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ABSTRACT

We propose a non-linear forcing singular vector (NFSV) approach to infer the effect of non-linearity on the

predictability associated with model errors. The NFSV is a generalisation of the forcing singular vector (FSV)

to non-linear fields and acts as a tendency perturbation that results in a significantly large perturbation growth.

In predictability studies, the NFSV, as a tendency error, may provide useful information about model errors

that cause severe prediction uncertainties. In this article, a two-dimensional quasi-geostrophic (QG) model is

used to study NFSVs and make a comparison between NFSVs and FSVs. We choose two basic flows: the first

is a zonal steady flow (Ref-1), and the second is a meridional steady flow (Ref-2). The results demonstrate that

the corresponding NFSVs contain a phase where the stream function tends to be contracted around regions of

strong velocity shear. Furthermore, the NFSVs for the Ref-1 tend to have a meridional asymmetric spatial

structure. Due to the absence of non-linearity, FSVs tend to have a larger spatial extension than NFSVs; in

particular, the FSVs for the Ref-1 are almost symmetric in the stream function component. The prediction

errors caused by FSVs in the non-linear QG model are generally smaller than those caused by FSVs in

the linearised QG model; therefore, the non-linearity in the QG model would significantly saturate the

perturbation growth. Nevertheless, the prediction errors caused by NFSVs (especially for the Ref-1) in the

non-linear QG model are larger than those caused by FSVs, which further implies that the tendency errors of

NFSV structures tend to reduce the damping effect of the non-linearity on the perturbation growth and are

more applicable than those of FSV structures to describing the optimal mode of the model errors. The

differences between NFSVs and FSVs demonstrate the usefulness of NFSVs in revealing the effects of non-

linearity on predictability. The NFSV may be a useful non-linear technique for exploring the predictability

problems introduced by model errors.

Keywords: weather, climate, predictability, model error, optimal perturbation

1. Introduction

One of the central problems in atmospheric and oceanic

sciences is weather and climate predictability, in which

estimating the uncertainties associated with the predictions

is very important. Tennekes (1991) proclaimed that no

forecast was complete without an estimate of the predic-

tion error. Since this perspective was first proposed by

Thompson (1957), operational weather forecasting has

progressed to making explicit attempts to quantify the

evolution of the initial uncertainty during each forecast

(Palmer et al., 1992; Toth and Kalnay, 1997; Mu et al.,

2003). Some understanding of the predictability for tropical

ocean-atmosphere system has also been gained by studying

the growth of errors and uncertainties during forecasting

(Moore and Kleeman, 1996; Samelson and Tziperman,

2001; Mu et al., 2007a, 2007b).

Prediction uncertainties are generally caused by initial

errors and model errors. To study the roles of initial errors

and model errors in yielding prediction uncertainties,

Lorenz (1975) classified two types of predictability pro-

blems: the first is related to initial errors and assumes

a perfect model, whereas the second is associated with

model errors and assumes a perfect initial field. The former

has been largely explored, resulting in the proposal and

introduction of many theories and methods in which
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optimal methods are important for estimating the predict-

ability limit of weather and climate (Lorenz, 1965; Toth

and Kalnay, 1997; Mu et al., 2003; Riviere et al., 2008).

In this context, the singular vector (SV) approach was first

introduced in meteorology (Lorenz, 1965; Farrell, 1989).

Considering the limitations of the linear theory of SV, Mu

et al. (2003) proposed the conditional non-linear optimal

perturbation approach (CNOP) to search for the optimal

initial perturbation for a given constraint; the competing

aspect of this approach is that it sufficiently considers the

effect of non-linearity. CNOP has been applied to weather

and climate predictability studies (Duan et al., 2004; Mu

et al., 2004; Duan and Mu, 2006; Mu et al., 2007a, 2007b;

Duan et al., 2008; Terwisscha and Dijkstra, 2008; Duan

et al., 2009; Jiang and Mu, 2009; Mu et al., 2009; Wu and

Mu, 2009). Recently, Riviere et al. (2009) demonstrated an

extension of the CNOP approach and used it to estimate

the predictability of atmospheric moisture processes in

an attempt to reveal the effects of non-linear processes.

Oortwijn and Barkmeijer (1995) and Barkmeijer (1996) also

realised the limitations of the linear technique and con-

sidered non-linear effects using an iterative procedure. The

bred vector (Toth and Kalnay, 1997) is another important

non-linear optimal method that was generalised from the

Lyapunov vector approach and has been used to investi-

gate the first type of climate predictability problem (Cai

et al., 2003). All of these theories and methods have

played important roles in guiding scientists to develop

and improve numerical models and propose innovative

ideas to increase the accuracy of weather and climate

forecasts (Houtekamer and Deroma, 1995; Xue et al., 1997;

Thompson, 1998; Hamill et al., 2000; Mu and Zhang, 2006;

Mu et al., 2009).

The existing numerical models cannot yet accurately

describe atmospheric and oceanic motions. Uncertainties in

the parameterisation of subgrid-scale physical processes,

external forcing, and numerical discrete schemes, etc., may

result in model errors. Substantial progress has been

achieved in improving the quality of forecasts during the

last few decades (Simmons and Hollingsworth, 2002);

however, these factors will always limit forecast accuracy

and should be considered during forecasting (Houtekamer

et al., 1996; Buizza et al., 1999; Mylne et al., 2002). Studies

of model errors are related to the second type of predict-

ability problem (Lorenz, 1975). It is important to estimate

the predictability limit caused by model errors. Mu et al.

(2010) extended the CNOP approach to investigate the

optimal mode of model parameter uncertainties and

estimated the predictability limit introduced by model

parameter errors. Roads (1987) used constant tendency

errors to approximate model uncertainties. A procedure

has been developed to compute the time-independent

forcing of model tendencies based on observed fields

(Roads, 1987). By writing the model in the form

@U

@t
¼ FðU ðx; tÞÞ þ f ; (1.1)

where F(U(x; t)) is the total model tendency, the forcing

f is computed by inserting the observed fields for x. The

forcing term f as defined by Roads’ procedure can be

interpreted as a crude method to account for processes that

are not explicitly or correctly described by the model

equations (Roads, 1987; Barkmeijer et al., 2003). Following

this reasoning, Moore and Kleeman (1999) developed an

approach, called the (linear) stochastic optimal approach,

to study the ENSO predictability limit caused by model

errors. However, Barkmeijer et al. (2003) thought that the

stochastic optimal approach was not feasible in a realistic

high-dimensional numerical model because of the explicit

matrix computation of the linear model propagator and its

adjoint. To compensate for this limitation of the stochastic

optimal approach, Barkmeijer et al. (2003) proposed the

concept of the (linear) forcing singular vector (FSV), which

is constant in time but represents the tendency perturbation

leading to a significantly large perturbation growth in a

linearised model during a given forecast period (Barkmeijer

et al., 2003). D’Andrea and Vautard (2000) studied similar

structures as a way to reduce the systematic error in a

quasi-geostrophic (QG) model. Farrell and Ioannou (2005)

further determined the optimal set of the distributed

deterministic and stochastic forcings in the forecast and

observer systems over a chosen time interval, also based on

a linear system.

The motions of the atmosphere and ocean are generally

governed by complex non-linear systems. The FSV is

derived by the linear approximation of a non-linear model

(the linearised model), which raises concerns about the

validity of the linearised model. That is, how can the

linearised model approximation to its non-linear counter-

part be validated in advance? Some papers have attempted

to address this concern, but very few satisfying answers

have been found (Lacarra and Talagrand, 1988; Tanguay

et al., 1995). Therefore, it is desirable and often necessary

to address non-linear models rather than their linear

approximations in numerical weather and climate predic-

tion. Therefore, this article investigates the FSV approach

within the frame of a non-linear model.

This article is organised into five sections. In section 2,

a non-linear forcing singular vector (NFSV) is pro-

posed. The NFSV calculation is discussed in section 3.

In section 4, we study the NFSVs of a two-dimensional

QG model and investigate the differences between NFSVs

and FSVs and illustrate the usefulness of NFSVs in

revealing the effects of non-linearity. Finally, the results

obtained in this study are summarised, and the
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physical interpretations of the NFSV are discussed in

section 5.

2. Non-linear forcing singular vector

We write the evolution equations for the state vector U,

which may represent the surface current, thermocline

depth, and sea surface temperature, etc., as follows:

@U
@t
¼ FðU ðx; tÞÞ;

U jt¼0 ¼ U 0;

�
in X� 0; s½ � (2.1)

where U(x, t)�(U1(x, t), U2(x, t), � � �, Un(x, t)); U0 is the

initial state; (x, t) �V�[0,t], in which V is a domain in Rn,

x�(x1, x2, � � �, xn) and t is the time; and tB�� is the final

time of the state variables evolution. F is a non-linear

operator. Assuming that the dynamical system equation

[eq. (2.1)] and the initial state are known exactly, the future

state can be determined by integrating eq. (2.1) using the

appropriate initial conditions. The solution to eq. (2.1) for

the state vector U at time t is given by

U ðx; sÞ ¼MsðU 0Þ: (2.2)

Here, Mt is the propagator of eq. (2.1) and ‘propagates’ the

initial value to the prediction time t as described by eq.

(2.2).

In realistic predictions, forecast systems generally con-

tain both initial errors and model errors. In predictability

studies, initial errors are often measured by perturba-

tions superimposed on the initial fields of the numeri-

cal model. For model errors, Roads (1987), Moore and

Kleeman (1999), and Barkmeijer et al. (2003) used a

tendency perturbation to investigate the effects of model

errors on the prediction results. Furthermore, Barkmeijer

et al. (2003) considered a constant tendency perturba-

tion and developed the FSV approach to study the

predictability problems associated with model errors.

We describe forecast models with initial perturbations

and constant tendency perturbations as in eq. (2.3).

@ðUþuÞ
@t
¼ FðU þ uÞ þ f ðxÞ;

U þ ujt¼0 ¼ U 0 þ u0:

�
(2.3)

We use Mt(f) to denote the propagator of eq. (2.3). In fact,

Mt(f) with f�0 is the same as Mt in eq. (2.2), i.e. the

propagator of eq. (2.1). Then, we obtain

Msðf ÞðU 0 þ u0Þ ¼ U ðx; sÞ þ uI
f ðx; sÞ; (2.4)

where U(x,t)�Mt(0)(U0)�Mt(U0). From eqs. (2.2) and

(2.4), it is easily derived that uIf(x,t)�Mt(f)(U0�u0)�
Mt(U0), which describes the departure from the state

U(x,t) [i.e. Mt(U0)] caused by the initial perturbation u0
and constant tendency perturbation f. In the scenario

describing the first type of predictability problem, the

model is thought to be perfect. In this case, the constant

tendency perturbations (as model systematic errors) are

equal to zero (i.e. f�0), and the situation in which

Mt(0)(U0�u0)�U(x,t)�uI(x, t), where uI(x, t) represents

the evolution of initial errors u0, is considered. For the

second type of predictability problem, the initial fields

are assumed perfect (i.e. the initial errors u0�0), and

Mt(f)(U0)�U(x,t)�uf(x,t) is of interest. Then, uf(x,t)

describes the departure from the state U(x,t) caused by

the constant tendency perturbation (i.e. constant tendency

error) f, which may describe a type of model systematic

error.

Barkmeijer et al. (2003) considered the linearised version

of a non-linear model. The perturbation equation for the

non-linear model eq. (2.1) can be obtained by subtracting

eq. (2.1) from eq. (2.3). By omitting the non-linear term, a

linearised perturbation equation is obtained:

@u
@t
¼ FðU Þu þ f ðxÞ;

ujt¼0 ¼ u0;

�
(2.5)

where u0, u, and U have the same meanings as in eq.

(2.3), and F(U) is the Jacobian of the non-linear

operator F with respect to the reference state U(x, t).

With the constant tendency perturbation f(x), the FSV f *

can be obtained by solving the linear optimisation problem

of eq. (2.6).

kðf �Þ ¼ max
f

Msðf Þð0Þk k
fk k

; (2.6)

where the norm �k k is described by the inner productB � >,
and Mt is the propagator of eq. (2.5) and is equivalent to

the tangent linear operator of the non-linear propagator

Mt(f) of eq. (2.3).

It is clear from eq. (2.6) that the FSV is derived from a

linear model. Next, we generalise the FSV to a non-linear

field and propose a non-linear technique of FSV to deter-

mine the effects of non-linearity on the predictability

limit caused by the model uncertainties. As mentioned in

the introduction, Mu et al. (2010) extended the CNOP

approach to investigate the model parameter perturbations

(CNOP-P) that cause the largest prediction error. It is

inferred that if we express the constant tendency perturba-

tion as external parameters that display a certain spatial

structure, we can use the CNOP-P technique to derive the

non-linear FSV.

For a chosen measurement, a tendency perturbation f d is

defined as a non-linear FSV (NFSV) if and only if

Jdðf dÞ ¼ max
fk ka�d

Jðf Þ; (2.7)

where

Jðf Þ ¼ Msðf ÞðU 0Þ �Msð0ÞðU 0Þk kb; (2.8)

NON-LINEAR FORCING SINGULAR VECTOR 3



Mt(f) is the propagator of the non-linear model, eq. (2.3),

and fk ka� d, which is defined by the norm �k ka, is the

constraint condition of the tendency perturbation f.

The objective function J with the norm �k kb measures the

magnitude of the departure from the reference state

Mt(0)(U0) caused by the tendency perturbation f. We

note that the norms �k ka and �k kb represent different

norms. In some situations, the norm �k ka can be the same

as �k kb depending on the physical problem being investi-

gated. As mentioned in the introduction, Roads (1987)

proposed a procedure to compute a time-independent

forcing of model tendencies based on observation fields,

and this motivates a similar approach to compute the

allowable magnitudes of the constant tendency perturba-

tion before determining the constraint condition amplitude

(i.e. d). Because this article is focused on methodology, to

illustrate the NFSV approach, we experimentally choose

the amplitudes of the constraint conditions to calculate the

NFSVs.

Eq. (2.7) is a constrained maximisation problem. By

solving this optimisation problem, one can obtain the

NFSV, f d. It is easily shown from eqs. (2.7) and (2.8)

that the function J, which is associated with the NFSV,

measures the magnitude of the departure of the reference

state Mt(0)(U0) caused by the constant tendency perturba-

tion. Furthermore, the function Jd requires us to find the

constant tendency perturbation that causes the greatest

departure from the reference state Mt(0)(U0) at a future

time t. Then, the constant tendency perturbation of the

NFSV pattern introduces the greatest departure from

the reference state Mt(0)(U0) at a future time t in terms

of the chosen measurement norm. In other words, the

NFSV induces the largest perturbation growth at the given

future time t. In predictability studies, the NFSV f d, as a

constant tendency error, may represent a type of model

systematic error that causes a significantly large prediction

error at the prediction time.

We notice that the NFSV defined by eq. (2.7) is

established on the assumption that the tendency perturba-

tion does not change with time. Therefore, in predictability

studies, the tendency errors are assumed to be constant

in time. However, realistic tendency errors may be time-

dependent; thus, it is necessary to generalise the constant

NFSV to be time-dependent. Actually, using the constant

NFSV, we can derive a time-dependent NFSV. For the

time steps t0; t1; t2; :::; tk, a time-dependent NFSV

fd;tk�t0
¼ ðfd0 ;t0

; fd1 ;t1
; fd2 ;t2

; :::; fdk ;tk
Þ can be obtained by the

following optimisation problem:

Jðf di ;ti
Þ ¼ max

f ti
k k

a
�di

Mtiþ1�ti
ðf ti
ÞðU ti

Þ �Mtiþ1�ti
ð0ÞðU ti

Þ
��� ���

b
;

(2.9)

where Mtiþ1�ti
ðfti
Þ is the propagator of eq. (2.3) from time ti

to ti�1 and Uti
¼Mti�ti�1

ðfdi�1 ;ti�1
ÞðUti�1

Þ. From eq. (2.9), it is

easily observed that the time-dependent NFSVs can be

obtained by computing several constant NFSVs. Consider-

ing that the FSV is constant (see Barkmeijer et al., 2003)

and that the goal of this article is to reveal the differences

between FSV and NFSV, we only study the constant

NFSVs and explore the effects of non-linearity on the

optimal tendency perturbation.

3. Computing the non-linear forcing singular

vectors

The NFSV is related to a constrained optimisation

problem. It is very difficult to solve such optimisation

problems analytically; therefore, we have to solve it

numerically. Such optimisation problems are often solved

using optimisation algorithms, where the gradient of the

related objective function is very important. During large-

scale optimisation, the gradient of the objective function

with respect to the initial perturbations is often obtained

using the adjoint method (Le Dimet and Talagrand,

1986). For example, Mu et al. (2003) proposed the

CNOP approach, which is characterised by an optimisation

problem, and computed the CNOP along the gradient

direction of the objective function, where the gradient is

derived using an adjoint method. Although the NFSV can

also be solved using an adjoint method, computing the

NFSV requires the gradient of the objective function with

respect to the constant tendency perturbation f. In fact,

the gradient of the objective function with respect to the

tendency perturbation f can be transferred to a particular

case of the objective function with augmented initial

perturbations. Next, we describe how to compute the

NFSVs using a gradient.

Existing optimisation solvers are often used to compute

minimisation problems; however, the NFSV is related

to a constrained maximisation problem. To calculate

the NFSVs, we convert the maximisation problem to a

minimisation problem. In particular, we rewrite eq. (2.8) as

follows:

J1ðf Þ ¼ �Jðf Þ ¼ � 1

2
Msðf ÞðU 0Þ �Msð0ÞðU 0Þk k2

b

¼ � 1

2
Buf ðsÞ; uf ðsÞ >;

(3.1)

where uf(t) is a departure from the reference state

U(x,t)�Mt(0)(U0) caused by the constant tendency per-

turbation f, and B� > is the inner product. To facilitate

the description, we will use u(t) instead of uf(t). The

maximisation problem (2.7) related to the NFSVs then

becomes a minimisation problem of the function J1(f).
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The first-order variation of J1(f) is as follows:

�dJ1 ¼BuðsÞ; duðsÞ >¼B�@J1

@u0

; du0 > þB
�@J1

@f
; df :

(3.2)

Furthermore, df is governed by the following tangent linear

model:

@du
@t
¼ @FðU ðtÞþuðtÞÞ

@u
du þ dfðxÞ;

@df
@t
¼ 0;

dujt¼0 ¼ du0 ¼ 0;
dfjt¼0 ¼ df ðxÞ:

8>><
>>: (3.3)

By introducing two Lagrangian multipliers, l1 and l2, we

obtain

�dJ1 ¼ BuðsÞ; duðsÞ >

�
Z s

0

Bk1ðtÞ;
@du

@t
� @FðU þ uÞ

@u
du � df > dt

�
Z s

0

Bk2ðtÞ;
@df

@t
> dt:

(3.4)

By solving eq. (3.4) (details are found in the Appendix)

and comparing it with eq. (3.2), we obtain the following

gradient:

@J1

@f
¼ � @J

@f
¼ �k2ð0Þ: (3.5)

l1(t) and l2(t) in eqs. (3.4) and (3.5) satisfy

@k1

@t
þ @FðU ðtÞþuðtÞÞ

@u

h i�
k1 ¼ 0;

@k2

@t
þ k1 ¼ 0;

k1jt¼s ¼ uðsÞ;
k2jt¼s ¼ 0:

8>>><
>>>:

(3.6)

and eq. (3.6) is the adjoint equation of eq. (3.3).

By integrating eq. (3.6), we obtain the gradient

@J1=@f ¼ �k2ð0Þ and thereby allow the NFSV to be

computed using optimisation solvers such as Spectral

Projected Gradient 2 (SPG2; Birgin et al., 2000), Sequential

Quadratic Programming (SQP; Powell et al., 1982), and

Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS; Liu and Nocedal, 1989).

From eq. (3.6), it is clear that l1(0) is necessary to obtain

the gradient l2(0). From eq. (3.5), we know that l1(t)

satisfies the equation

@k1

@t
þ @FðU ðtÞþuðtÞÞ

@u

h i�
k1 ¼ 0;

k1jt¼s ¼ uðsÞ:

(
(3.7)

It is clear that eq. (3.7) is composed of the adjoint model of

the non-linear model, eq. (2.1), with respect to the initial

perturbations. Therefore, the adjoint model in eq. (3.6),

which is associated with the constant tendency perturba-

tion f, is based on eq. (3.7), which is associated with the

initial perturbations. Numerically, we do not alter the

existing adjoint model in eq. (3.7) but only add a line of

code showing the discretisation of the equation @k2

@t
þ k1 ¼ 0

with k2jt¼s ¼ 0 after the code of the adjoint model in eq.

(3.7) to obtain the adjoint model in eq. (3.6). Several

models have adjoint models with respect to the initial

perturbations and have been used to solve the CNOP

and linear singular vectors. For example, see the two-

dimensional QG model used in this study, the three-layer

QG model, the Zebiak-Cane model (Zebiak and Cane,

1987), and the Mesoscale Model 5 (Dudhia, 1993). There-

fore, if one hopes to study the NFSVs of these models,

one can easily modify the adjoint eq. (3.7) associated with

the initial perturbations and then obtain the adjoint model

in eq. (3.6), which is related to the NFSVs.

In this article, the gradient of the objective function

J1 with respect to the initial perturbations and model

perturbations is derived by introducing two Lagrangian

multipliers, l1 and l2. This approach clearly shows the

relationship between the adjoint model associated with

initial perturbations and the adjoint model associated with

the model perturbations, and this relationship helps us to

numerically obtain the adjoint model associated with the

constant tendency perturbations by modifying the existing

adjoint models associated with the initial perturbations. Of

course, the gradient can also be obtained by differentiating

the objective function with respect to the initial perturba-

tions and model perturbations (i.e. using the definition of

the derivative of a non-linear operator) (see Shutyaev et al.,

2008).

4. The NFSVs of a two-dimensional

quasi-geostrophic model

We consider a two-dimensional QG model

@P
@t
þ @ðU;PÞ ¼ 0;

P ¼ r2U� FUþ f0 þ
f0

H
hs; in X� 0;T½ �

Ujt¼0 ¼ U0:

8<
: (4.1)

where P is the potential vorticity, F is the stream function,

r2 ¼ @2=@x2 þ @2=@y2 is the Laplacian operator, x and y

are the zonal and meridional coordinates, t is the time,

F is the planetary Froude number, f0 is the Coriolis

parameter, H is the characteristic depth, and hs is the

topography. The horizontal Jacobian operator is shown as

@ðU;PÞ ¼ UxPy � UyPx, and V�[0, X]�[0, Y] with a

double periodical boundary condition. For any fixed

T�0 and initial condition F0, we can solve the initial value

problem (4.1) to obtain F(x, y, T). Hence, the propagator

Mt is well defined; that is, Uðx; y;TÞ ¼MsðU0Þ is the

solution to eq. (4.1) at a time T (see Mu and Zeng, 1991).
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For eq. (4.1), we use a constant tendency error f(x, y) to

disturb the model. The result is as follows:

@P
@t
þ @ðU;PÞ ¼ f ðx; yÞ;

P ¼ r2U� FUþ f0 þ
f0

H
hs; in X� 0;T½ �

Ujt¼0 ¼ U0:

8<
: (4.2)

The propagator of the perturbed QG model eq. (4.2) is

denoted by Mt(f), where f is the tendency error of the

model. Using this notation, the propagator Mt in eq. (4.1)

can be rewritten as Mt(0), which indicates that model eq.

(4.1) is perfect. Following eq. (2.8), we write the objective

function related to the NFSV as follows:

JðfdÞ ¼ max
fk ka�d

M sðf ÞðU0Þ �M sð0ÞðU0Þk kb; (4.3)

where F0 is the initial value of a basic flow. The norm

U2
�� ��

b
¼
R

X ð rUj j2 þ F Uj j2Þdxdy is used to measure the

effect of prediction errors caused by constant tendency

errors f(x, y), where r ¼ ð@=@x; @=@yÞ. The constraint

conditions of the tendency errors f(x, y) is measured by

the L2 norm, i.e. f ðx; yÞk ka¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j f 2
i;j

q
, where fi,j represents

the tendency errors at each space grid (i, j). The objective

function Jmeasures the magnitudes of the prediction errors

caused by the constant tendency errors f(x, y) at time t. The

NFSVs obtained using eq. (4.3) represent the constant

tendency errors that cause the largest prediction errors at

the prediction time and describe a type of model systematic

errors that induce severe prediction uncertainties.

To obtain the NFSV numerically, we use the discretisa-

tion versions of the operators Mt(0) and Mt(f). The

Jacobian operator was discretised through the Arakawa

finite difference scheme (cf. Arakawa, 1966). The temporal

discretisation was carried out using the Adams-Bashforth

scheme. The five-point difference scheme was employed to

discretise the Laplacian operator. The stream function F
is treated as an unknown term, and the potential vorticity P

is calculated using the second equation from eq. (4.1).

For an optimisation algorithm, we use the SPG2 method,

which can be used to calculate the least value of a function

of a large number of variables, subject to equality and

inequality constraints. A detailed description of the algo-

rithms can be found in Birgin et al. (2000).

To calculate the NFSVs using the SPG2method, wemade

at least 30 initial random guesses; if several initial guesses for

the SPG2 converge at a point in the phase space, this point

can be considered as the maximum in a neighbourhood.

Several such points are obtained. The point that maximises

the objective function in eq. (2.8) is regarded as the NFSV.

We note that the NFSV is the global maximum of the

objective function J. However, it is possible that the objective

function J attains its local maximum in the small neighbour-

hood of a point in the phase space. Such a tendency

perturbation is called a local NFSV. In this study, we

attempt to investigate the constant tendency error that

causes the largest prediction error at the prediction time;

therefore, we do not consider local NFSVs.

Based on the QG model, we study the NFSVs. Several

non-linearly stable reference states (or basic flows) were

used to investigate the NFSVs. The results demonstrate

that the NFSVs depend on the given basic flows. In this

article, we use two of the basic flows to describe the results

associated with the NFSVs: one basic flow possesses the

initial structure with a zonal flow (Ref-1) as in Fig. 1a and

the other has a structure with an almost meridional flow

(Ref-2) as in Fig. 1c. These two basic flows, as in Mu and

Zhang (2006), are chosen based on Arnold’s non-linear

stability criteria (see Mu and Shepherd, 1994). A detailed

description of these basic flows can be found in the

Appendix to Mu and Zhang (2006). As a comparison, the

FSVs of Ref-1 and Ref-2 are also computed by considering

the tangent linear approximations Mt(f) and Mt(0) of Mt(f)

and Mt(0) with respect to the given basic flows. To show

the NFSVs and demonstrate the differences between the

NFSVs and FSVs, two groups of comparisons are made.

The first group of comparisons is concerned with the

differences between the patterns of the NFSVs and FSVs,

and the second is related to the differences between the

prediction errors caused by the NFSVs and FSVs.

We take the spatial domain of V�[0,6.4]�[0,3.2], which

corresponds to the dimensional case [0,6400 km]�[0,3200

km]. The QG model parameters are chosen as follows:

F�0.102, f0�10. The grid spacing d�0.2 corresponds to a

dimensional length of 200 km, and the time step dt�0.006

corresponds to 10 min.

The NFSVs are a generalisation of the FSVs in a non-

linear field and are required for a comparison with FSVs.

The FSVs are derived from a linearised model as in eq.

(2.4). It is easily shown that if fL is an FSV, then a scaled

vector cfL (c is a constant) is also a FSV. We define a scaled

FSV f̂ L as follows:

f̂L ¼
f d

�� ��
f L

�� �� f L;

thus,

f̂L
�� �� ¼ f d

�� �� ¼ d:

That is, the scaled FSV f̂L possesses the same magnitude as

that of the NFSV f d. Note that we are comparing NFSVs

and FSVs.

4.1. A steady zonal basic flow

In this section, we choose a stable basic flow, which

is obtained by integrating eq. (4.1) using the initial

state U0 ¼ 0:2724 sinð2py=3:2Þ þ 27:993. The relevant
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topography is hs ¼ sinð2py=3:2Þ þ 5, and 1/H�0.1. This

basic flow is an equilibrium solution to eq. (4.1) and is

denoted by ‘Ref-1’ (see Fig. 1). In the numerical experi-

ments, the NFSVs are calculated for time steps 288, 720,

1008, and 1296, which correspond to the optimisation times

(i.e. forecast periods) t�2, 5, 7 and 9 d, respectively. The

tendency perturbations f are experimentally constrained in

fk ka� d with d � [0.8, 3.2]. In particular, we take d�0.8,

1.6, 2.4 and 3.2 to describe the results.

4.1.1. Comparing the NFSVs and FSVs. The computa-

tions demonstrate that for each optimisation time, there

exists one NFSV of the Ref-1 for a given constraint

magnitude. Figure 2 shows the stream function component

of the NFSVs fd and the corresponding FSVs f̂L for the

optimisation times of 2, 5, 7, and 9 d and a tendency per-

turbation magnitude (value of d) of 1.6. The results show

that the FSVs have a typical zonal wave number of 5 for all

optimisation times and always show a symmetric V-shaped

structure with concentrations around y�0.8 and y�2.4.

We note that the NFSVs have patterns similar to the

FSVs only for short optimisation times (for example, the

optimisation time t�2 d) but are significantly different

from the FSVs for long optimisation times (see Fig. 2).

More precisely, NFSVs with long optimisation times

compared to the FSVs have a very asymmetric V-shaped

structure and cover a much smaller region, although they

also tend to be concentrated around y�0.8 and y�2.4.

The differences between the NFSV and FSV patterns

depend not only on the optimisation times but also on

the perturbation magnitudes. In Fig. 3, we plot the NFSV

and FSV patterns with different magnitudes for the

optimisation time of 7 d. The results show that the NFSVs

are more similar to the FSVs for small tendency per-

turbations than for large tendency perturbations. That is,

when the tendency perturbations are sufficiently small,

the NFSVs tend to have a symmetric V-shaped structure

similar to that of the FSVs, but when the tendency

perturbations are large, the NFSVs become much more

asymmetric. In summary, when the optimisation times are

long and the tendency perturbations are large, the NFSVs

tend to have a much more asymmetric region than the

FSVs and cover a much smaller region.

Figure 4 shows the patterns of the stream function

components of the prediction errors caused by the NFSV

and FSV obtained using an optimisation time of 7 d and a

tendency perturbation magnitude of 1.6. The results show

that the stream function component of the prediction

error caused by the NFSV in the non-linear QG model is

significantly different from that caused by the FSV. It is

clear that the differences between the NFSV and FSV

patterns also induce different responses in terms of the

prediction errors at the prediction time. In particular,

Fig. 1. The stream function and the corresponding quasi-geostrophic winds of the Ref-1 and Ref-2 basic flows adopted in Experiments I

and II, respectively. (a) and (b) correspond to the Ref-1 basic flow; (c) and (d) correspond to the Ref-2 basic flow.
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we find that the stream function components of the

prediction errors caused by the NFSVs and FSVs in the

non-linear QG model exhibit smaller-scale spatial patterns

than those caused by the FSVs using the linearised model.

Furthermore, some small-scale vortices can be observed in

the stream function patterns of the prediction errors caused

by the FSVs. All of these suggest that the small scales of the

patterns result from the effects of the non-linearities.

In addition, we also investigate the differences in the

magnitudes of the prediction errors caused by the NFSVs

and FSVs and find that the magnitudes of the prediction

errors caused by the FSVs in the linearised QG model are

larger than those caused by the FSVs in the non-linear QG

model, especially for long optimisation times and/or large

tendency perturbations (see Fig. 5). Thus, the non-linearity

suppresses the linear growth of the prediction errors, i.e.

the non-linearity has a damping effect on the growth of the

prediction errors. Furthermore, we find that the prediction

errors caused by the NFSVs in the non-linear QG model

are larger than those caused by the FSVs in the non-linear

QG model, indicating that the NFSVs of the asymmetric

structure are inclined to reduce the non-linear damping

effect on the error growth.

4.1.2. Interpretation. The Ref-1 basic flow is zonal, and

there is a strong velocity shear near y�0.8 and y�2.4, as

the wind direction shifts from east to west near y�0.8 and

Fig. 2. The stream function components of the NFSVs and FSVs of the Ref-1 basic flow with a perturbation magnitude of 1.6. The left

(right) column lists the NFSVs (FSVs) with optimisation times of 2, 5, 7, and 9 d.
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from west to east near y�2.4 [see Fig. 1b]. Barotropic

instabilities usually occur in regions with a strong velocity

shear, and this condition may be favourable for the

perturbations induced by the initial perturbations to extract

energy from the basic flows (Pedlosky, 1979; Tung, 1981;

Lacarra and Talagrand, 1988). We have shown that the

FSVs and NFSVs that are expected to become large are

concentrated around y�0.8 and y�2.4; therefore, the

perturbations induced by the NFSVs and FSVs also tend

to extract energy from the basic flow in regions with strong

shear. In addition, Mak and Cai (1989) have demonstrated

that a perturbation that has a phase tilted against the basic

shear would optimally extract energy from the basic flow;

this finding lends support to the assertion that the NFSVs

and FSVs have V-shaped structures. Nevertheless, the

NFSVs have much more asymmetric structures than the

FSVs; furthermore, the NFSVs yield much larger prediction

errors than the FSVs. Next, we will explain why the NFSVs

of asymmetric structures cause larger prediction errors than

the FSVs of symmetric structures.

We follow the Riviere et al. (2008), which shows that a

shear opposite to the basic shear develops through time, to

study the zonal mean of the stream function components of

the prediction errors caused by the NFSVs and FSVs. In

response, the growth rate of the instability (given by the

total zonal-mean shear) should diminish (Gutowski, 1985;

Nakamura, 1999; Riviere et al., 2008), and the perturbation

will extract less energy from the basic flow. As a result, the

growth of the prediction errors induced by the tendency

errors will be limited. In Fig. 6, we illustrate the zonal-mean

Fig. 3. The stream function components of the Ref-1 NFSVs and FSVs with an optimisation time of 7 d. The left (right) column lists the

NFSVs (FSVs) with perturbation magnitudes of 0.8, 1.6, 2.4, and 3.2.
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of the stream function component of the prediction errors

caused by the NFSVs and FSVs with an optimisation

time of 7 d and a tendency perturbation magnitude of 1.6.

The figure shows that the zonal-mean shear induced by the

NFSVs is weaker than that induced by the FSVs at the initial

stage (e.g. at 2�5 d). It is inferred that the total

zonal shear in the NFSV case is stronger than that in the

FSV case, finally favouring the NFSVs to induce much

larger prediction errors than the FSVs at the prediction time.

We have demonstrated that the non-linearity has a

damping effect on the growth of the prediction errors caused

by the FSVs, and the tendency errors of theNFSV structures

favour reducing the non-linear damping effect on the

prediction errors and inducing larger prediction errors

than the FSVs (see the last paragraph in section 4.1.1). In

fact, the non-linearity here originates from the effect of

perturbation advection in the non-linear QG model.

Assuming that the potential vorticity P with the corre-

sponding stream function F is the basic flow of the QG

model as mentioned in section 4.1.1, and the perturbation p

with the corresponding stream function f describes its

prediction error caused by the tendency error f(x, y), then

the evolution of the prediction error (p, f) is described by

the non-linear perturbation eq. (4.4).

@p

@t
þ @U
@x

@p

@y
þ @/
@x

@P

@y
� @P

@x

@/

@y
� @p

@x

@U

@y
þ @/
@x

@p

@y
� @p

@x

@/

@y

¼ f ðx; yÞ:
(4.4)

Fig. 5. The prediction errors caused by the NFSVs and the FSVs in the QG model (denoted by NFSV-n and FSV-n) and those caused by

the FSVs in the linearised QG model (denoted by FSV-l). The horizontal axis represents the perturbation magnitudes, and the vertical axis

describes the prediction errors in terms of the energy. (a) uses an optimisation time of 2 d, and (b) uses the optimisation time of 7 d.

Fig. 4. Patterns of the stream functions of the prediction errors

caused by (a) the FSV in the linearised QG model, (b) the FSV in

the non-linear QG model, and (c) the NFSV in the non-linear QG

model, where the optimisation is 7 d and the model perturbation

magnitude is 1.6 in terms of the chosen norm.
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The linearised version of eq. (4.4) is given by eq. (4.5).

@p

@t
þ @U
@x

@p

@y
þ @/
@x

@P

@y
� @P

@x

@/

@y
� @p

@x

@U

@y
¼ f ðx; yÞ: (4.5)

It is noticed that eq. (4.5), compared to eq. (4.4), lacks the

perturbation advection term @/
@x

@p

@y
� @p

@x

@/
@y
, which is the non-

linear term of the eq. (4.4). If pN and pL are the solutions of

eqs. (4.4) and (4.5), respectively, pN�pL represents the effect

of perturbation advection (or non-linear advection) on pN.

In this article, we are concerned with their corresponding

stream function components 8N and 8L. Similarly, 8N�8L

describes the effect of non-linear advection on the evolution

of the stream function 8N.

In Fig. 7b, we show the effect of the non-linear

advection, which is indicated by 8N�8L and associated

with the tendency error FSV for an optimisation time of

7 d and a tendency perturbation magnitude of 1.6. It is

shown that the vortices induced by the non-linear advec-

tion are concentrated around y�0.8 and y�2.4 and have

vorticities of nearly opposite signs to those in the stream

function components of the prediction errors caused by

the FSVs in the linearised QG model [see Fig. 7a and 7b]. It

is therefore inferred that, when the non-linear advection

term is superimposed onto the linearised QG model, the

vorticities associated with the prediction errors in the

linearised QG model will be offset and the linear growth

of the prediction errors induced by the FSV will then be

suppressed by the non-linear advection. It follows that

the non-linear advection has a damping effect on the

growth of the prediction errors. In addition, we notice

that the non-linear advection associated with the FSV

shows an asymmetric effect in meridional direction [see

Fig. 7b]. Therefore, despite the fact that the FSV is

symmetric, the related non-linear advection has the ability

Fig. 6. The zonal-means of the stream function of prediction errors (left column) and the corresponding zonal wind (right column)

caused by (a, b) the FSV in the linearised QG model, (c, d) the FSV in the non-linear QG model, and (e, f) the NFSV in the non-linear QG

model. The optimisation time is 7 d, and the model perturbation magnitude is 1.6.
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to induce an asymmetric effect in the meridional direction;

thus, the NFSVs resulting from the non-linear QG model

exhibit an asymmetric mode. When the tendency error of

the NFSV structure are forced to the non-linear QG model,

the vortices induced by the non-linear advection also tend

to have vorticities with opposite signs to those in the stream

function components of the prediction errors caused by the

NFSV in the linearised QG model and therefore suppress

the perturbation growth [see Fig. 7c and 7d]. Further-

more, the NFSV, due to the effect of its spatial structure,

induces the related non-linear advection to have smaller

amplitude than the FSV case to suppress the perturba-

tion growth. In other words, the tendency errors of the

NFSV structure favour reducing the damping effect of

non-linearity on the growth of the prediction errors and

lead to larger prediction errors than the FSV. Another non-

linear effect is that the non-linear advection tends to break

the waves shown in the stream function patterns of the

prediction errors caused by the NFSVs and FSVs and

saturate them into much smaller scales (see Fig. 4; also see

Riviere et al., 2008).

4.2. A steady meridional basic flow

In this experiment, we adopt the basic flow using

the initial state U0 ¼ 1:097 sin 2px
6:4
þ 0:2629 sin 2py

3:2
� 29:674.

The corresponding topography is hs ¼ sinð2px=6:4Þþ
sinð2py=3:2Þ þ 1, and 1/H�0.1. This basic flow, denoted

by ‘Ref-2’, is also non-linearly stable but is almost

meridional [Fig. 1c] and has two deformation fields,

which are located at approximately x�1.8, y�2.5 and

x�5, y�0.9 [Fig. 1d], respectively. Strong velocity

shears exist in these two deformation fields. In the former

field, the axis of contraction is northeast�southwest,
whereas in the latter field, the axis of contraction is

northwest�southeast. According to the explanation pro-

vided by experiment I, the related NFSVs should be

concentrated around the regions of strong shear in the

basic flow. Our numerical results demonstrate this point.

For each optimisation time, one NFSV of the Ref-2 exists

for a given constraint magnitude. Figures 8 and 9 show the

stream function components of the NFSVs fd and FSVs f̂L
of the Ref-2 basic flow with different optimisation times

and magnitudes, respectively. In these figures, it can be

observed that the NFSVs are indeed concentrated around

the deformation field regions that exhibit strong velocity

shear. Furthermore, the NFSVs have elongated local phases

along the deformation field axes of contraction; these

local phases are most favourable for the perturbations

that optimally extract energy from the basic flow (Lacarra

and Talagrand, 1988; Mak and Cai, 1989). The FSVs

show patterns similar to the NFSVs. Even for a given

Fig. 7. The stream function patterns of the prediction error caused by the tendency perturbation in the linearised QG model

(left column) and the differences between the stream function induced by the tendency perturbation in the non-linear QG model

and that in the linearised QG model (right column). The latter indicates the effect of non-linear advection on the perturbation

growth. (a) and (b) are for the FSV, and (c) and (d) are for the NFSV. Both FSV and NFSV are computed with the optimisation

time 7 d and the tendency perturbation magnitude 1.6. The figures in (a, b, c, and d) correspond to the patterns at the final time of

optimisation time.
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long optimisation time and/or large tendency perturbation

magnitude, the spatial structures of the FSVs are only

slightly different from those of the NFSVs. More precisely,

the FSVs have only a negligible extension in their patterns

compared with the NFSVs. As a result, the prediction

errors they cause are approximately equivalent in either

their magnitudes or their corresponding spatial patterns

(see Figures 10 and 11). It is inferred that the non-linear

advection trivially affects the spatial structure of the FSVs

in the case of Ref-2. Physically, the meridional-mean shear

of the stream function of the prediction errors induced by

the FSVs in the non-linear QG model is opposite to the

basic shear and has almost the same intensity as that

induced by the NFSVs (Fig. 12); therefore, the intensity of

the total meridional-mean shear in the non-linear QGmodel

is nearly the same for the NFSV case as for the FSV case;

therefore, the prediction errors caused by the FSVs in the

non-linear QGmodel are trivially smaller than those caused

by the NFSVs in the non-linear QG model. However,

the non-linear advection has a significant influence on the

amplitudes of the prediction errors caused by the FSVs

in the non-linear QG model. As we show in Fig. 10, the

non-linearity for the Ref-2 basic flow is also obviously

suppressing the perturbation growth, and the non-linearity

has a damping effect on the perturbation growth (also see

Fig. 13). Nevertheless, in terms of the energies of prediction

errors, the NFSVs slightly reduce the damping effect of the

non-linearity on the perturbation growth (see Fig. 10). In

addition, we note that the non-linear advection also tends to

break the waves shown in the stream function pattern of

the prediction errors and saturate them to small scales

(see Fig. 11).

Fig. 8. The stream function components of the Ref-2 NFSVs and FSVs with a perturbation magnitude of 1.6. The left (right) column

lists the NFSVs (FSVs) with optimisation times of 2, 5, 7, and 9 d.
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5. Summary and discussion

In this article, we extend the FSV approach to the non-linear

field and propose the concept of a NFSV. The advantage of

the NFSV approach is that it sufficiently considers the

effects of non-linearity. The NFSVs can determine the

time-dependent tendency error of a model. In this article,

because the FSV is constant in time and the goal is to

compare FSV and NFSV, we only study the constant

NFSV, which may describe a type of model systematic error

that causes significantly large prediction errors at the

prediction time. A two-dimensional QG model is adopted

to study the NFSV model errors. Two non-linearly stable

states (denoted by Ref-1 and Ref-2) of the QG model are

chosen as reference states (or basic flows) to describe the

results. Furthermore, the Ref-1 basic flow is zonal and

Fig. 9. The stream function components of the Ref-2 NFSVs and FSVs with an optimisation time of 7 d. The left (right) column lists the

NFSVs (FSVs) with model perturbation magnitudes of 0.8, 1.6, 2.4, and 3.2.
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includes regions of strong velocity shear, whereas the

Ref-2 basic flow is approximately meridional with two

deformation fields containing strong velocity shears. After

computing the NFSVs and the corresponding linear FSVs,

our results show that the NFSVs have a phase in which the

perturbation stream function tends to be contracted around

the strong velocity shear region and tilted against the basic

shear, presenting an asymmetric structure, especially for

large tendency perturbations. Due to the absence of non-

linearity, the FSVs for the Ref-1 tend to be more symmetric

and cover a larger region than the NFSVs; in contrast,

the FSVs for the Ref-2 only cover a slightly larger region

compared to the NFSVs. NFSVs and FSVs also cause

different prediction errors. For the Ref-1 basic flow, the

magnitudes of the prediction errors caused by the FSVs

in the non-linear QG model are significantly smaller than

those caused by the FSVs in the linearised QG model

for large tendency perturbations and/or long optimisa-

tion times. Non-linearities in the QG model then have a

damping effect on the linear evolution of the tendency

perturbations. Furthermore, we demonstrate that the

prediction errors caused by the NFSVs in the non-linear

QG model are obviously larger than those caused by the

FSVs; therefore, the NFSVs are more applicable than the

FSVs in numerically describing the optimal tendency

perturbations. Physically, the constant tendency errors of

the NFSV structure tend to reduce the non-linear damping

effect and have themost potential for extracting energy from

the basic flows and exhibiting optimal growth. For the Ref-2

basic flow, the non-linearity still suppresses the growth of

the perturbation. Nevertheless, the NFSVs only slightly

reduce this damping effect of the non-linearity. In this

case, the evolutions of the prediction errors caused by the

Fig. 10. The prediction errors caused by the NFSVs and the FSVs in the QG model (denoted by NFSV-n and FSV-n) and those caused

by the FSVs in the linearised QG model (denoted by FSV-l). The horizontal axis represents the perturbation magnitudes, and the vertical

axis describes the prediction errors in terms of the energy. (a) uses an optimisation time of 2 d, and (b) uses an optimisation time of 7 d.

Fig. 11. Patterns of the stream functions of the prediction errors

caused by (a) the FSV in the linearised QG model, (b) the FSV in

the non-linear QG model, and (c) the NFSV in the non-linear QG

model, where the optimisation is 7 d and the model perturbation

magnitude is 1.6 in terms of the chosen norm.
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NFSVs and FSVs tend to have nearly the same amplitudes.

It is therefore clear that the differences between the NFSVs

and FSVs depend not only on the tendency perturbation

magnitudes and/or optimisation times but also on the

properties of the basic flows. Although we demonstrate

that the Ref-2 NFSVs can be approximated by the cor-

responding FSVs, it is difficult for us to validate this

argument in advance. Therefore, for a non-linear system,

we would use the NFSVs rather than the FSVs to study

the predictability of weather and climate. In particular, the

differences between theNFSVs and FSVs for theRef-1 basic

flow show the usefulness of the NFSVs in revealing the

effects of non-linearity on the predictability. TheNFSVmay

therefore be a useful non-linear technique for exploring the

predictability problems introduced by model errors.

In this study, we regard the constant tendency perturba-

tions as constant tendency errors and compute the NFSVs,

which may describe the model systematic errors that

cause progressively large prediction errors at a prediction

time. In this case, the patterns of the NFSVs may allow

us to find the regions in which the predictions are most

sensitive to model systematic errors; therefore, the

corresponding physical processes should be better de-

scribed by the models. For example, we demonstrate in

this article that the NFSVs have a phase in which the

perturbation stream function tends to be contracted

around the region of strong velocity shear; thus, the

predictions generated by the two-dimensional QG model

may be highly sensitive to the systematic errors of the

model in the strong velocity shear region and the physical

processes associated with this region should be better

described by the models. In numerical predictions, we can

determine an optimal external forcing to offset the model

uncertainties by assimilating observations in this sensitive

region. In addition, if we take the constant tendency

perturbation as an external forcing with a particular

Fig. 12. The meridional-mean of the stream function of prediction errors (left column) and the corresponding meridional wind (right

column) caused by (a, b) the FSV in the linearised QG model, (c, d) the FSV in the non-linear QG model, and (e, f) the NFSV in the non-

linear QG model. The optimisation time is 7 d, and the model perturbation magnitude is 1.6.
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physical meaning, the NFSVs may describe the external

forcings to which the weather and climate are significantly

sensitive. Furthermore, if the NFSVs are superimposed on

an external forcing with a particular physical meaning, they

can be used to investigate the effects of the external forcing

uncertainties on the prediction results. Of course, these

theories should be realised by applying them to physical

problems of interest. It is anticipated that the NFSV

approach may play an important role in addressing the

second type of predictability problem.

Riviere et al. (2008) demonstrated that the non-linear

singular vectors (non-linear optimal initial perturbations)

of a two-layer QG model tend to have larger meridional

extensions than the singular vectors (linear optimal initial

perturbations). However, we demonstrated in this article

that the FSVs tend to have larger extensions than the

NFSVs. It is clear that differences may exist in the effects of

non-linearity on the tendency perturbations and initial

perturbations. Despite the fact that the NFSVs provide

useful information about the model systematic errors,

as demonstrated above, it is unclear why the effects of

non-linearity on the model perturbations and initial

perturbations are different. It may be challenging to

address this question, which requires further investigation.

In numerical experiments, we examine the norms such as

the L2 norm, the potential enstrophy norm and the energy

norm in measuring the magnitudes of the constant

tendency perturbations and/or the prediction errors caused

by them. However, in some cases, the algorithm adopted

here may not capture the maximum of the cost function

associated with the NFSVs and allow the resultant NFSVs

to comprise many small scales; alternatively, the resultant

NFSVs do not possess clear physical meanings. In this

article, after several attempts, we finally chose the L2 norm

to measure the tendency perturbation magnitudes and the

energy norm to measure the evolution of the prediction

error caused by constant tendency errors and reveal the

effects of non-linearity on the NFSV structures. Further-

more, we are almost able to provide a physical explanation

for the structure of the NFSVs and why the NFSVs cause a

Fig. 13. The patterns of the stream function of the prediction error caused by the optimal forcing in the linearised QG model (left

column) and the differences between the perturbation stream function induced by the optimal forcing in the non-linear QG model and in

the linearised QG model (right column). The latter indicates the non-linear effects of perturbation advection on the perturbation growth.

(a) and (b) are for the FSV, and (c) and (d) are for the NFSV. Both the FSV and NFSV are computed with an optimisation time of 7 d and

a model perturbation magnitude of 1.6.
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larger perturbation growth than the FSVs. Therefore, the

norm adopted in this study may be physically relevant.

To study the effects of the model parameter errors on

predictability, Mu et al. (2010) proposed the CNOP-P

approach to solve the optimal model parameter perturba-

tion. Although the NFSV used to describe the model

systematic errors can be derived using the CNOP-P

approach, the constant tendency perturbation requires a

different reasoning than that applied to a specific model

parameter perturbation. In fact, the perturbation super-

imposed on amodel parameter represents a parameter error,

whereas the constant tendency perturbation may describe

the combined systematic errors of physical processes that

are not explicitly or not entirely correctly described by the

model equations. Furthermore, the NFSVs allow us to

investigate the spatial structures of the model systematic

errors. Additionally, the NFSVs can be generalised to be

time-dependent and can then describe much realistic model

errors. Therefore, the NFSVs are much more general than

the optimal parameter perturbations associated with the

CNOP-P approach.

Predictability studies are challenging due to the non-

linearity and complexity of atmospheric and oceanic

motions. In particular, the predictability problems asso-

ciated with model errors pose great difficulties due to the

lack of effective approaches. In this article, we propose

the NFSV approach to address certain model errors. It is

expected that this approach will play an important role in

studying the predictability problems associated with model

errors and provide ideas for improving weather and climate

predictabilities.
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7. Appendix

The first-order variational of J1(f)

� dJ1ðf Þ ¼BuðsÞ; duðsÞ >

�
Z s

0

Bk1ðtÞ;
@du

@t
� @FðU þ uÞ

@u
du � df > dt

�
Z s

0

Bk2ðtÞ;
@df

@t
> dt:

(A1)

With integration by parts, we can obtainZ s

0

Bk1ðtÞ;
@du
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>dt ¼

Z s

0
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B
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B
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; du >dt

andZ s

0
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Z s

0

@

@t
Bk2ðtÞ; df >dt
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B
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Then, we derive dJ1 as follows:

� dJ1 ¼
Z s

0

B
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(A2)

where �½ ��denotes an adjoint operator. Then, we obtain

� dJ1 ¼
Z s

0

B
@k1

@t
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@u

� ��
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B
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@t
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