of this equation is shown in fig. 18. 
The regimes are labeled in accordance with 
the system employed in Table I .  

4. Theory of a two-fluid system 

In the case of a two-fluid system we assume 
that the density difference between the two 
layers, A@/@, is very small. The approach 
velocities are assumed to be the same in both 
fluids. It is not difficult to see intuitively that 
velocities accompanying marked effects at the 
interface will be so small as to produce little 
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Fig. 18. Critical curve of a one-fluid system. Compare 

Table I .  

disturbance at the free surface. Kinematically, 
therefore, it should be possible to replace the 
free surface with a rigid surface. If this is done 
it is necessary to consider pressure variations 
(n) on this upper rigid surface, just as the 
dynamic effects of the very slight changes in 
height of the free surface would also be 
important. In the following development, 
therefore, the model of fig. 19 is adopted in 
which the two-fluid system is capped by a 
rigid surface. A parallel development with a 
free surface yields identical results provided 
conditions are such that the flow is well 
within the absolutely subcritical range with 
respect to deformations of the free surface. 
This puts generously high upper limits on the 
size of the obstacle and the internal Froude 
number. These limits may be computed from 

With the hydrostatic assumption the energy 
fig. IS.  

equations in this model are 
V 2  

n + e’gH + e’- = constant, ( I  3 )  

7t - e’g(k + 1) - H )  + Qg(h + b)  + - = constant. 

(14) 

2 

eu2 
2 

The total energy transport through a given 
section is 

P’ 7 H -  

I U  . 
P 

X- 

Fig. rg. Theoretical model of two-fluid flow over a 
barrier. 

- Qe‘g(k + b - H )  = Elo =constant. 

Evaluating El, upstream and substituting for 
7c from equation (13),  

QI2e’  - [ ( H -  ho)-2- ( H -  h - b)-’] + 
2 

9 [h-2 - h o - 2 ]  + (e - e’)g ( h  - h, + b) = 0. 
2 

(16) 

If we define the quantities 

(17) 

and assume the same approach velocity, U, in 
both layers, equation (16) becomes 

+cL+/?-R,=o.  ( I S )  1 t [2 - (I - a - 
F; Rg ( I  - R,)2 

This relationship gives CL as a function of j3, 
i. e. the profile of the interface during passage 
over the obstacle. Curves of this equation for 
KO of 0.30 and 0.70 are shown in figs20 and 21.  

(a) R, < 1/2. Fig. 20 is typical of flows with 
a lower layer less than one-half the total depth. 
If Fi exceeds 0.50, the interface will swell over 
a barrier returning to its original depth on the 
lee. This theoretical behavior is confirmed by 
experiment, as for example in fig. 7. If Fi <.so, 
the interface will tend to lower slightly as the 
fluid ascends the barrier. For example, if 
Fi = . I O  and the obstacle has a maximum 
height less than   IS^, the interface lowers to 
a minimum at the summit, returning smoothly 
to R, on the lee. This is the situation in fig. 2. 
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Fig. 20. Thickness of lower layer, a(x ) .  during passage of 
two-fluid system over a barrier of height, P(x). The 

upstream depth of the lower fluid is R,  = .30. 

P 

Fig. 21. Thickness of lower layer, a(x), during passage of 
two-fluid system over a barrier of height, P ( x ) .  The 

upstream depth of the lower fluid is R,  = .7o. 

If the barrier is precisely . I s$ ,  the interface 
will continue to lower on the lee. From the 
one-fluid analogy we would ex ect a very 
small (theoretically infinitesimaly hydraulic 
jump just on the lee, the interface returning 
to a downstream level slightly less than R, 
because of the energy loss. If the obstacle is 
appreciably greater than . I S S ,  a steady state is 
not possible. This causes a change in R,, i. e. 
a blocking effect takes place that increases R, 
to a level that pzrmits a steady state between 
some upstream section and the crest of the 
obstacle. Thus, if the obstacle has a maximum 
height .30 and is held at a speed corresponding 
to Fi = . IO ,  additional curves of equation (18) 
show that the upstream depth of the lower 
fluid will tend to increase from . 3 0  to .so. The 
system will then have attained a quasi-steady 
state upstream, -the interface will lower as the 
fluid ascends the barrier and will continue to 
lower on the lee. Since the blocking effect has 
created a differential in the upstream and down- 
stream levels, the interface can take a finite 
jump on the lee to the lower energy level 
downstream, as in figs 4 and 6. We  will see 
later how we can predict the new value of R,, 
knowing the approach Froude number and the 
height of the obstacle. 

If the obstacle is higher than .30, in the case 
of fig. 20, and Fi < .so, the barrier blocks the 
lower fluid completely until it builds up to 
obstacle height, spills over and forms a hydrau- 
lic jump on the lee as in figs 10 and 11. If 
Fi > .so it may be expected from the curves 
that the interface will swell over the barrier, 

returning smoothly to its equilibrium height. 
This is confirmed by experiments, however, 
only if the height of the barrier is not too much 
greater than R,. In fig. 9, however, the inter- 
face does not return smoothly on the lee but 
appears to drop down with considerable tur- 
bulence. A possible explanation is the follow- 
ing: In fig. 9 we observe that the interface 
traces a curve close to the Fi = .60 cu ve in 
fig. 20 up to the crest, p = .so. This isr to be 
expected since there should be very little loss 
of energy in this region. As the fluid attempts 
to move down the lee of the obstacle, bounda- 
ry-layer separation and resulting turbulence 
will abstract energy. Fig. 9 shows that the 
interface stays at its maximum height for a 
considerable distance in the lee which means 
that the interface describes a line, K + p~ 
c o n s t s  .70. In an intuitive sense we may 
assume that the loss of energy to turbulence, 
throws the fluid system from an energy level, 
corresponding to Fi = .60 to a lower energy 
curve close to that of the Fi = .40 curve in 
fig. 20. This, however, would require a deep 
lower fluid on the lee (.70), whereas the 
experimental set-up requires the fluid to return 
to the vicinity of .30. This can be, and ap- 
parently is, accomplished by the occurrence of 
a shock wave, in this case a hydraulic drop, 
to form a connection with the downstream 
level. According to this intuitive argument, 
this phenomenon requires a nearby curve of 
lower energy level at the point of the diagram 
corresponding to the crest of the barrier, so 
that a modest loss of energy to turbulence will 
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permit a return of the interface height along 
an entirely different path than the approach. 
This requirement is met for a large barrier in 
this case. If the barrier has a maximum height 
of, say, only .IS, the Fi lines at the crest are 
fanned out sufficiently so that there is no nearby 
curve and the interface returns to close to the 
equilibrium height downstream along much 
the same curve as it described on the u wind 

the barrier the more easily is this shift to a 
different branch of the Fi curves accomplished. 

The above argument lacks rigor because the 
various Fi curves in fig. 20 do not correspond 
to different energy levels for given approach 
conditions but rather to different approach 
conditions and correspondingly different energy 
levels. It does not seem possible to verify the 
argument at this time because the present 
theory is inadequate to ermit a calculation of 
alternate energy curves P or the given approach 
conditions, R, and Fi. 

(bj R, > 112. It has been stated that the 
behavior of a system in which R, > I / Z ,  is 
much the same as for shallower lower fluids 
except that for large or moderately large 
obstacles and high Froude numbers the sym- 
metrical regime is missing and a hydraulic drop 
occurs in the lee. The suggestion above for the 
occurrence of a dro may also be applied in 

curves are very tightly packed in the upper 
part of the diagram. Thus, for example, in 
fig. 12 the curve traced by the interface should 
follow the Fi = .542 curve until the crest. The 
energy losses to turbulence in the lee will 
permit the interface to describe a curve, 
a + B = .90 approximately. The return to a 
height somewhere near the equilibrium, 
R, = .75, downstream would require such a 
hydraulic drop as appears in fig. 12. 

It would be desirable to have curves analo- 
gous to fig. 18 for a two-fluid system. Such 
curves are obtained by assuming, as in the 
single-fluid case, that conditions are just 
critical at the top of the barrier. Thus, if we 
differentiate (18) with respect to x, 

side. It is evident from fig. 20 that the rl igher 

this case. W e  see 4 rom fig. 21 that the Fi 

I -  

- - 

At the top of the obstacle, therefore, either 
the slope of the interface vanishes or 

=I, (20) 1 Fi2 [$+ (1 - R,I2 
(1 - a,- BJ3 

where the subscript c indicates that the 
section is at the top of the barrier. If there has 
been no energy loss upstream from the barrier, 
then at the top we have also from (18) 

(21) 

Between equations (20) and (21) we may 
eliminate a, and, for a given R,, obtain a 
relationship between Fi and B, when the con- 
ditions at the crest of the barrier are just 
critical. It is obvious from the considerations 
of the previous section that this relationship is 
of fundamental interest. For a given R, the 
resulting curve will be analogous to the curve 
of fig. 18 for a single fluid. These curves are 
given in fig. 22 for steps of 1/10 in R,. They 
resemble in general the curve of fig. 18 except 
that the upper branches &ffer. It follows from 
the preceding discussion that, for a given 
approach depth, R,, of the lower fluid, 
on or below the appropriate R, curve in ig 22 
represent possible quasi-steady states. If the 
given obstacle height and Froude number 
correspond to a point below the curve, the 
conditions are absolute1 subcritical and no 

curve a lee jump occurs (or lee waves for very 
small obstacles). If the point is somewhat above 
the curve the upstream depth should increase 
to the R, of the curve passing through this 
point. If Fi is sufficiently large either the 
symmetrical, absolutely supercritical regime 
will occur or a hydraulic drop will be ex- 
perienced in the lee. 

In the case of a single fluid it is well known 
that a finite amplitude long wave tends to 
"break" with accom anying turbulence (LAMB, 

p . h e i g h t  of the speed of propagation of a 
the wave is proportional to t e height. The 
high portions then eventually catch up with the 
troughs and the wave configuration becomes 
unstable. Since this is intimately connected 
with the hydraulic jump phenomenon, it is of 

PO? 

shock wave will occur. I Y the point falls on the 

1932). This follows P rom the consideration that 
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considerable interest to investigate the behavior 
of finite long waves in a two-layer system. In 

articular it is of interest to investigate the 
Lydraulic drop observed in the experiments 
under certain conditions when the upper fluid 
becomes more shallow than the lower. 

It is easily shown that the speed, c,, relative 
to some coordinate system, of an dinitesimal, 
long wave at the interface is given by 

= I, (22) 
!.lo - C O P  + (%a - C O P  

g'h10 g'hzo 
where g' = gAe/e, and, for convenience, we 
denote the lower layer by subscript I and the 
upper by subscript 2. Solving for c,, 

Fig. 22. Critical curves 
o f a two-fluid system 

distances above or below h,, + 7. The speed 
of propagation of nearby wave heights should 
therefore be given by e uation (23) if we 
substitute the heights an 1 velocities in the 
vicinity of this section. Thus 

In order to obtain the speed of propagation in 
terms of the a proach speed, U, of the two 

section in question, namely 
fluids we use t x e continuity equations at the 

and 
a a where we confine our attention to the wave 

x). Let us now consider a long wave of finite 
amplitude in which the height of the interface 
at Some section is say A,, + 7. Since the inter- 
face has an infinitesimal slope in a long wave, 
the interface is nearly horizontal in the vicinity 

tending to move upstream (toward negative #,a - 7) + , , [ d h 2 0  - 7)1 = 0. ( 2 6 )  

In view of the quasi-steady state the time 
derivatives may be expressed as 

a 
- c - .  (27) 

a of this section and, moreover, nearby portions 
of the interface are at infinitesimally small at J X  

-= 
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If we confine our attention to values of q / H ,  
small compared to one, then to the order of 
q /H,  the c in equation (27) may be replaced 
by the c, of equation (23). Using this and 
integrating equations (25) and (26), 

(2 8) 
and 

(29) 
Substituting for u1 ,and u2 in equation (24) and 
retaining terms only of the order of q / H ,  

U l ( h 1 0  + 11) - c o q =  UhlO 9 

U2 (h20  - 7) + COT = Uh20. 

2 R,(I - R,) H 1 ' c =  u- g'h10h20 +-  3 (I--Ro) 3 

(3 0) 
where R, is hlo/H. Therefore, the speed of 
propagation of the elevation q, relative to the 
equilibrium speed U of the fluids, is 

(gy2,) ' / *  [I + A  (1 - 2Ro) "1 , (3  I )  
2 R,(I - R,) H 

a result analogous to that of Airy for a single 
fluid (LAMB, 1932). This result shows that a 
crest moves faster than a trough provided the 
equilibrium depth of the lower fluid is less 
than one-half the total depth. On such an 
interface one would expect the lower fluid to 
thicken through a hydraulic jump as in a one- 
fluid system. If the upper fluid is deeper than 
the lower, however, a trough will move more 
quickly than a ridge and the resulting shock 
wave should take the form of a hydraulic drop. 
This suggests roughly why hydraulic drops 
occur in the experiments when the upper fluid 
becomes shallow. The value of the analysis has 
two severe limitations, however: First, the 
wave while finite, was considered small; 
second no account was taken of the shear 
between the two fluids arising in passage over 
the barrier. A full discussion of the initial value 
problem of a finite gravity wave in a two-fluid 
system will appear in a fortcoming paper. This 
independent approach yields results in agree- 
ment with equation (31) to the order of q/H.  

5. Meteorological implications 

It was pointed out in Part I that the eventual 
goal of the investigations of this series of 
papers was an understanding of small-scale 
atmospheric flow over mountains and hills. 
This has been sidetracked somewhat by the 
complexity of the general problem of statified 
fluids and it has become necessary, as in the 
Tellus VI (1954) 2 
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present paper, to explore first extremely simple 
systems before attempting to simulate the 
vertical distribution of wind and density in the 
atmosphere, complex terrain structures, effect 
of the earth's rotation, etc. The outstanding 
questions of similarity may be listed as follows: 

(a) What is the effect of neglecting the 
earth's rotation? This question has been dis- 
cussed briefly by LONG (1953 a, 1953 b). Ob- 
viously rotation may be neglected if the 
horizontal dimensions of the hill or mountain 
are small enough. If we require that the 
Rossby number be large compared to one, 

rotation may be neglected 
provided for examl!1e9 t e horizontal dimension of a ridge in 
the direction of the current is 10 km or less. 
This appears to be too severe a requirement, 
however, as is apparent from the following 
considerations: If a two-fluid system flows 
over a ridge in a rotating system, the rotation 
will not be important in determining the 
regimes of motion and critical Froude numbers 
if the kinetic energy of the velocity component 
parallel to the range is small compared to the 
kinetic energy of the basic motion, i. e. if 
v 2 / v 2  < I. Considering the lower fluid only, 
at the crest v will be of the order of fA/h,, 
where f is the Coriolis parameter, A is the 
cross-sectional area of the ridge from base to 
crest, and h, is the height of the inversion 
at the upwind base of the ridge. Since, for 
the atmosphere, 142 = o(106 cm2 sec-2) and 
A = o (bL/4), where b is the maximum-height 
of the ridge and L is the total horizontal length, 
we must have L2 < 16 x 106 x 108 hi /b2  cm2. 
If we take a fairly typical value, ho/b = 2, for 
example, we have L < 8 x 107, so that the 
ridge may be as wide as IOO km before the 
effect of rotation is appreciable upwind of the 
crest. If there is a tendency for supercritical 
flow on the lee, the lower layer may thin con- 
siderably and higher v-velocities generated. 
This will have an influence on the nature of 
lee waves or lee jumps rather than on the 
criteria for the various regimes of flow. 

(b) What is the effect of the compressibility 
of air? Since the model employs incompressible 
liquids, a question arises as to the effect of 
compressibility. In a forthcoming study of this 
problem it appears that the atmosphere may 
be considered incompressible if we substitute 
potential temperature gradients (do/@) for 
density gradients and if the ratio gb/c2  < I 
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where b is the height of the barrier and c is 
the speed of sound. This requires b < I O ~ ,  
which is satisfied by mountains I km high or 
less. Again this is probably too severe a 
restriction. A computation employing the 
methods of section 4, but with two compres- 
sible fluids, shows very little effect of com- 
pressibility for barriers several times larger 
than this. 

(c) To what extent do inversion surfaces in 
the atmosphere resemble the interfaces and free 
surface in the models? In most of the past 
investigations of flow over mountains it has 
been assumed that the atmosphere has a more 
or less uniform potential temperature gradient. 
In such a case no vertical height dimension, 
short of the total depth of the atmosphere, 
enters into the analysis. This is at complete 
variance with the consideration of this aper 

tropopause, are used to define Froude numbers 
whose critical values are decisive for the 
occurrence of the laminar flows, jumps, and 
blocking. This important difference cannot be 
resolved at the present time, but future experi- 
ments should be able to provide a rather 
decisive answer. It is possible, for example, by 
the use of water and salt mixtures and/or layers 
of immiscible fluids, to reproduce faithfully 
typical potential temperature distributions in 

in which heights of inversions, particular I? y the 
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the atmosphere up to levels (perhaps 80,000 ft) 
where we may feel confident any effects of 
topography diiappear. 

In conclusion, let us assume for the purpose 
of discussion that the model of this paper is 
essentially similar to the atmosphere, and that 
the free surface corresponds to the tropopause 
and the interface to a tropospheric inversion 
surface. What suggestions regarding the flow 
of air over barriers are contained in the results 
of this paper? In the first place we may say 
that, unless the tropospheric inversion is quite 
high and the barrier quite small, the main 
phenomenon of interest is not lee waves of the 
classical type but rather shock waves resembling 
hydraulic jumps, surges or bores. This results 
from the fact that the pressure distribution in 
the model is closely hydrostatic except in the 
vicinity of the jump. The hydrostatic assump- 
tion should be at least as good in the atmos- 
phere, SO that the shock phenomenon should 
be typical of air flow over most mountains and 
hills, provided inversions are present. Lee 

waves of the classical type should be confined 
to hills with maximum heights considerably 
less than the height of the first inversion surface. 

Lee jumps should form in the lee if the 
internal Froude number exceeds a certain 
value, depending on the height of the inversion 
and the height of the obstacle. For lower 
tropospheric inversions the critical value of 
Fi is of the order of .20. In the atmosphere we 
usually have a shear of wind with height which 
is not reproduced in the experiment. If, how- 
ever, we use the mean velocity of the tropo- 
spheric air, for the purposes of the Froude 
number, and take (gH A@/@)'/%, 104, jump 
phenomena require winds of the order of 20 
m sec-1. On the basis of this computation we 
would expect hydraulic jump phenomena to 
be a common feature of flow over the larger 
surface barriers. Such phenomena as absolutely 
supercritical flow and hydraulic drops probably 
do not occur since they require mean winds 
of the order of 50 m sec-l. 

It is of some interest to speculate about one 
possible effect of rotation on the flow of air 
over a range as large as the Appalachians. If, 
for example, a quasi-steady jump would form 
on the eastern side, by virtue of flow over the 
range with a tropospheric inversion, it is 
conceivable that the resulting convergence on 
the lower layer in the jump could lead to 
sizeable increases of relative vertical vorticity 
and a possible source of cyclogenesis. Such an 
effect would require that columns of air in the 
lower layer would lose to the ground by 
friction much of the relative negative vorticity 
generated by the vertical shrinking of the 
columns in passage over the mountains. It is 
suggestive that the Cape Hatteras region is a 
favorite site for cyclogenesis. An exploratory 
experiment with a barrier moved in a rotating 
system of two fluids, did not show any such 
effect. This should not be regarded as conclu- 
sive, however, because the frictional action 
between the barrier and the lower layer of 
fluid may be entirely different in the experi- 
ment and in the atmosphere. 
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