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Abstract 
The changes in geostrophic kinetic energy predicted by the “2 - % dimensional” quasi- 

geostrophic vorticity equations without friction are shown to be compatible with the mechani- 
cal energy equation. The second-order effects on a zonal current due to the presence of very 
simple unstable baroclinic waves are then analysed, using a two-level model of finite lateral 
width without friction or heat sources. In addition to the poleward transport of sensible heat 
and the creation of kinetic energy by these waves, it is shown that they are accompanied in 
this model by a weak meridional circulation. This circulation consists of an indirect cell in 
middle latitudes with direct cells to the north and south. The possible importance of this 
mechanism in providing appropriately distributed sources and sinks of relative zonal mo- 
mentum (and therefore in prescribing the distribution with latitude of the surface zonal winds) 
is demonstrated with the aid of Widger’s observations of the horizontal momentum transfer by 
eddies during January 1946. Finally it is shown that about 95 per cent of the perturbation 
energy in the unstable waves of this type comes from the “potential energy” of the basic 
current, the small remainder coming from the kinetic energy of that current. 

- 

I. Introduction 

It is now quite generally recognized that 
the large-scale disturbances of extra-tropical 
latitudes play an important role in the main- 
tenance of the “general circulation” of those 
latitudes. Their role as agents for the pole- 
ward transport of sensible heat was pointed 
out some time ago by DEFANT (1921), and a 
few years later, JEFFREYS (1926) suggested that 
they were also important in the latitudinal 
transport of angular momentum. These first 
considerations have been verified in recent 

A portion of the research reported on in this paper 
was performed at the Institute for Advanced Study under 
contract N-6-ori-139 with the Office of Naval Research 
and the Geophysics Research Directorate, Air Force 
Cambridge Research Center. 
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years by the actual measurement of these 
transports using aerological charts and data 

Theoretical investigations of the dynamic 
and kinematic properties of these turbulence 
elements have also been carried out in recent 
years, using the technique of the linearized 
perturbation theory, where the disturbances 
are considered to be small perturbations su er- 

theoretical studies may be divided into two 
principal types. The first, to which we may 
apply the adjective “baroclinic”, has con- 
sidered the basic current to be a function of 
height only, latitudinal variations in this 
basic current being neglected (CHARNEY, 1947). 
The second type, which we may call “baro- 

[WIDGER (I949), WHITE (I9$I)]. 

imposed on a zonal basic current. T R ese 
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tropic”, has neglected the vertical increase of 
the zonal current but has considered instead 
the effect of latitudinal variations in this 
quantity (Kuo, 1949). 

In both analyses, unstable (amplifying) and 
stable (damped) types of waves are mathe- 
matically possible. However, the kinematics 
of these theoretical motions are such that the 
disturbances one encounters on actual weather 
charts seem to be best described by a combina- 
tion of the amplifying baroclinic wave and the 
damped barotropic wave. The pure amplifying 
baroclinic wave transports energy northward 
and generates kinetic energy (Kuo, 1952). 
The pure damped barotropic wave does not 
change the total amount of kinetic energy, 
but the kinetic energy of the wave is instead 
organized into the kinetic energy of the basic 
zonal motion. This last process is accompanied 
by latitudinal momentum transports of the 
type described by Jeffreys (see also STARR, 1948). 

The combination of the barotropic and 
baroclinic effects in a perturbation analysis 
has not yet been accomplished. Furthermore, 
the effects of non-adiabatic heat changes and 
friction have not been included in these 
theories. The mathematical difficulties involv- 
ed are not trivial, and it may be that the 
analysis of the role the large-scale disturb- 

ay may be best accomplished with 
the ai s’ of high speed computing machines 
in the following manner. Using an appro- 

riate system of prediction equations for the 
Parge-scale motions, including friction (sur- 
face skin friction is probably most important) 
and some simplified representation of the non- 
adiabatic effects (perhaps as a simple function 
of latitude and height), the machine could be 
instructed to forecast the development of the 
flow pattern with time, beginning, say, with 
some simple initial situation. One would then 
examine the forecast after some time to see 
what types of disturbances appeared and what 
kind of zonal wind distribution was created. 

The present paper is written partly as a 
prelude to such an experiment (which the 
writer and his colleague Dr Jule Chamey 
hope to carry out at the Institute for Ad- 
vanced Study) and also to describe some 
interesting properties of the simple baroclinic 
waves with special reference to the impor- 
tance of these properties for the general cir- 
culation in extra-tropical latitudes. 

2. The quasi-geostrophic equations and 
boundary conditions 

In investigating the role of baroclinic dis- 
turbances in the general circulation, we shall, 
for simplicity, assume that these motions are 
adequately described by the geostrophic 
equations for a “2 112 dimensional model” 
(CHARNEY and PHILLIPS, 1952). With some 
slight additional simplification, these may be 
written 

D1 (f+ 51) /Dt -~o- ’2 f~2=0  (I) 

D3 (f+53)/Dt+p0-’2 f02=0 (2) 

PO-’ 2 02- f -2A2D1,3  (~1-?3) /Dt=o (3) 

The subscripts I ,  2, and 3 refer to quantities 
measured at the 2p-, soo-, and 7 p m b  levels, 
respectively. The operator D/Dt is defined by 

D/Dt =a/& + o * V 

where v is the horizontal gradient operator on 
a constant pressure surface and tr is the horizon- 
tal (geostrophic) velocity vector. co2 is equal 
to the value of dp/dt at the Soo-mb level. p is 
the geopotential and 1 2 ,  assumed to be con- 
stant, is given by the formula 

1 2 =  {@’ -@3}-Ifz[02/(01 - O,)] 

where 0 is potential tem erature and {GI - 

tial difference between levels one and three. 
p o ,  which we have taken as 1000 mb, is the 
(constant) approximate value of the pressure 
at the ground. We shall describe the motion 
in a Cartesian coordinate system (x to the east, 
y to the north) so that the relative vorticity 5 is 
given by 2v/& - au/dy. The coriolis param- 
eter,f, is considered to be a constant every- 
where except in the term DflDt, where 
we assume that i?j/ay = = constant (ROSSBY, 

We shall represent the extra-tropical at- 
mosphere as being limited “latitudinally” at 
y = f w by fixed vertical walls. In the xdirec- 
tion we shall assume cyclic continuity, i.e. 
the motion at x = L  is identical with that at 

The solution of ( I ) ,  (2), and (3) requires 
boundary conditions at y = 5 w in addition to 
the cyclic conditions at x = o  and L. The 

G3} represents a typical va P ue of the geopoten- 

1939). 

x =  0. 
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kinematic boundary condition at the walls 
requires that v = o at y = f w. Geostrophicdly 
this implies 

Thus, at any one value of t, y at the walls must 
not vary with x.  This is not sufficient, however, 
to determine a unique solution to (I), (2), and 
(3) since this constant value of p may vary 
with time. Another condition may be obtained 
by integrating the first equation of motion in 
the form 

with res ect to x, with w =o. (The subscri ts 

all terms disappear except ut and we get, 
geostrophically , 

ap/&=o at y = f w  (4) 

Ut + uu, + wuy - f v  + yx = 0 

here in c r  icate differentiation.) We find t R at 

L 

J(22y/i?y,t) dx=o y = *  tu ( 5 )  
0 

This, together with (4, is enough to determine 
uniquely the solution of (I) ,  (2), and (3).' 

3. The mechanical energy equation for 
geostrophic motions 

The sim lified system of quasi-geostrophic 
e uations $), (2), and (3) allows accelerations 
o 4 the motion to occur in spite of the fact that 
according to the equations of motion, geo- 
strophic balance corres onds to zero accelera- 
tion. This by now L d i a r  paradox is of 
course explainable in that the geostrophic 
a proximation is not introduced directly into 
t K e equations of motion but is introduced in- 
stead into the vorticity equation after the 
horizontal divergence (which cannot be meas- 
ured geostrophically) has been eliminated 
(CHARNEY, 1948). 

Since any change in the kinetic energ of 
horizontal motion must be accompaniei by 
horizontal accelerations, a legitimate question 
may arise as to the extent to which the motions 
(and accelerations) predicted by the quasi- 
geostrophic equations satisfy the energy equa- 

l Except for a constant of integration determined by 
the average value of J ( q 1  t p)J/Jt over the entire region. 
The value of this integration constant plays absolutely 
no part in the conclusions we shall come to in the re- 
mainder of this paper; for convenience, therefore, it has 
been set equal to zero. 

Tellur V1 (1954). 3 

tion. We shall now demonstrate that (I) ,  (2). 
and (3) do satisfy the mechanical energy 
equation in a certain sense. 

We first derive a form of the mechanical 
energy equation suitable to our model, 
following to some extent the technique in- 
troduced by STARR (1951 b). Multiplication of 
the horizontal equations of motion in the 

, p ,  t-coordinate system by u and w first 
yie ds 

q,+v. V q + w q p + v . ~ q J = 0  

where 4 is the horizontal kinetic energy per 
unit mass, 112 ( u 2 + w 2 ) .  It would clearly be 
meaningless to introduce the geostrophic 
approximation here, since then the last term 
would vanish. We therefore postpone this 
step and utilize the continuity equation in this 
coordinate system (ELIASSEN, 1949) 

x' r 

to derive another form of the equation: 

(7) may now be specialized to our model by 
evaluating it at levels one and three and in- 
troducing the approximations (CHARNEY and 
PHILLIPS, 1952) 

Adding the two equations which result, and 
integrating over the region - w < y < w, 
o < x < L, we get finally 

This is the form of the mechanical energy 
equation which is applicable to our 2 112- 
lmensional model. It states that the total 
kinetic energy q1 + q3 may change as a result of 
a net correlation between the thickness (yL- 

The geostrophic assumption has not been 
used in deriving (9). We now propose to 
demonstrate that (9) is satisfied if both w2 
and the kinetic energy 4 are determined and 

9 3 )  and wz. 
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measured geostrophicully by (I), (2), (3) and 
the boundary conditions (4) and ( 5 ) .  
(I) and (2) may be written 

f-’ V2P1 I + u1. v (f+ 5‘1) -p0-12fm2 = 0 

f-1v2~31+D3‘V (f+5‘3)+P0-12fW2=0 

where we have introduced the geostrophic 
approximation for a[/&. Multiplying these 
two equations respectively by - PI, and - v3, 
using the identity v - @pr = p)& + 09,. 
.VCJ+, and then adding, we obtain 

f-1 (VPI * VPl r +  VP3 * VP3 I) - 
-f v * (PIVPl I +  P3 VYS I) - 

- [PI%. V (f+ 5‘1) + ~ 3 %  * V (f+ c3)I + 

+ p O - 1 2 f ( ~ l - ~ 3 )  

ul and o3 in this equation are of course geo- 
strophic. It is then simple to show that when 
this equation is integrated over the region 
- w s y G w, o c x G L ,  the boundary condi- 
tions (4) and ( 5 )  make the contribution from 
the second and third terms vanish (remember 
thatfas a coefficient is constant). We are then 
left with 

which, after division by f, is the geostrophic 
equivalent of (9). 

The appearance of only the geostrophic 
kinetic energy in (10), and not the total 
horizontal kinetic energy is not too surprising. 
It is, in fact, quite analogous to the case of 
simple hydrostatic motion, where the energy 
equation does not include the kinetic energy 
of the vertical motion. We may remark fi- 
nally that since (10) was derived without the 
use of (3),  our demonstration of the compa- 
tibility of the mechanical energy equation (9) 
and the quasi-geostrophic equations does not 
involve any assumption of adiabatic motion. 

4. The perturbation equations 

The theoretical treatment to date of the 
non-stationary disturbances of extra-tropical 
latitudes has been carried out under the assump- 

tion that the motion is both adiabatic and 
frictionless. The linearized perturbation theo- 
ries then demonstrate the possibility of un- 
stable waves which grow exponentially with 
time. These unstable waves, especially those 
which are most unstable (EADY, I949), are 
presumably to be identified with the disturb- 
ances we actually see on upper air charts. 
Good evidence for this is to be found in the 
fact that the pressure, temperature, and ver- 
tical motion fields in many actual developing 
disturbances are quite similar to those in the 
theoretical perturbations (Kuo, 1952). 

In the remainder of this paper we will 
study the kinematic features of the unstable 
baroclinic waves (although in a very simpli- 
fied form), and use these results to compute 
the effects of these motions on the basic zonal 
current. This will be done b using the per- 

linear “stress” terms which appear in the 
zonally averaged equations for the rate of 
change of the mean current. We will then 
attempt to show that the effects induced in 
this manner are such as to counteract the 
neglected effects of (surface) friction and non- 
adiabatic processes on the mean motion. The 
reasoning therefore embodies the tacit assump- 
tion that the overall kinematics of the disrurb- 
ances are not influenced significantly by the 
neglected physical processes and the mathe- 
matical simpllfications introduced by the 
perturbation theory. 

The most detailed analysis to date of the 
kinematics of the unstable baroclinic wave has 
been made by Kuo (19p), who has shown 
that the waves transfer sensible heat north- 
ward, create kinetic energy, and may be im- 
portant in the vertical transport of zonal 
momentum. However, Kuo’s analysis has the 
limitation that his calculations are based on the 
assumption that the perturbations are com- 
pletely independent of the y-coordinate. Since 
the latitudinal extent of the actual disturb- 
ances is of the same order of magnitude as 
the x-wavelength of the most unstable wave 
in this theory, it seems reasonable that the 
additional kinematic effects introduced by 
lateral limitations on the motion may not be 
insigdicant. 

We  are led thus to the study of the proper- 
ties of small perturbations superimposed on a 
zonal flow limited at y = -rfw by fixed walls. 

T+IS VI (19j4). 3 

turbation solutions to eva r uate the non- 
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v = I12 (U1 - UJ, 

p E ? C / 2 W I  

k = 2 n/L, and 

. B E A - ~ P ,  

For simplicity we will again use the “2 - 1/2 
dimensional” equations (I), (2), and (3) as a 
crude approximation to the more realistic 
equations employed by CHARNEY (1947) and 

The basic current will be defined by the 
process of averaging with respect to x ;  such 
averaged quantities will be denoted by a bar, 
-, or by a capital letter. Deviations from 
this zonal average will be indicated by a 
prime superscript, ’. Using this convention, 
equations (I), (2), and (3) may now be com- 
bined into the following two equations: 

KUO (1952). 

. (14) wheref, p, and A2 are constants. The equations 
for the rate of change of the mean motion are 
obtained by averaging these with respect to x: 

1 @I yyt- A2 (@l I -  @s t )  = 

[(Pi x x  + P’syy) + A2 (6 - Pg I 
Thus the time rate of change of the basic 
current, as described by G1 and @$ t ,  is in- 
fluenced by “stress” terms which arise from 
non-linear interactions of the deviations from 
zonal flow. In the perturbation theory the 
deviations & and & are considered to be 
small, of the first order. (IZ), in combination 
with ( 5 )  and (4), then states that 
are at most of the second order. 

We may now separate out the first order 
terms in (II), making the additional assump- 

and 

Tellur VI (1954). 3 

tion that Q1 and Q3 are linear functions of y, 
i.e. we assume that the basic current velo- 
cities Ul = -f-1 are 
initially independent of y. (Note, however, 
that we do not place this restriction on the 
second order quantities Ul and Us 

and U, = - f -1 @$ 

[PI x x +  PI y y  - l2 (PI - PJI + I 
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Fig. I .  The time in days required for an unstable wave 
in the two-level model to double its amplitude, given as a 
function of the vertical wind shear in the basic current 
and the wavelength. The dotted line represents the curve 
v i =  o for the perturbation analyses of Charney and 

Kuo. 

bations pi and pi are given by the following 
formulae : 

pi = Devil cos py cos k (x - crt) 
pi = (T Devil cos py cos [k (x - c,t) + y ]  } (17) 

} ( 1 8 )  

The constant D, which determines the abso- 
lute amplitude of the disturbance, is completely 
arbitrary because of the linearity of ( 1 3 ) .  
However, the relative am litude (T is deter- 

(T = [ (2  a I/+ B) / (2  a V - B)] ‘1. 

mined, as is the phase ang f e y :  

tan ly= (2 +a) v i / (kaV)  

where u; = kci is the “frequency of flight”, 
given by 

v i = k  [a2(4-a2)  V2-B2]’1~[a(2+cc) ] - l  (19)  

Thus in the amplifying wave (ui > 0) the pi 
wave is larger in amplitude than the wave in 
pi and lags behind it (far v >o). The real 
phase speed is given by c,: 

c,= 1 / 2  (Ul + U,) - [ a  ( 2  +a)]-’ ( I  +a) B 

To obtain an idea of the magnitude of t h s  
instability, the time z = v ~ ‘  In 2 required for a 
given perturbation to double in size is shown 

in fig. I as a function of the wind shear and 
the wave length L. Numerical values of the 
other parameters used are as follows: 

{Q1 -0,)) =9.81 x 8.16 x 10, ni2 s e r 2  1 (20) 
@,/(@,-0,) =316/36- 8.8 

P = 3/Re 

dU/dz=2gV {@’ -@,}-I J 
Re is the radius of the earth, so the distance 

2 w corresponds to sixty degrees of latitude. 
The constant values offand were evaluated 
at 45’ latitude. 

For reference it may be of interest to note 
that the mean value of dU/dz on the winter 
meridional cross sections published by HESS 
(1948) and by PALMBN and NEWTON (1948) 
is about 2.3 m sec-l km-’, the maximum 
value of dU/dx on Hess’s section being about 
4.3 m sec-l km-’ at 35’ N. This corresponds 
to a time of between one to three days for a 
doubling of the size of the disturbance. 

The wave length of maximum instability 
seems to be about 6,000 km. This corresponds 
to a wave number of about five at 45 degrees 
latitude. 

Although the stability criterion (16) has 
been derived on the assumption that I/ is 
independent of latitude, it is interesting to 
examine the summer and winter cross sections 
of HESS (1948) to see at what latitudes (16) 
is satisfied. The most favorable conditions are 
obtained by choosing L so that a 2 = 2 .  Re- 
placing a2 by 2 in (16) we find that the cri- 
terion for instability is satisfied when 

4 Q  __- Re@,  [I/[ - 0 . 1  I ul- U,l cos p 
sin2p) (Q1-Q3} (@I-@,) 

< 

where U, - U, is in m sec-’ and p is latitude. 
SZ is the angular velocity of the earth and R, 
the radius of the earth. This relationship is 
shown in fig. 2, and may perhaps be taken 
as a partial explanation of the seasonal changes 
in cyclone activity, both in intensity and 
latitude. 

A more‘ exact solution of the quasi-geo- 
strophic perturbation equations has been made 
by CHARNEY (1947) and Kuo (1952). Their 
results differ from those above primarily in 
that sufficiently short waves may always be 
unstable. In fig. I t h s  would mean that the 
region of instability would be delineated by 

Tellus VI (1954). 3 
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the dotted line. However, Kuo has shown 
that the values of vi in the added re ion of 

cussion we shall be most interested in the waves 
with large v i ,  it seems reasonable to accept 
the results we have derived here as a reason- 
ably good first a proximation to the kinema- 

instability are very small. Since in t k s dis- 

tics of the baroc P inic waves. 

6. Second order changes in the basic current 

Equation (12) and the boundary condition 
( 5 )  tell how the basic current will change 
with time. The perturbation analysis has 
given us expressions for the perturbations pi 
and pi which are correct to the first order. 
We are therefore in a position to evaluate 
the right side of (12) correct to the second 
order, and thereby obtain and Gs correct 
to the second order. 

In using (17) to evaluate the right side of 
(IZ), we find that the terms involving + 
+ piy drop out, i.e. the perturbation advection 
of perturbation vorticity is zero. This is a 
consequence of our assumption that U, and U, 
are (initially) independent of y. The other terms, 
representing the advection of perturbation 
thickness by the perturbation velocities, do 
not drop out. We find then that (12) may be 
written 

} (21) 
GI lBt - y (G1 -Qst)  = - 112 A sin 2 5 
@ s E t t + Y  (@it-@st)=I/2Asin25 

where 
A = [ A 2 D 2  (exp 2 vit) a (2 +a)vi] 

y = p - 2  2 2  

[ f P  (ZaV--)l-l } (22) 

and we have introduced the new dimension- 
less variable 

5 ' P Y  = (n/2> ( v / 4  
The solution of (21) satisfying the lateral 

boundary condition ( 5 )  at E= kn/2 is 

1 A @ --qj -- 

s i n h d s t  I . 

I t -  s f -  2 (2+y )  

- -i- sm 2 5 [G- 2 ycosh 42 y n/2 2 

"70 60 50 YO 30 20 10 
+P 

Fig. 2. The satisfaction of the stability criterion for 
baroclinic waves in the two-level model as a function of 
latitude and season. The curves of 0.1 (Ul- U,) (in m 

sec-l) are taken from the cross sections of Hess. 

Fig. 3 contains a picture of these solutions. 
In the northern half of the region @ l t - @ s t  

is positive, while in the southern half it is 
negative. This corresponds to an average 
warming up of the northern half and a cooling 
of the southern half of the region. Therefore, 
as has been shown previously by KUO (1952). 
one effect of the unstable waves is to coun- 
teract the latitudinal variation in heating and 
cooling due to non-adiabatic causes. 

The size of the disturbance necessary to 
have the correct magnitude of this effect is 
readily estimated. From the hydrostatic equa- 

Fig. 3. Graph of the solutions @I t and GS t of the averaged 
vorticity equations. The scale on the right side shows 
the corresponding value of the mean height tendency in 

m day-' when T: is taken as 0.5 "C day-l. 

Tellur VI (1954). 3 
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tion we first obtain the approximate rela- 
tion aT,/at-R-'(@, - @3 where y, is the 
Soo-mb temperature and R is the gas constant 

I I l Z  

for dry air. Defining T:- (2/n)Ji?:,,dE as 
n 

the average value of the warming up of 
the northern half of the region by the disturb- 
ances, we find 

A reasonable estimate of the order of magni- 
tude T: must have in order to balance the 
yearly average cooling over the northern 
half of the northern hemisphere is about 0.5 "C 
per day (see BJERKNES, 1933). With p = 3 / l R ,  
and L2= 1 . 1 7  x 1 0 - l ~  m-2 [see (20) and the 
definition of A2 following 1 3 ) ] ,  bd find 
y -  5 . 3 ,  and that 

T: (deg day-') - 15.4 A (m2 sec-,) 

Defining v o  as the maximum value of 
level three (750 mb) we may write 

- f - l k  Deyit 
vo = Lf -' XImax - 

that 

(24) 

v at 

Introducing this into (22) we then obtain 

v i = A k 2 p  ( z c ~ V - B )  [ f L 2 m  (2+tc) ~ i 1 - I  

Taking A as equal to (30.8)-' m2 secr3 and the 
following values in addition to those in (20),  

k = 2 n ( 6 x 1 o ~ ) - ~ m - ~  
V -  B -  14 m sec-l 
v;  = (In 2/1.245)  days-' 

we find that vo  is about 10 m sec-1. In other 
words, a disturbance of a size such that v o  
is 10 m sec-l will cause a second-order effect 
on the mean flow of the correct order of 
magnitude to balance the average latitudinal 
variation in heating and cooling. This is a 
rather small value of vo, but we have assumed 
that the perturbation is of the most efficient 
type (i.e. that with the maximum value of vi). 
Furthermore, the observed eddy motion in 
the atmosphere is partly due to features such as 
longitudinal irregularities in orography which 
probably do not contribute significantly to 
the latitudinal transport of energy. 

7. The meridional circulation 

In this section we shall see that the presence 
of the baroclinic waves implies the existence 
of a small meridional circulation. Our assump- 
tion of quasi-geostrophic motion does not 
allow us to use the second equation of motion 
to discuss the creation of a meridional circula- 
tion and we must therefore demonstrate its 
existence in another manner. Averaging (I) ,  
we first obtain 

w 2 = ( 2 f 2 ) - 1 P o @ 1  Yyt=(2f2)-1p0P2@1 5 c t  

which, when we use (23 ) ,  yields the following 
formula for W,: 

We now integrate the continuity equation (6) 
with respect to x, define 

Pol2 

Ul 3 p;' 2 J v d p  
0 

v3 = pa1 2 1 d p  

and, as we have already done in deriving (I) 
and (2 ) ,  assume that u) vanishes at p=o and 
p = p o .  6, and i, are then related to i& by 
the formulae 

POI2 

These may now be integrated with respect to 
6 from t = -n/2 to 5 = 5, using the boundary 
condition that F1 and 7, are both equal to 
zero at t= -nj2. 

U A  

(Note that the boundary condition that Vl 
and i3 also vanish at 5=n/2 is satisfied auto- 
matically.) 

The meridional circulation given by (25)  
and (26) is shown in fig. 4,  with A taken to 

Tellur VI (1954). 3 
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correspond to T:=o.s “C day-1. It consists 
of three “cells”, a “direct” cell at the northern 
and southern ends, and a larger “indirect” 
cell in the central part of the region. It is 
very weak and therefore questionable whether 
it could be detected with the present obser- 
vational network. 

- i d  ’Y 0 W 

Fig. 4. The meridional circulation due to the baroclinic 
waves. The arrows indicate the direction and intensity 
of the flow. Values of Ws and G1 when T? is taken as 
0.5 “C day-’ are indicated by the scales on the left side; 
W, is in units of mb day-l and V ,  (top line) is in units 

of cm sec-’. 

The existence of this meridional circulation 
was not incorporated into our equations (I), 
(2), and (3).  It if had been, the meaned equa- 
tions (12) would have included a term fBG. 
Having obtained an explicit expression for V ,  
it is now possible to justify its neglect in (12). 
If we compute the ratio of the mean values 
over the interval -n/2 I 6 1nj2 of the 
square of the neglected term fpi with the 
square of the retained term O1 yyt  we obtain a 
value of about .03.  This crude comparison 
demonstrates that the presence of the mean 
circulation (2s)  and (26) is relatively unim- 
portant in the solution of the zonally averaged 
vorticity equations (12). 

The latitudinal transport of energy in our 
model, as reflected in the distribution of O1 I - 
- O3 [reference should here be made to (3 I)], 
can be shown to be brought about by both a 
horizontal eddy-transport and by the meridio- 
nal circulation (25), (26). [A discussion of the 
manner in which this transport may be bro- 
ken up into contributions of these two types 
has been given by STARR (1951 b).] The 
transport of energy by the meridional circu- 
lation is always in the same direction as GI, 
and therefore gives a poleward transport in 
the northern and southern portions of the 
region and an equatorward transport in the 
Tellus VI (1954), 3 
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central portion. The eddy transport on the 
other hand, is always poleward, and in the 
central part is much larger than the contri- 
bution from the meridional circulation. 

Some measurements of the actual eddy 
transport of sensible heat across latitude circles 
have been made by WHITE (1951). He has 
also summarized the amounts of energy which 
must be transported across latitude circles in 
order to counteract the effects of radiation. 
His data suggest that the observed eddy flux 
is slightly too large in middle latitudes and 
perhaps too small in higher and lower lati- 
tudes to account for the required transports. 
Although the data are perhaps not represen- 
tative enough to place too much reliance on 
this last remark, it is interesting to note that 
if the discrepancies were to be made up by a 
meridional circulation, the meridional circu- 
lation would be similar to that in fig. 4. 

Since most of the heat transport in regions 
removed from the walls is accomplished by 
the eddies, it is not surprising that fig. 4 is 
vastly different from that hy othetical merid- 
ional circulation which wou P d provide all of 
the required transport of energy. An example 
of such a circulation has been computed by 
BJERKNES et al. (1933), and, as one would 
expect, it is much more intense than that in 
fig. 4. 

8. Changes in zonal momentum 

The second-order changes in O1 and O3 
given by (23) show that the baroclinic waves 
are modifying the distribution of mean zonal 
momentum. Differentiating (23) with respect 
to y, we see that the changes in the basic 
current velocities are given by 

- 2 f ( 2  + y )  1.. u,,=-u - 

Lcosh V2 y nj2 J l  
The distribution of U s ,  when A is taken as 
( 1 5 4 - l  m2 s e c 3  (corresponding to T:= 
= I  “C day-l) is shown in fig. 5 .  

Before discussing what implication this 
might have for the general circulation, we 
note the following two facts about (27): 
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Comparing (27) with (26), we see that 
U1,-fi7,=o, and U3f- f l13=~  (28) 

Therefore the velocity changes (27) in 
the basic current are to be explained by the 
presence of the “implicit” nieridional cir- 
culation (zs) ,  (26).l 
Since U, I = - U, f ,  there is no change in 
the average velocity I / Z  (Ul + U3) at any 
value of 5. Therefore our perturbations do 
not include any mechanism for a net trans- 
port of momentum across latitude circles as 
studied bv Kuo (1949). 

Attempts to explain the existence of the 
subtropical easterlies, middle-latitude wester- 
lies, and polar easterlies in the surface zonal 
wind profile have long fascinated meteorolo- 
gists. In general, all such attempts have begun 
with the familiar model of HADLEY (1735) 
for the trade wind zone and have then 
attempted to extend this type of reasoning 
to higher latitudes, bringing in various types 
of frictional effects as needed in order to 
“explain” the successive appearance of the 
westerlies and polar easterlies at the surface. 

In 1948 STARR drew attention again to the 
suggestion of JEFFREYS (1926) that the angular 
momentum budget of different latitude belts 
might be greatly influenced by asymmetries 
in the large-scale horizontal flow patterns. 
These asymmetries could give non-vanishing 
values of e u v  (@=density) when integrated 
around a latitude circle and from the ground 
up to the top of the atmosphere, and thereby 
give a net flux of momentum across that lati- 
tude. The several synoptic investigations of this 
process which have since been made have 
shown that this transport does exist. Further- 
more, the net transport of momentum into 
the various latitude belts by this process 
accounts rather well for the loss or ain in 

experiences through the effects of surface 
friction and the torque due to the pressure 
differential across large mountain ranges. 
[A summary of these results and a general dis- 
cussion of their interpretation has been made 

momentum which each of the latitu ti e belts 

? The results derived here are much in  the spirit 
of those derived by ELIASSEN (1952); we have merely 
emphasized the meridional circulation brought about 
by the eddy heat transport, while Eliassen has analysed 
that due to axially symmetric non-adiabatic heat and 
cold sources. 

by STARR (1951 a).] However, as soon as one 
examines the momentum budget of a typical 
latitude belt in more detail, it becomes apparent 
that other types of momentum transfer must 
exist in addition to the horizontal transport by 
the correlations in II and v.  Let us consider 
for the moment a latitude belt in middle 
latitudes. This ring is losing angular momen- 
tum at the surface of the earth but gains an 
approximately equal amount through the 
convergence of the horizontal eddy transport. 
But the latter effect is small near the surface 
and reaches its maximum value at the level 
of the tropopause (STARR, 1951 a), so that we 
are faced with a surplus of angular momen- 
tum in the upper layers of the belt and a 
deficit in the lower layers. The situation in 
latitudes with surface easterlies is reversed; there 
we have an excess of momentum near the 
surface and a deficit at higher altitudes. 

As can easily be seen by writing the angular 
momentum equation for a ring-shaped region 
limited by two latitude circles and two values 
of the height, there are three principal me- 
chanisms available by which the angular 
momentum may be redistributed intramurally 
within a complete latitude belt (from the 
surface to the top of the atmosphere) so that 
the angular momentum budget for each layer 
in the latitude belt is also balanced: 

I. A vertical transport by small-scale turbu- 
lence, for example, that brought about by 
cumulus activity. This rocess can cer- 
tainly lead to a downwarJtransport, which 
is what is needed in the region of the sur- 
face westerlies, but it is difficult to imagine 
that this process will provide an upward 
transport in the regions with surface easterlies. 

2 .  A vertical transport by large-scale turbu- 
lence due to correlations in the zonal and 
vertical velocity components when meas- 
ured on a synoptic scale. Momentum trans- 
port by this process need not be in the 
direction of decreasing momentum, and 
conceivably could be directed upwards in 
low and high latitudes and downwards in 
middle latitudes. Some measurements of 
this in middle latitudes have been made by 
WHITE and COOLEY (19p), and their 
results suggest that some of the down- 
ward transport in middle latitudes may be 
by this process. 

Tellus VI (1954), 3 
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3.  A meridional circulation consisting of a net 
poleward motion in layers where there is a 
deficit of momentum (e.g. in the lower 
levels of middle latitudes) and an equator- 
ward motion in the layers where there is an 
excess of momentum. P A L M ~ N  and ALAKA 
have used this mechanism with some 
success in discussing the details of the mo- 
mentum budget in low latitudes (1952). 

The absence of correlations in ti and v 
in our solution (due to the fact that U, and U, 
were assumed to be initially independent of 
latitude) does not allow us to say anything 
theoretically about the total transport of mo- 
mentum into a given latitude belt. Further- 
more, the crudeness of our two-layer model 
will not allow us to use it to study the vertical 
redistribution of momentum in great detail. 
However, it is possible to apply our results to 
the atmospheric layer below the Soo-nib 
level, i.e. the lower half of the atmosphere. 
We  shall see that the weak implicit meridional 
circulation (25), (26) (which in our theory 
is to be considered as a result of the resence 

and sinks of relative momentum of the correct 
order of magnitude to help balance the local 
excesses and deficits of momentum at different 
altitudes which result from the observed 
horizontal eddy transport and exchange of 
momentum with the earth. 

WIDGER (1949) has computed the geo- 
strophic eddy flux of angular momentum 
per unit height during the month of January 
1946 at the surface, 7oo-mb, and .Soo-mb 
levels. His observations also include the ob- 
served change in momentum during the 
month together with estimates of the loss 
(or gain) of momentum due to skin friction 
and the mountain effect (WHITE, 1949). Let 
us reckon H, the horizontal momentum 
transport by the uv correlations during January 
1946 from the surface to the Soo-mb level, as 
positive when directed northward. Let a be 
the change during January 1946 in the angular 
momentum of the volume limited by two 
latitude circles, the surface of the earth, and 
the Soo-mb surface. Finally, we shall count E, 
the total amount of momentum gained from 
the surface of the earth by a latitude belt 
during the month, as positive when it repre- 
sents a gain for the atmosphere. For each 

of the baroclinic waves) provides loca P sources 

Tellus VI (1944). 3 

-309 4770 
-622 2470 
-747 1832 

491 -4495 
1119 -3187 

latitude belt we may then summarize theangu- 
lar momentum requirements for the layer 
surface - 500 mb in the equation 

A = Hs - HN + E +  Q 
where the subscripts S and N refer to values 
at the southern and northern latitudes of the 
belt. The quantity Q then represents an addi- 
tional “source” of momentum due to some 
or all of the three mechanisms described above. 

Values of Hs - H N ,  a, E, and Q [computed 
from (29)] have been taken from Widger’s 
data and are entered in Table 1.l The Q values 
have then been converted into a value of 
aUjat by dividing them by the approximate 
mass of each ring and its mean distance from 
the axis of the earth. These values of aU/Jt are 
entered in the last column of Table I and may 
be thought of as the net relative acceleration 
required from the three processes listed above 
if the momentum budgets for these rings of 
air are to be satisfied as shown by (29). 

(29) 

Table I. Angular momentum budget for the layer 
I ,OOO-~O~ m b  for the month of January 1946. 

[After WIDGER (1949)]. 

51 
272 

-573 
-131 
-209 

I 0 0  

-1797 
- 813 

I495 
-546 
-645 

4104 

aupt 
(m sec-’ 
day-’ 

- 2.2 
- 1.0 
- 0.2 

I .6 
0.8 

- 0.5 
- 1.2 

The possible importance of the baroclinic 
waves and their associated meridional circu- 
lations in giving the required sources and 
sinks of momentum to satisfy (29) can be 
seen by referring to fig. 5. In addition to the 
theoretical values of U, obtained from (27), 
this figure has indicated on it the values of 
aujat in Table I. [To make this comparison 
possible i = o  was placed at latitude 45N 
and [ =  -n/2 and nj2 at ISN and 75N, in 
agreement with the choice of 2w as equal to 
sixty degrees of latitude. Furthermore, A in 

1 The values of H and A have been revised slightly so 
as to apply to the layer surface - 500 mb rather than for 
the layer surface-7.5 km as used by Widger. 
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(27) was taken as cqual to (15.4)~' m2 secc3 
to correspond more closely to winter condi- 
tions.] The momentum changes given by (27) 
are clearly of the correct order of magnitude 
and even have the approximately correct vari- 
ation in latitude.' 

............ .,, 
I.. ........ .. 

"3,' -1 0 ................ ., :L-----.. __ ............... ~- P ~ ~ _ _  ........ , 

-.... r.7 -4 Y' 0 

75 bS  5s P- 95 35 2s 15 
I I 

Fig. 5. U, in m sec-1 day-' when T: is taken as I "C 
day-'. The dotted horizontal line segme ts are the values 

of XJ/iJt computed from Widger's data in table I. 

The meridional circulation ( z s ) ,  (26), as 
shown in fig. 4, is of the same general type as 
that derived from the usual qualitativc con- 
siderations based on the effect of skin friction 
on the observed surface wind distribution (e.g. 
the frictional drag on the middle latitude 
westerlies produces a poleward drift in the 
lower laycrs and, from mass continuity reasons, 
a return equatorward flow at uppcr lcvels). 
However, our argument has not proceeded 
from an observed distribution of surface 
wind, but has instead tried to show that the 
quasi-geostrophic baroclinic waves arc associated 
wi th  weak meridional circulations which, in com- 
bination wi th  thc horizontal eddy jlux (If mo- 
mentum, prescribes the main j&tirrcs of thc ob- 
served stiface zotiol wind distribirtioti. Thus, for 
example, if we considered thc initial state 
of our basic current to be such that U at 
the surface was everywhere zero (this does 
not affect the second-order effects of the 
unstable waves), the meridional circulation 
set up by the waves would create a system of 
surface winds with easterlies in high and low 
latitudes and westerlies in betwccn. 
~ _ _  

' The boundary condition ( 5 )  places an artificial re- 
straint on  the theoretical values of Ul at the northern 
end of the region. This undesirable featurc could be 
removed at the polar end by using sphcrical coordinates 
at the expense of some additional complication in the 
computations. The proper procedure at the equatorial 
end is less obvious since the quasi-geostrophic theory 
cannot be justified so readily for small values of the 
Coriolis parameter. 

The role played by large-scale correlations 
in eirw (or in wit) in providing a vertical 
transport of momentum in our model can be 
coinputcd, but it is negligible in comparison 
to the effect of the meridional circulation ( 2 5 ) ,  
(26). On the other hand, the observations by 
WHITE and COOLEY (1952) seem to demon- 
strate that a downward transport of momen- 
tum of this type does exist in middle latitudes 
and that it is of the proper order of magnitude. 
It may be that the value of this correlation in a 
perturbation analysis is greatly influenced by 
the assumption that U ,  and U, are inde- 
pendent of latitude. Or it may be, as is per- 
haps indicated by Kuo's analysis of this effect 
in the baroclinic waves of infinite lateral 
extent, that the two-level model is too crude 
to include this effect explicitly but includes 
it implicitly in the form of a meridional 
circulation. In any case, it is clear that the sim- 
ple two-level model we have used does con- 
tain a mechanism for the vertical redistribution 
of zonal momentum, and may therefore be 
used with some hope of success in the compu- 
tational experinient described at the end of 
section I. 

9. Energy transformations in the unstable 
waves 

In section 3 we havc shown that the quasi- 
gcostrophic equations ( I ) ,  (2) and the bound- 
ary conditions (4) and ( 5 )  are consistent with 
thc mechanical energy equation. It is perhaps 
of some interest to apply this fact to the sys- 
tem we have used in studying the unstable 
baroclinic perturbations. 

Introducing the expression (3) for o2 into 
(10), wc find that the cnergy equation may be 
rewritten 

whcrc the integration is over - w < y < w 
o < x < L and wc have used the fact that the 
intcgral of 21. (h  arbitrary) over this 
region vanishes when Y is geostrophic. The 
term I /z A 2  (cpl,- q3)2 clearly represents 
some type of potential energy for the system. 
Thc kinetic energy q1 + q3 and the potential 
encrgy I / 2 f - 2  ,I2 (ql - q3)2 may each be divid- 
ed up into a part represcnting the energy of 

Tellur VI (1954) 3 
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the basic current and a part representing that 
of the perturbation. Thus (30) becomes 

4 z  

+ [ tr; 2 + v; 2 + tr;2 + v;  +f-W(&$], \ d5 = 0 J 
The rate of change of the basic current 

energies may be computed from (27) and 
(23). W e  find 

niz 

niz 

where 
X = [AVp]  / [ f ( 2  +a)] 

The time rate of change of the perturbation 
kinetic and potential energies are readily 
computed from (17) : 

-n!z 

It is easily seen, by adding (32) - (35), that 
the energy equation is indeed satisfied. 

In (32), the factor multiplying X (2 +a) has 
the value .026. Since this term, represent- 
ing a loss of kinetic energy by the basic 
current, is exactly balanced by the last term 
in (33), we may say that of the total increase 
in perturbation energy 95 per cent comes 
from the potential energy of the basic current, 
the other 5 per cent coming from the kinetic 
energy of the zonal motion. These figures 
Tellur VI (1954), 3 

are obtained when y = i 2 p - 2  has the value 
5.3. For smaller y ,  e.g. smaller values of 
w or smaller values of J the fraction of 
perturbation energy which comes from the 
kinetic energy of the basic current increases. 

The rate of production of kinetic energy 
per unit area, given approximately by one 
half the value of (34), has a value of about 
0.375 x I O - ~  m2 S ~ C - ~ ,  when A is taken 
equal to ( 3 0 A - l  mz secc3. If we multiply 
this by 10 tons (the approximate mass of the 
atmosphere per square meter) we get a value 
of about 3.75 joules sec-l m-2 as the rate at 
which the disturbances are creating kinetic 
energy. This can be compared with BRUNT'S 
estimate (1939) of about 5 joules sec-1 m-2 as 
the average rate of dissipation of kinetic 
energy in the atmosphere. 

10. The vertical transport of entropy 

Computations of the gain and loss of heat 
by radiation show that the upper half of the 
troposphere loses heat while the lower half 
gains heat by this process if we consider 
conditions averaged with respect to latitude. 
EADY (1949) has pointed out that the positive 
correlation between the vertical velocity and 
potential temperature in the unstable baroclin- 
ic waves must give a net upward transport 
of entropy which will act to balance this 
effect of radiation. 

Our equations prescribe @t at only two 
levels, and therefore define a temperature at 
only one level. Thus they cannot be used for 
a direct computation of the time rate of 
change of the mean entropy in the upper and 
lower halves of the atmosphere. However, 
if 0; and 0: are defined as the mean values 
of the potential temperature in the upper and 
lower halves of the atmosphere, the following 
formula holds for adiabatic motion: 

0, may then bc expressed in tcrms of (pl - p3) 
with the aid of the equation of state and the 
hydrostatic equation. For a disturbance of 
the type we have considered, with T: taken 
as o.s°C day-1, we find that OJrli?t is about 
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0.25 "C day-l. Therefore any complete theory 
of the existing distribution of temperature with 
height in the atmosphere must include this 
effect of the large-scale extratropical disturb- 
ances. 

Since this effect of the disturbances is pro- 
portional to the square of their amplitude, 
this upward transport of entropy should be 
greater in the winter season than in the sum- 
mer season. This should cause the lapse rate 
to be more stable in winter than in summer. 
Evidence that this is so can bc readily seen in 

the ineridional cross sections of Hess for the 
winter and summer scasons (HESS, 1948). 
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