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Abstract 

Theorems for the vorticity, deformation and divergence are developed for quasi-horizontal 
frictionless motion. The divergence theorem is used to investigate the validity of the geostrophic 
approximation, and it is found that the balance between the Laplacian of the pressure field and 
the vorticity is appreciably influenced by the deformation, while the divergence is relatively 
unimportant. The vorticity theorem and the deformation theorem are combined to obtain a 
prediction quantity which is related to the absolute vorticity and permits treatment of the 
fields which are more general than the geostrophic field. Some charts are produced to show 
the magnitudes of the various quantities in a mature storm. 

I. Introduction 

The prognostic equations used in numerical 
predictions are generally based upon the as- 
sumption that the vorticity of the actual wind 
can be replaced by that of the geostrophic 
wind. Thus, from the geostrophic wind 
equation one finds that the relative vorticity C, 
is expressed by the formula 

I c - -v2z “f 
where f is the Coriolis parameter, and v 2 Z  is 
the two-dimensional Laplacian of the geopo- 
tential of an isobaric surface. The same formula 
would apply to an isentropic surface if Z is 
interpreted as the Montgomery potential. 

Since no restrictions are imposed upon Z, 
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it is evident from the derivation of Eq. (I)  
that the instantaneous wind is everywhere 
assumed to be well adjusted to the gradient of 
the contour field though no accelerational 
mechanism is provided to allow the wind to 
remain adjusted while the air moves through 
a variable contour field. It is, therefore, not 
obvious how the geostrophic approximation 
can lead to a useful prediction equation, except 
when the contour field is trivially simple. 

On the other hand, experiments with 
numerical predictions have definitely estab- 
lished that a considerable portion of the changes 
in the contour field can be predicted by the 
use of the geostrophic approximation. The 
source of ths  success is by no means evident, 
but it may be due to one or more of the fol- 
lowing conditions: (a) the procedure may 
contain errors which are largely compensating; 
(b) critical values of the neglected terms may 
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be rare or confined to limited regions, with the 
result that the over-all correlation between 
computed and observed changes is relatively 
h g h ;  or (c) the equations of motion may 
contain some hitherto unexplored mechanism 
that tends to suppress the influences of the 
neglected terms. 

The purpose of this paper is to explore these 
relationshps. 

2. Deformation, vorticity and divergence 

With customary symbols the equations of 
horizontal frictionless motion may be written : 

221 su 211 az 

av av av az 
+ fL,+ v - = - -  +f v at 3x ay 3x 

-+ fL-+ v - =  ---fU at ax 2y sy 

- 

(2)  

It can be shown that these equations hold for 
motion with a vertical component, provided: 
(a) that the motion is adiabatic; (b) that ajat is 
interpreted as the local variation at a point 
fixed in x and y whle it moves vertically with 
an isentropic surface; (c) that i?/& and J/3y 
are the variations along an isentropic surface 
per unit distance along the horizontal coordi- 
nate axes; and (d) that Z is the Montgomery 
potential. 

For the purpose of this discussion it suffices 
to consider horizontal motion, although the 
results will apply to adiabatic motion in general. 

Now, the vorticity equation represents a 
theorem concerning the difference between 
two of the quotients in Eqs. (2). Obviously, 
similar theorems can be derived for the other 
conibinations of the pertinent quotients. 

It is convenient to introduce the quantities 

av at1 B=-- + - a l l  3v A=--- 

sv D 1 r  a)Ii av c=--- D = 7 + -  

3x sy ax JY (3) 

ax Oy ox dy 

Here, C is the relative vorticity, D the 
divergence, while (A2 t B2)’/a is the total de- 
formation, which can be shown to be invariant 
in respect of choice of coordinate axes. 

Putting Q = C + f = absolute vorticity, 
we obt.iin from Eqs. ( 2 )  and (3) 

B+ BD=-2-- - fA-u-+ 222 ?f v+ Jf ( 5 )  axay ax- oy 

. I  

2 
D + - D D = - V * Z  + f C t  

Eq. (6) is the well-known vorticity theorem 
which states that in adiabatic frictionless motion 
there are no sources or sinks of absolute 
vorticity in an isentropic surface. 

Eqs. (4) and (5) may be combined to give a 
deformation theorem, and Eq. (7) may be 
referred to as the divergence theorem. It will 
be seen that the fields of deformation and 
divergence normally contain sources or sinks. 

Eq. (7) shows that the relation between the 
relative vorticity and the configuration of the 
contour field is rather complex, and there can 
be no question of computing the vorticity 
from the Laplacian of Z when its magnitude 
is small. What we are concerned to compute is, 
however, the absolute vorticity, and the com- 
putational procedure will be determined by the 
accuracy required. 

It is doubtful whether the Laplacian of Z 
can be computed with an error less than, say, 
15 per cent, and, for the sake of argument, we 
shall be satisfied to compute the absolute 
vorticity with the same accuracy. 

Putting 

where is the Rossby parameter, and U is the 
zonal speed of the wind, we obtain from (7) 

Q= C+f= (2V2Z-tf2+ A’+ B 2 +  
+ 2 L j +  D2+ 2 g  U)’/. (8) 

There is much synoptic evidence in support 
of the view that in the large-scalc currents in 
middle and high latitudes, z D and D 2  are one 

Tellus V (1953). 3 



23 3 VORTICITY, DEFORMATION, DIVERGENCE AND THE PRESSURE FIELD 

or two orders of magnitude less thanfZ, and 
may, therefore, be omitted. Furthermore, the 
last term on the right of Eq. (8) will contribute 
less than 15 per cent to the absolute vorticity, 
unless the zonal wind exceeds about IOO ni. 
sec.-l. In the following this term will be 
omitted also, and Eq. (8) reduces to 

Q= (2v2Z+$+ A2+B2)'/a (9) 
In this form the divergence theorem has lost 

its predictive quality; instead it may be used 
for computational purposes. 

It will be seen that the customary approxi- 
niation ( I )  is satisfactory only when 

c2 = A2+B2 

In this case the local wind field can be repre- 
sented by a uniform translation superimposed 
upon a straight current with lateral shear, and 
the vorticity is determined by the Laplacian 
of z. 

We shall next consider the case when 
A2 + B2 is very much smaller than C2. In this 
case 

and, again, the vorticity is determined by the 
Laplacian, but the formula differs from 
approximation (I). From Eqs. (I) and (10) 
we obtain 

c,jc= I + Cjz f 
showing that the geostrophic approximation 
overestiniates the vorticity in cyclonic motion 
while the reverse is true in anticyclonic fields. 

In the general case, the quantity C2 - A2 - 
- B 2  may be positive or negative, and in 
hyperbolic contour patterns the Laplacian of Z 
may be balanced mainly by the deformation. 

From the foregoing discussion it follows 
that if the probleni is to compute the absolutc 
vorticity, the gcostrophic approximation may 
be unsatisfactory. Furthermore, it is of interest 
to note that the quantity C2- A 2 - P  
derives from the convective parts of the accel- 
crational terms in Eqs. (2 ) ,  and represents, 
therefore, an  accelerational mechanism that 
will enable the wind to remain adjusted while 
the air moves through a variable pressure field. 

3. Prediction equations without divergence 

The form that the prediction equations 
assume dcpends to some extent upon the wind 
Tellus V (1953), 3 

approximation used. As a first orientation we 
shall consider the well-known non-divergent 
model. The prediction equations pertaining to 
this model are obtained from Eq. (6) by putting 
D = 0, and otherwise manipulating in the 
customary manner. Depending upon which of 
the foregoing approximations are used, the 
following equations are obtained: 

Combining now Eqs. (4) and ( 5 ) ,  we obtain, 
since the motion is non-divergent : 

plus some small terms which depend upon the 
meridional variation of the Coriolis param- 
eter. Since it is not our intention to discuss 
the influences of a variable Coriolis parameter 
on the deformational field, these terms will be 
omitted. 

It is of interest to note that if the wind is 
allowed to approach the geostrophic wind, or 
some value proportional thereto, the right 
hand side of Eq. (13) converges to zero, and 
the total deformation tends to be conserved. 
This is true not because A and B are small but 
because of the particular combination in which 
they appear in Eq. (13). 

More specifically, let k be a factor of pro- 
portionality between the actual wind and the 
geostrophic wind. Then, regardless of how 
much the geostrophc wind varies in 3c and y, 
the right hand side of Eq. (13) tends to zero 
provided that k is constant or varies slowly. 
Now, in the large-scale currents k is not far 
from unity and its spatial variation is small. 
For such current systems Eq. (13) reduces to 

d >(A2 + B2) = 0 (14) 

and Eq. (12) to 
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Eq. (12) states that the absolute vorticity is 

conserved, while Eq. (IS) goes further to state 
that a certain portion of ths  vorticity is con- 
scrvcd also. Thus, although the deformation 
terms in Eq. (9) may affect the value of the 
vorticity, these terms are of no consequence 
for the prediction equation, provided that the 
motion is non-divergent. It will thus be seen 
that the deformation theorem expresses a real 
mechanism through whch the influence of 
some of the terms left out of the geostrophic 
assumption is suppressed in the prediction 
equations. 

It remains now to explain the difference 
between Eqs. (11) and (IS). For sake of brevity 
we put v 2 Z  = L. Eqs. (11) and (Is) may 
then be written 

where, as before, C, is the geostrophe vorti- 
city. 

It will be seen that the difference is im- 
material when the geostrophc vorticity is 
much smaller thanf: This is often the case over 
large areas of the charts, and ths  may be one 
of thc reasons why the geostrophic approxi- 
mation has yielded fair predictions. On  the 
other hand, when C, > o and comparable 
with .f (which is usually the case in mature 
storms) the difference between Eqs. ( I ra )  and 
(1s.) becomes important, and when C, >f 
it is difficult to sce how Eq. (IIa) can corre- 
spond to any real process. Finally it may be 
noted that Eq. (IIa)  tends to exaggerate the 
changes when C, < o while the reverse is 
true when C, > 0. 

In some of the experiments with numerical 
predictions it has tacitly been assumed that J‘ 
in the first term within the parentheses of Eq. 
( I  I )  can be kept constant while the second j -  
is allowed to vary. The justification for ths  
has been that it makes very little difference 
whether or not the firstfis differentiated (but 
see Section 5 ) .  However, if the firstfis kept 
constant, Eq. ( I  I)  happens to become identical 
to Eq. (IS), with the fortunate result that one 
of the shortcomings of the geostrophic ap- 
proximation is compensated for by treating f 
both as a constant and as a variable. 

4. Prediction equations with divergence 

If the model is allowed to contain divergence, 
the absolute vorticity could still be computed 
by the aid of Eq. (9) provided that 2. b and D2 
are much smaller than f’. 

Instead of Eq. (6) we may write 

~d 
z dt 
- - Q 2 +  Q 2 D =  o 

Substitution from Eq. (9) now gives 

- ( z v 2 Z + f 2 +  A2+ B2) = 
d 
dt 

= - z D ( z v 2 Z  +f” + A2 + B2)  (16) 

Eqs. (4) and (5) may be combined to give 

2 D(A2 + B2) - d ;rt(A2+ B2)  = - 

where, as before, the small ternis depending 
upon of have been omitted. 

Now, for motion on a sufficiently large scale 
(see Section 3),  the last term on the right of 
Eq. (17) may be omitted, and Eqs. (16) and 
(17) combined to give 

d 
- (z’J2Z+f2)  = - z D ( z v 2 Z + f ” )  
dt ( IS)  

Again, one finds a certain portion of the 
absolute vorticity which lends itself to treat- 
ment. 

In order to use Eq. (18) in numerical 
forecasting it is necessary to construct a model, 
or system of models, in whch  the distribution 
of D is included. We shall not discuss such 
models here. Instead, we shall be concerned to 
discuss the relative importance of the terms 
containing D and f. Putting again v 2 Z  = L,  
Eq. (IS) may be written 

+ 2 L D = -? ( D  + V,r P ! f )  (19) 

where VLv is the meridional component of thc 
wind, and /? is the Rossby parameter. 

In middle latitudes B,lf is about 1.5 x 10-7 
111-1 and the divergence term on the right is 
not negligible against the /?-term unless D 
is less than about z V N  10-* 1n-l. 
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There is much evidence to indicate that in 
cases of appreciable development D is at least 
as large as 10-5 sec-1, and in such cases the 
term containing B is very much smaller than D. 
Furthermore, the second term on the left of 
Eq. (19) shows that the effect of the divergence 
increases with the Laplacian of the contour 
field. 

5.  Examples 

In order to determine whether the various 
expressions for the vorticity give significantly 
different results, the absolute geostrophic 
vorticity (Q, = C, +f) and the absolute 
vorticity (Q) as givcn by Eq. (9), were com- 
puted and compared. In computing Q, A and 
B were replaced by their geostrophic values. 

In addition the quantity 

P= 2y7;J"z+fi (20)  

was evaluated since it appears to be the appro- 
priate quantity to be used in the prediction 
equation. 

To obtain figures and dimensions com- 
parable with the geostrophic vorticity, the 
square root of P was computed. It will be seen 
from Eqs. (9) and (20) that when v 2 Z  is large 
and negative whle A2 + B2 is small, P may 
be negative and P'/a imaginary. This, however, 
is no real inconvenience since it is P and not 
P'/a that enters into the prediction equation. 

The Laplacian of Z and similar quantities 
were evaluated by the aid of the rectangular 
grid shown in Fig. I ,  in which H = 444,000 m. 

2 

4 

Fig. I .  Showing the grid and the subscripts in the 
interpolation fortnulas. 
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Fig. 2 .  The contonrs of the 500 mb. surface, 26 Nov. 
1952, 0300 G.M.T. Heights of contour lines in hun- 

dreds of geopotential feet. 

Fig. 3. The absolute geostrophic rorticity corresponding 
to Fig. z. Units I O - ~  sec-'. 

The interpolation formulas used are 

Zl+ z,+ 2 3 1  z, -4z, - 
v2 Z.= K--- 

H2 
322 322 z,+z,-z,-z, 
as- ay2 HZ 

- K ____._~-  
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Fig. 4 .  The absolute vorticity corresponding to Fig. 2, 
coiiiputcd from Eq. ( 9 ) .  Units 10-5 sec-1. 

Fig. 6.  The distribution of (2'7 ?Z+.fZ)''' corresponding 
to Fig. 2 .  Units 10-5 scc-l. 

wlierc K is a factor of conversion to rational 
units, and thc subscripts are those shown in 
Fig. 1. 

Thc synoptic situation chosen for the test 
was the one that occurred over the United 
States 011 26 Noveiiiber 1952. Fig. 2 shows 
the coiitours of the 500 nib. surface at 0300 
C.M.T. The storm associated with the closed 

Fig. 7 .  Thc diffcrencc betwccn Fis. 3 and Fig. 6 super- 
imposed upon Fig. 2. 

contours in the ccntral part of thc chart is one 
of apprcciablc intci;sity and it is evident that 
both the vorticity and the dcforniation are 
large. 

In Fig. 3 is shown the distribution of the 
absolutc geostrophic vorticity Q, computed 
from Fig. 2. It will be seen that the iiiaximum 
absolute geostrophic vorticity near the center 
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of the storm is about four times the Coriolis 
paranictcr, indicating a rclativc geostrophic 
vorticity of abont 3j. 

The absolute vorticity Q, computed froin 
Eq. (9), is shown in Fig. 4, and the differcnce 
Q, - Q is shown in Fig. 5 .  It will be sccn 
that the difference is appreciable except in 
areas where both Q, and Q arc close to the 
Coriolis paranictcr. 

Fig. 6, shows thc distribution of thc square 
root of P, coniputed from Eq. (20). Negative 
values of P wcrc found along the coast of the 
Gulf of Mexico (within the area bounded by 
the heavy curve) and here the coniplcx values 
of P';z are indicated. 

Fig. 7 shows the difference Q, - PI.2 supcr- 
imposed upon Fig. 2. This chart shows the 
difference in the geostrophic advection of the 
two quantities. It will be seen that the difference 
is appreciable. Finally, Fig. 8 shows the 
distribution of the deforination (A2  + B2)';*. 
Thc difference between Q and P's'? is ciitircly 
due to this quantity. 

The foregoing charts will suffice to show 
that the geostrophic vorticity may differ 
appreciably from other quantities which could 
bc used in the prcdiction equations. 

6. Conclusions 

The foregoing discussion appears to justify 
the following conclusions. 

a. Although the gcostrophic wind may be 
a fair approximation to the true wind, thc 
gcostrophic vorticity niay differ appreciably 
from the actual vorticity in storms of appreci- 
able intensity, and so may thc advection of 
these vorticitics. 

b. On account of thc deformation theorem, 
the effect of thc deforniational field on the 
vorticity changes may be eliiiiinated if the 
motion is on a sufficiently large scale. 

c. The quantity P = z v 2 Z  ~p appears to 
be the most satisfactory prediction quantity to 
be used in non-divergent as well as divergellt 
inotions. 

Fig. 8. The total  geostrophic deformation (A2-)-DC)1A'p 
corresponding to  Fig. 2 .  Units 10-5 sec-1. 

d. The effect of the divcrgencc is propor- 
tional to P and cannot be iicglectcd iinless the 
divcrgence is less than about I O - ~  sec-I. 
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