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ABSTRACT

Uncertainties in physical parameters of coupled models are an important source of model bias and adversely

impact initialisation for climate prediction. Data assimilation using error covariances derived from model

dynamics to extract observational information provides a promising approach to optimise parameter values so

as to reduce such bias. However, effective parameter estimation in a coupled model is usually difficult because

the error covariance between a parameter and the model state tends to be noisy due to multiple sources of

model uncertainties. Using a simple coupled model consisting of the 3-variable Lorenz model and a slowly

varying slab ‘ocean’, this study first investigated how to enhance the signal-to-noise ratio in covariances

between model states and parameters, and then designed a data assimilation scheme for enhancive parameter

correction (DAEPC). In DAEPC, parameter estimation is facilitated after state estimation reaches a ‘quasi-

equilibrium’ where the uncertainty of coupled model states is sufficiently constrained by observations so that

the covariance between a parameter and the model state is signal dominant. The observation-updated

parameters are applied to improving the next cycle of state estimation and the refined covariance of parameter

and model state further improves parameter correction. Performing dynamically adaptive state and parameter

estimations with speedy convergence, DAEPC provides a systematic way to estimate the whole array of

coupled model parameters using observations, and produces more accurate state estimates. Forecast

experiments show that the DAEPC initialisation with observation-estimated parameters greatly improves

the model predictability � while valid ‘atmospheric’ forecasts are extended two times longer, the ‘oceanic’

predictability is almost tripled. The simple model results here provide some insights for improving climate

estimation and prediction with a coupled general circulation model.
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1. Introduction

A coupled climate model is biased due to two sources of

errors. The first source is the imperfect model structure such

as equations, numerical schemes and physical parameterisa-

tion schemes. The second source is the errors in the values of

parameters employed in the model. Here, we are concerned

with the second source of model bias. We shall investigate

how to use observations to optimise model parameters and

thereby constrain the associated model bias.

Data assimilation incorporates observations into a

climate model through background error covariances

derived from model dynamics and produces a continuous

time series of climate states (e.g. Ghil et al., 1981; Daley,

1991; Kalnay, 2003). The reconstructed time series with a 3-

dimensional structure in space is an important data source

for advancing the understanding of climate change and

variability. The observation-estimated states including all

climate components such as the atmosphere, land, ocean

and sea-ice also serve as initial conditions for coupled

model predictions. Usually, traditional data assimilation

only assimilates observations into model states to estimate

the atmospheric and oceanic states, or called state estima-

tion only (SEO). Due to the existence of model bias, SEO
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maintains a systematic error in the estimated states (Dee

and Silva, 1998; Dee, 2005) and the SEO-initialised model

predictions tend to drift away. The methodology of

parameter estimation exists based on data assimilation

theory (e.g. Jazwinski, 1970), and many efforts have been

made to include model parameters into data assimilation

control variables for estimating model parameters using

observations (e.g. Banks, 1992a, 1992b; Zhu and Navon,

1999; Anderson, 2001; Annan and Hargreaves, 2004;

Annan et al., 2005; Aksoy et al., 2006a, 2006b; Evensen,

2007; Hansen and Penland, 2007; Kondrashov et al., 2008;

Tong and Xue, 2008a, 2008b). However, when the meth-

odology is applied to a coupled climate model in which

the interaction of multiple time scales plays important

roles in development and propagation of climate signals,

some fundamental issues such as how to estimate a

signal-dominant state-parameter covariance and how the

observations in different system components to influence

the result of parameter estimation still remain unclear.

Although theoretically promising, the idea of parameter

optimisation with observations has not been successfully

applied to a coupled general circulation model (CGCM) for

improving climate estimation and prediction.

For example, given that model parameters are non-

observable and do not have any dynamically supported

internal variability, the covariance between a parameter

and the model state serves as a critical quantity to project

observational information of model states to the parameter

being estimated. Climate signals in a coupled system are

associated with the interaction of different system compo-

nents that have different time scales. Thus, how to obtain a

signal-dominant covariance between parameters and

coupled model states is the key for the successfulness of

coupled model parameter estimation. As the first step to

study coupled parameter estimation issues, here we use a

simple coupled model consisting of the 3-variable Lorenz

model (Lorenz, 1963) and a slowly varying slab ‘ocean’ that

simulates the interaction of atmosphere and ocean with

various parameters. We first investigate the impact of

estimated covariances on parameter estimation and how to

derive a signal-dominant parameter-state covariance in a

coupled data assimilation system. Then, we design a data

assimilation scheme for enhancive parameter correction

(DAEPC). Data assimilation scheme for enhancive para-

meter correction is a modification of standard data

assimilation with adaptive parameter estimation (e.g.

Kulhavy, 1993; Borkar and Mundra, 1999; Tao, 2003) for

enhancive parameter correction of a coupled system.

Activated only after state estimation reaches a ‘quasi-

equilibrium’ where the uncertainty of coupled model states

has been sufficiently constrained by observations and it,

therefore, becomes more controlled by parameter errors,

the DAEPC parameter correction can effectively make use

of updated system signals to produce updated parameter

corrections online (Tao, 2003, Chapter 3). The observation-

updated parameters reduce the error of model states in the

next cycle of assimilation, and the improved estimate of

model states enhances the signal-to-noise ratio in covar-

iances between parameters and model states and thus

further refines parameter correction. We will show that

this effectively adaptive approach provides a systematic

way to estimate the whole array of coupled model

parameters and produces more accurate estimates of

climate states. Furthermore, by conducting a series of

forecast experiments, we also show that DAEPC initialisa-

tion with observation-estimated parameters applied to the

prediction model greatly improves the model predictability.

The general methodology is presented in Section 2,

including the construction of the conceptual coupled model

and the description of ‘twin’ experiments that will be used

throughout this study. Section 3 analyses the time scale by

which a model ensemble is developed to establish reliable

state-parameter covariances and the impact of the accuracy

of state estimates on the quality of parameter estimation.

Data assimilation scheme for enhancive parameter correc-

tion is designed in Section 4 in which Section 4.1 outlines the

idea, Sections 4.2 and 4.3 describe the detailed implementa-

tion and Section 4.4 gives various proof-of-concept case

studies. Section 5 examines the influence of biased ‘dyna-

mical core’ and ‘physical scheme’ onDAEPC. The impact of

DAEPC on ‘weather’ forecast and ‘climate’ prediction is

examined in Section 6, including the relative importance of

the accuracy of initial conditions and parameters for

improving ‘weather’ forecast and ‘climate’ prediction.

Finally, the summary and conclusions are given in Section 7.

2. Methodology in general

2.1. Ensemble filtering parameter estimation

A coupled model is biased and the model climate tends to

drift away from the real world (Delworth et al., 2005;

Collins et al., 2006). Model bias may be described in two

types as:

Model biasð Þ ¼ Dynamical coreþ physical scheme biasesð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
model built�in 0structural0 bias

þ Given limitations of model structure; parameter�derived biasð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
adjustable by observations?

The dynamical core and physical scheme biases refer to the

misfittings arising from an imperfect dynamical framework

(e.g. an insufficient resolution) and the incomplete under-

standing for physical processes in the climate system. This

type of biases is from the model structure and ‘built-in’ in

the model. This study addresses the second type of biases

2 S. ZHANG ET AL.



that are parameter-derived given limitations of model

structure as well as how to mitigate this type of biases

using observations. In climate modelling, many physics

(e.g. subgrid cumulus in the atmosphere and vertical mixing

in the ocean) can only be approximated by parameterisa-

tion in which one or more parameters play important roles.

However, the values of these model parameters are usually

set heuristically by a trial-and-error tuning procedure that

only provides a guess, but not optimal estimate for the

whole array of parameters.

Introducing a vector b to represent a collection of model

parameters, the stochastic differential equation that

describes the evolution of model climate as a stoch-

astic dynamical process (Jazwinski, 1970) is

@xt=@t ¼ fðxt; b; tÞ þGðxt; b; tÞwt, where f(xt, b, t) is a vector
function expressing the contributions of all dynamical and

physical processes with the parameters b to the budget of

local fluid on momentum and heat, etc. The term G(xt, b, t)

represents the contributions of uncertainties resulted from

erroneous initial conditions and model

parameters. Based on Bayes’ rule, the corresponding

analysis equation including both state variables and model

parameters is

p xt; btð Þ Ytj½ 	 ¼ p yt xt; bt�1ð Þj½ 	p xt; bt�1ð Þ Yt�1j½ 	=p yt Yt�1jð Þ:
(1)

Here bt�1 represents the estimated parameter vector given all

previous observations (Yt�1), while bt represents the adjusted

parameter vector as a new observation (yt) is assimilated.

Equation (1) expresses how the probability distributions of

model states and parameters are updated by observations.

Each previous study on parameter estimation in the referred

literature represents a particular application of eq. (1).

The ensemble adjustment Kalman filter (EAKF,

Anderson, 2001) is chosen for parameter estimation study

here. The EAKF is a sequential implementation (e.g.

Evensen, 1994; Houtekamer and Mitchell, 2001) of Kalman

filter (Kalman, 1960; Kalman and Bucy, 1961) under an

‘adjustment’ idea. While the sequential implementation

provides much computational convenience for data assim-

ilation, the EAKF maintains the non-linearity of back-

ground flows as much as possible (Anderson, 2001, 2003;

Zhang and Anderson, 2003). Based on the two-step EAKF

(Anderson, 2003; Zhang and Anderson, 2003; Zhang et al.,

2007), here we describe an implementation of ensemble

filtering parameter estimation. Given that parameters are

usually non-observable, the first step that computes the

ensemble observational increment is identical to state

estimation [see Fig. 2 and eqs. (2�5) in Zhang et al., 2007].

This is a process when a non-observable state variable is

adjusted in a multivariate adjustment scheme (salinity is

adjusted by the observed temperature in ocean data assim-

ilation, for instance). The second step that projects the

observational increment onto the relevant parameters is a

key to understand the special perspective of parameter

estimation. The knowledge of a modeller about the physical

process being parameterised provides the range of the

possible values of a parameter. A default value used in a

model represents the expectation of these possible values.

The errors associated with the default parameter values are

transferred into the model states through the model integra-

tion. Due to the model non-linearity, the errors of model

states caused by the uncertainties of initial conditions and

model parameters grow rapidly. Then, a parameter can be

estimated by applying the observational increments to the

error covariance between the prior parameter ensemble and

the state ensemble through a local least square fitting

(Anderson, 2001, 2003). Similar to the multivariate analysis

in state estimation for a non-observable variable, this process

can be formulated as

Dbu
l;i ¼

c Dbp
l ;Dya

k

� �
ra2

k

Dyo
k;i: (2)

Here Dyok,i is the observational increment at the kth

observational location for the ith ensemble member,

c(Dbpl ,Dyak) is the error covariance between the prior

ensemble of the lth parameter and the model-estimated

ensemble at location k and sa
k is the standard deviation of

the model ensemble at location k. The numerical computa-

tion can be carried out in two steps:

Step 1: Before assimilation starts, draw M Gaussian

random numbers for each (say, the lth) parameter to be

estimated, with the mean (default value) and the guessed

standard deviation (denoted as sl,0) from the knowledge of

model sensitivities, where M is the ensemble size. The M

random values are the new default values of the parameter

in the model ensemble that is already set for state

estimation, and serve as the prior ensemble of the

parameter for the first step parameter estimation.

Step 2: Compute the observational increment and the

covariance between a model state ensemble at the observa-

tional location and the prior ensemble of the parameter

when an observation is available. Sequentially apply each

observational increment with the covariance to eq. (2) to

update the parameter ensemble until all (independent)

observations are applied to all estimated parameters, and

produce an updated prior ensemble of parameter for the

next cycle of parameter correction. An inflation may be

applied to the parameter ensemble (will be discussed in

Section 4 for more details). Loop this step as the model

ensemble is forwarded.

ENHANCIVE PARAMETER CORRECTION WITH COUPLED DATA ASSIMILATION 3



2.2. A conceptual coupled ‘climate’ model

To clearly demonstrate the role of a signal-dominant

covariance between the model state and a parameter in

parameter estimation and avoid the complexity of a

CGCM, we will use a conceptual coupled model in this

study. The conceptual model must share certain funda-

mental properties of a CGCM but is so simple that any

concern in parameter estimation can be examined quanti-

tatively. To model the concept of tropics-midlatitude

interactions in an atmospheric GCM, Molteni et al.

(1993) coupled two linear oscillatory variables with the

Lorenz’s 3-variable chaotic model (Lorenz, 1963). Inspired

from this idea, we start the model construction by adding

an equation representing a slowly varying slab-ocean to the

Lorenz model to simulate the concept of the interaction of

the fast ‘atmosphere’ and slow ‘ocean’. A prototype of the

conceptual coupled model consisting of a slab ocean that

only has a damping term and an external forcing term takes

the form as

_x1 ¼ �rx1 þ rx2

_x2 ¼ �x1x3 þ ð1þ c1wÞjx1 � x2

_x3 ¼ x1x2 � bx3

om _w ¼ c2x2 �Odwþ SðtÞ

(3)

where an over dot denotes time tendency; x1, x2 and x3 are

the high-frequency variables of the ‘atmosphere’ with the

original s, k and b parameters and the standard values

9.95, 28, 8/3 which sustain the chaotic nature of the

‘atmosphere’. With these standard parameter values, the

atmospheric time scale is defined as 1 non-dimensional time

unit (TU) [�O(1)] by which the ‘atmosphere’ approxi-

mately goes through a lobe of the attractor. The new w is

introduced as a slowly varying ‘ocean’. Except for a forcing

term from the ‘atmosphere’ (c2x2), the simplest slab ocean

only consists of a linear damping term � Odw and an

imposed external forcing S(t). An important feature of w is

that it must have a much slower time-scale than the

‘atmosphere’, which can be obtained by requiring a much

larger heat capacity than the damping rate, i.e. Om^Od.

For example, the values of (10, 1) for (Om, Od) define the

oceanic time scale as �O(10). Also, we simply set

S(t)�Sm�Ss cos(2pt/Spd) to simulate the constant and

seasonal forcings for the ‘climate’ system so that the ‘ocean’

is recharged when it is damped. The Spd is chosen as 10 so

that the period of the forcing is comparable with the

oceanic time scale. The parameters Sm and Ss define the

magnitudes of the annual mean and seasonal cycle of the

forcings that are not sensitive to the model construction

and set as 10 and 1, respectively.

The coupling between the fast ‘atmosphere’ and slow

‘ocean’ is realised by choosing the values of the coupling

coefficients c1 and c2, with c1 representing the oceanic

forcing on the ‘atmosphere’ and c2 representing the atmo-

spheric forcing on the ‘ocean’. Note that the ‘coupling’ here

is not derived from physical principles and only represents

a mathematical way to provide interaction between the fast

and slow variables. The multiple atmospheric equations

may allow the ‘ocean’ to force the ‘atmosphere’ in many

different ways. First, similar to Molteni et al. (1993), we

tried the slow variable forcing as an additive term at the

right-hand side of multiple fast variable equations. How-

ever, the too simple additive forcing only changes the mean

values of the Lorenz ‘atmosphere’, not modulating the

amplitude of the chaotic variations. Then, we allow the

‘ocean’ to force the ‘atmosphere’ in a multiplicative way so

that the coupling forcing produces some modulation for

the atmospheric attractor. Eventually, for simplicity, we

only keep one oceanic forcing as a multiplicative forcing in

the x2 equation. Sensitivity experiments show that the

coupled system is robust with respect to c2 but becomes

unstable when c1 is much larger than 0.1. Thus, we choose

0.1 and 1 as the values of c1 and c2, respectively.

Using a leap-frog time stepping (Dt�0.01) and a

Robert�Asselin time filter (Robert, 1969; Asselin, 1972)

with a 0.25 filtering coefficient by which the computational

modes are damped out, the model is set with a set of

standard parameter values (s, k, b, c1, c2, Om, Od, Sm, Ss,

Spd)�(9.95, 28, 8/3, 0.1, 1, 1, 10, 10, 1, 10). Starting from

the initial conditions (x1, x2, x3, w)�(0, 1, 0, 0), the model

is integrated for 104 TUs (106 steps) for spin-up. Some

interesting characteristics of the simple model are sum-

marised in Fig. 1, namely,

(1) low-frequency variability dominates the ‘oceanic’

component while the high-frequency spectrum is

the feature of the ‘atmosphere’; the ‘atmosphere’ has

a similar ‘strange’ attractor behaviour as in

the original Lorenz model and the ‘ocean’ has

‘seasonal’-cycle variations;

(2) the fast ‘atmosphere’ and the slow ‘ocean’

are coupled together effectively; the coupling me-

chanism can modulate the variability of both the

‘atmosphere’ and the ‘ocean’;

(3) due to the coupling mechanism, a perturbation

on any parameter of the ‘atmosphere’ or ‘ocean’

changes the model solution for both the

‘atmosphere’ and ‘ocean’.

Next, we will use the simple model and set a ‘twin’

experiment framework to thoroughly investigate the impact

of the estimated state-parameter covariance on parameter

estimation. It is worth mentioning that among the 10 model

parameters, Om, Sm, Ss, Spd define the basic features of the

model ‘ocean’ and c1 is rather sensitive for the system to
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sustain the coupling of the chaotic atmosphere and the low-

frequency ‘ocean’, we will treat Om, Sm, Ss, Spd as a part of

the ‘dynamical core’ and c1 as a basic ‘physical scheme’ in

this simple system, which will not be adjusted by observa-

tions in the next parameter estimation experiments.

2.3. ‘Twin’ experiment setup

With the standard parameter values, after spin-up, the

model is integrated for another 104 TUs to establish the

‘true’ model states for observations, and then the standard

value of a parameter is the ‘true’ solution of the parameter

when it is estimated using the observations. The ‘observa-

tions’ are produced through sampling the ‘true’ states by

taking the values of the certain variable(s) at an observa-

tional frequency and superimposed with a white noise that

simulates observational errors. The standard deviations for

observational errors are 2 for x1,2,3 and 0.5 for w. We will

examine the impact of observational frequencies and

observational types on parameter estimation by applying

the ‘atmosphere’ or/and ‘ocean’ ‘observations’ at an

interval of 0.1, 0.2, 0.5 or 1 TU into the assimilation

procedure. The asterisk in Fig. 2 shows an example of

observations available every 0.1 TU.

To produce the independent initial conditions for

assimilations that attempt to recover the ‘truth’ by the

constraint of ‘observations’, another model spinup of 104

TUs starting from (x1, x2, x3, w)�(0, 1, 0, 0) is run with

k�29 and standard values for other nine parameters. The

ensemble initial conditions are formed by superimposing a

white noise on the model state at the end of this spinup.

Also, we simply set the initial standard deviation of a

parameter being estimated as 5% of its initial guess in this

simple model case, although the initial spread could

depend on the model’s sensitivity with respect to the

parameter in a CGCM. In addition, a free assimilation

model control (with no observational constraint) starting

from this state serves as a reference for the evaluation of

any assimilation with an observational constraint, called

the model control, or CTL. The solid lines in Fig. 2

present the model control with k�29 but remaining other

nine parameters being the standard values, showing

entirely different variability from the ‘truth’ for both

the ‘atmosphere’ and ‘ocean’. This assimilation setting

more or less simulates the situation of using a coupled

climate model to assimilate the instrumental data for

climate assessment and prediction initialisation, in which

the assimilation model is biased and an assimilation

usually starts from a state of model simulation. Note

Time units (1 unit = 100 steps)

0

2

4

6

8

10

12

14

w

Uncoupled model
Coupled model
Ensemble sdv with a Gaussian c2,η(1,.05)

0 50 100 150 200 250 300 350 400

0 10 20 30 40
−40

−20

0

20

40

x 2

(a)

(b)

Fig. 1. Time series of (a) the fast ‘atmospheric’ variable (x2) and (b) the slow ‘oceanic’ variable (w) in the spinup run of the simple

coupled model with the standard values of parameters described in Section 2.2, starting from (x1, x2, x3, w)�(0,1,0,0). The dotted-black

lines are results of a de-coupled version of the model by setting c1�c2�0 in eq. (3), by which the ‘atmospheric’ model is degraded to the

original Lorenz model (Lorenz, 1963). The dotted-dashed lines are the ensemble standard deviation of the corresponding variable in the

coupled model by adding a Gaussian noise on c2 with a standard deviation of 0.05.
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that, as described in Section 2.1, in the case that the real

instrumental data are assimilated into a CGCM, multiple

bias sources exist, while the observing/assimilation system

simulation study here limits the bias source only including

the errors of some parameter values.

Same as in Zhang and Anderson (2003), based on the

trade-off between cost and assimilation quality, after a

series of sensitivity tests on ensemble sizes of 10, 20, 50 and

100, no significant difference on assimilation quality is

found when the ensemble size is greater than 20. Thus, a

practical ensemble size of 20 that is applicable for a

CGCM, is chosen in this study. In addition, the leap-frog

time stepping requires a multiple time level adjustment

scheme (Zhang et al., 2004) applied to all the data

assimilation experiments.

3. Critical importance of a signal-enhanced

background model ensemble in parameter

estimation

Unlike model states, model parameters are non-observable

and do not have any dynamically supported internal

variability. The covariance between a parameter and the

model state serves as a critical quantity to project observa-

tional information of model states to the parameter being

estimated. The state-parameter covariance is evaluated

through the model state ensemble and the prior ensemble

of a parameter. The prior ensemble of a parameter consists

of a set of numbers produced by the filtering process at the

previous analysis that are unchanged during the model

integration. Therefore, the accuracy of the ensemble-

evaluated covariance is directly determined by the signal-

to-noise ratio of the estimated background model ensemble.

In this section, we use the simplest experiment to

demonstrate how a signal-enhanced background model

ensemble impacts on parameter estimation. The experi-

ment only uses the observations of x1 (available at every

0.1 TU) to estimate the parameter k that is erroneously

guessed as 29, whereas other 9 parameters are remained as

truth values. As described in Section 2.3, starting from a

set of Gaussian perturbed k values centred at 29 with a

standard deviation of 1.45 (5% of 29), the traditional

parameter estimation (TPE) described in Section 2.1 is

conducted. We denote the experiment as TPE
Oðx1Þ
PðjÞ in

which the superscript O(x1) represents only the x1
observations being used and the subscript P(k) represents
only the parameter k being estimated. The results show

that the observation-estimated ensemble of k(green lines in

Fig. 3a) does not converge to the truth (black-dotted line)

even in this simple case. Next, with the diagnostics on this

simple TPE case, we will analyse the reasons of parameter

estimation failure.

0 5 10 15 20

Time units (1 unit = 100 steps)

6

7

8

9

10

11

w

−50

0

50

100

x 1
,x

2,
x 3

(a)

(b)

Fig. 2. Time series of (a) x1,2,3 (solid, dotted and dotted-dashed) and (b) w observations (*,�and x) at an interval of 0.1 time unit (TU)

and the control model integration (lines) with k�29, after the spinup of 104 TUs described in Section 2.2. The observations are taken from

the ‘truth’ integration with the standard values of parameters listed in Section 2.2 where k�28, superimposed by a white noise with a

standard deviation of 2 (0.5) for x1,2,3 (w).
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3.1. The time scale to develop a reliable model

ensemble starting from perturbed parameters

Using ensemble member 1 as an example, we retrieve the

process that TPE
Oðx1Þ
PðjÞ fails to correct the parameter k. In

this case, the filtering computation [eq. (2)] is a product of

three terms as qj;x1
cj;x1

Dxo
1. Here, rk,x1 and cj;x1

are the

correlation coefficient and the ratio of standard deviations

of uncertainties of x1 and k in the dynamical system,

respectively. Dx01 is the observational increment [see eqs.

(2�5) of Zhang et al., 2007] resulted from the observations

of x1 that basically reflects the difference between an

observation and the model guess of the observation (scaled

by the observational and model ensemble error variances)

(see the red line, blue stars and the solid-black line in

Fig. 3b). These error statistics are evaluated by the prior

ensemble of k and the observation-estimated ensemble of

x1. Fig. 3c,d shows that starting from a perturbed k, while a
saturated ensemble spread for x1(denoted as sx1) requires

about 2.5 TUs of model ensemble integrations, a reliable

correlation between k and x1(rk,x1) requires at least 1 TU

for the model ensemble integrations (the same time scale

holds for other ‘atmospheric’ variables). The time scale for

the corresponding ‘oceanic’ variable is about 20 TUs.

In particular, we have to notice that within 0.5 TU of

model ensemble integrations, the rk,x1 is especially with
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Fig. 3. (a) Time series of the k adjustments (red) and estimated k values (green) in the first 10 ensemble members of the traditional

parameter estimation using only x1 observations to estimate k (traditional parameter estimation (TPE)
Oðx1Þ
PðjÞ , see the detailed description in

Section 3). The dotted-(dashed-)black line marks the truth (erroneously guessed initial) value of the k being estimated. For the convenience

of visualisation, the values of adjustment increments in TPE are imposed on the erroneously guessed initial value. (b) Time series of

observational increments of x1 of member 1 (red) where the observations (asterisks) and the truth (blue-dashed) as well as the model

estimate (solid-black) of x1 in member 1 are plotted as the reference. (c) Time series of the ensemble spread (standard deviation) of x1
(denoted by sx1) in TPE

Oðx1Þ
PðjÞ (red). To detect the time scale of developing a reliable ensemble spread when a model parameter is perturbed

in the model system, the sx1 and sw produced by the free model ensemble integrations starting from a k ensemble perturbed by a Gaussian

noise described in Section 2.3 are also plotted by dotted-black and dotted-blue lines. (d) Time series of the correlation coefficient between k
and x1 (denoted by r(k,x1)) (red) evaluated by the prior ensemble of k and the observation-estimated ensemble of x1 in TPE

Oðx1Þ
PðjÞ (red). The

corresponding r(k,w) is also plotted by the blue line to show the different time scale of developing a reliable correlation between the

parameter and the model state when k is perturbed. The transient values of r(k,x1) between 1 and �1 reflect the transient nature of the

estimated atmosphere ensemble between attractor lobes.
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high noise. This results in a persistent negative k increment

projected from the Dx01 during the early period of the

assimilation, producing a k adjustment amount up to �12
as an accumulation in the first five analysis steps (see red

lines in Fig. 3a). This large adjustment amount seriously

overshoots the truth value of k, and the incorrectly

estimated parameter causes the assimilation model to misfit

the observations dramatically, eventually leading to the

divergence of the parameter ensemble (green lines in

Fig. 3a) and that the model blows up after 300 TUs.

The analyses above show that starting from perturbed

parameter values, the coupled ensemble system requires a

certain time scale to develop a reliable model ensemble.

Before a reliable coupled model ensemble has been

established in state estimation, the filtering equation

[eq. (2)] cannot correctly project observational information

of state variables for parameter estimation. It is worth

mentioning that in the traditional data assimilation for

SEO, due to the use of very high autocorrelation (rx1,x1�1

in this simple system, for instance), the stability of

assimilation spinup is not so sensitive to the reliability of

developed ensemble as in parameter estimation.

3.2. Impact of the accuracy of estimated background

model ensemble on parameter estimation

This section further investigates the impact of the accuracy

of observation-estimated model ensemble on parameter

estimation, including: (1) the estimate of state-parameter

covariances and (2) the representation of estimated en-

semble mean to the observed state.

To demonstrate the role of the observation-constrained

model ensemble in the estimate of state-parameter covar-

iances, we conduct a parameter estimation test (PET)

experiment, called PET0
Oðx1Þ
PðjÞ . Like TPE

Oðx1Þ
PðjÞ , PET0

Oðx1Þ
PðjÞ

uses x1 observations to estimate the parameter k but (1) it

does not perform state estimation and only does parameter

estimation and (2) parameter estimation starts at the

2000th-step model ensemble integration where the model

ensemble has been maturely developed after the time scale

described in Section 3.1. Results show that the adjusted k
ensemble tends to approach the truth but it overshoots the

truth and eventually stays around the value of 26.5 (Fig.

4a).

To understand the results of this simple experiment, let

us analyse the adequacy of eq. (2) for parameter estimation.

If a numerical model is symbolically denoted as 1xt/

1t�f(xt,b,t), a Taylor expansion of model perturbations

as the function of parameter errors and initial state errors is

@dx

@t
¼ @fðx; b; tÞ

@b
dbþ @fðx; b; tÞ

@x
dxþ @

2fðx; b; tÞ
@x@b

dxdb

þ . . . : (4)

Equation (4) shows that any uncertainty in model para-

meters (say, 1b) will be transformed into the errors of

model states (1dx/1t) through the distortion of parame-

terised processes to the momentum and heat budget of a

local fluid unit. As leading-order terms, they are repre-

sented by a linear operator 1f(xt,b,t)/1b and the non-linear

interaction with the initial state errors at each integration

step. Given an observational increment on a certain model

state variable (i.e. a perturbation on the model state, dx), a
filtering parameter estimation attempts to retrieve the

associated parameter contributions using eq. (2) to regress

the observational increment onto model parameters by the

covariance between the model state and the parameter. The

successfulness of the parameter estimation process entirely

depends on the accuracy of the state-parameter covariance

to simulate the terms of 1f(xt,b,t)/1b and 12f(x,b,t)/1�1b.
The fitting of eq. (2) assumes that: (1) the model state

perturbation is mainly contributed by the parameter error,

i.e. the second term on the right-hand side of eq. (4) must

be small and (2) the first term of the right-hand side of eq.

(4) plays a leading order role in the relationship of Dx and

Db. In an ensemble-based filtering algorithm, the state-

parameter covariance is evaluated through the model state

ensemble and the prior ensemble of the parameter being

estimated. Again, because model parameters do not have

any dynamically supported internal variability and the

prior ensemble of a parameter unchanges with the model

integration, the accuracy of the ensemble-evaluated covar-

iance is only determined by the accuracy of the model

ensemble to simulate the intrinsic uncertainty of the states

for which the observations try to sample.

To analyse the adequacy of a model ensemble to

represent the intrinsic uncertainty of the observation-

sampled states, based on a defined ‘truth’ a priori, we

define an ad hoc quantity called rs2n to measure the signal-

to-noise ratio of a model ensemble. rs2n consists of three

factors as described below:

(1) rs2n,1: use sm/st to measure the representation of a

model ensemble for the variation of the truth states

in a local time window, where sm and st, respec-

tively, measure the variability represented by the

model ensemble and the truth states with st being

the standard deviation of the truth variations in a

time window. sm is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2

e þ r2
m0

p
to take

into account both the time mean of the ensemble

spread (�re) and fluctuations of the ensemble mean

(sm0). Finally, define rs2n;1 ¼
rm

rt
expð1� rm

rt
Þ so that

the best (worst) representation is characterised by

the value of 1 (0).

(2) rs2n,2: defined as exp(�em0) where em0 is the root

mean square error of the ensemble mean in the time

window, with a value of 1 (0) representing a perfect
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(worst) estimate from the ensemble mean for the

truth state.

(3) rs2n,3: defined as the correlation coefficient between

the ensemble mean and the truth state to measure

the accuracy of the phase of the ensemble mean

variation.

We use a 5-TU time window to evaluate the rs2n,1,2,3 of

PET0
Oðx1Þ
PðjÞ and an example of the ensemble of x1 is shown

in Fig. 4b and the computed time series of rs2n,1,2,3 for x1
are shown in Fig. 4c. Note, to avoid any 0-value of rs2n,1,2,3

destroying the representation of rs2n for other factors, we

set 0.1 as the minimum value for each factor. While the

spread of the free model ensemble has a good representa-

tion for the magnitude of fluctuations of the truth (solid-

green in Fig. 4c), the accuracy of the ensemble mean to

represent the mean state and variation phase of the truth is

close to 0 (dotted and dotted-dashed green lines), resulting

in a very low rs2n (solid-green in Fig. 4d) of the model state

ensemble in PET0
Oðx1Þ
PðjÞ . This says that the x1-k covariance

evaluated by the unconstrained model state ensemble is not

adequate to represent @fðxt; j; tÞ=@j and 12f(x,k,t)/1�1k,
so the resulted parameter adjustment is unreliable.

As a proof-of-concept study case, we examine the

rs2n,1,2,3 and rs2n values for the state estimation with the

x1 observations and find that as the model ensemble

is constrained by the observations (dotted-red lines in

Fig. 4b), the signal-to-noise ratio of the x1-k covariance is

enhanced dramatically (see red lines in Fig. 4c,d). Then, we
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Fig. 4. (a) Time series of the estimated k values in the first 10 ensemble members of PET0
Oðx1Þ
PðjÞ (green) and PET1

Oðx1Þ
PðjÞ (red). The

PET0
Oðx1Þ
PðjÞ [PET1

Oðx1Þ
PðjÞ ] experiment is the same as traditional parameter estimation (TPE)

Oðx1Þ
PðjÞ except that parameter estimation starts at the

2000th-step model ensemble integration without (with) the state estimation using the x1 observations (see the detailed description in Section

3.2). (b) Time series of the values of x1 of the first 10 ensemble members in PET0
Oðx1Þ
PðjÞ (dotted-green) and PET1

Oðx1Þ
PðjÞ (dotted-red), and their

ensemble means [solid-blue for PET0
Oðx1Þ
PðjÞ , solid-red for PET1

Oðx1Þ
PðjÞ ] as well as the truth (dotted-black). (c) Time series of three factors of the

signal-to-noise ratio (rs2n,1,2,3) (see the detailed description in Section 3.2) of the estimated ensemble of x1 in PET0
Oðx1Þ
PðjÞ (green) and

PET1
Oðx1Þ
PðjÞ (red). (d) Time series of the signal-to-noise ratio (rs2n) of the estimated ensemble of x1 (solid) and w (dotted-dashed) in PET0

Oðx1Þ
PðjÞ

(green) and PET1
Oðx1Þ
PðjÞ (red) and DAEPC

OðallÞ
PðjÞ (see the detailed description in Section 4.4).
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rerun the parameter estimation test case as in PET0
Oðx1Þ
PðjÞ

but after 20 TUs of state estimation (200 steps of data

assimilation), denoted by PET1
Oðx1Þ
PðjÞ . Unlike the diverged k

estimation in PET0
Oðx1Þ
PðjÞ , the estimated k ensemble in PET1

Oðx1Þ
PðjÞ gradually converges to the truth after experiencing

about 50 steps of parameter correction (dotted-red lines in

Fig. 4a). We also compare PET1
Oðx1Þ
PðjÞ to an experiment in

which after 20 TUs of model ensemble spinup (without

observational constraint), the x1 observations are used to

conduct state estimation and parameter correction simul-

taneously [denoted as PET2
Oðx1Þ
PðjÞ ]. We found that although

the estimated k ensemble tends to approach to the truth

after experiencing a series of big adjustments, due to too

larger adjustment shocks at the beginning arising from the

pure ensemble spinup without data adoption, PET2
Oðx1Þ
PðjÞ

produces larger errors for both state estimation and

parameter correction. Furthermore, if all ‘atmospheric’

and ‘oceanic’ observations from the observing system

described in Section 2.3 are used, the signal-to-noise ratio

of state-parameter covariances evaluated from the observa-

tion-constrained model ensemble is enhanced more (com-

pare blue lines to red lines in Fig. 4d), and the resulted

parameter estimation converges more efficiently [see the

case DAEPC
OðallÞ
PðjÞ in Section 4.4].

The analyses above indicate that a sufficiently observa-

tion-constrained model state ensemble is of critical impor-

tance for enhancing the signal-to-noise ratio of parameter

estimation by providing a signal-dominant state-parameter

covariance and a well-representative ensemble mean to the

observed state. These results suggest that when a CGCM is

combined with the instrumental data for climate assessment

and prediction initialisation, choosing an assimilation initial

state closer to observations (a climatological state, for

instance) may help shorten the assimilation spinup because

a model simulation may already drift away from the

climatology due to the model bias.

Next, we will design a DAEPC by delaying the para-

meter estimation until the model ensemble has been

sufficiently constrained by observations.

4. A data assimilation scheme for enhancive

parameter correction

4.1. Scheme design

Based on the analyses of Section 3, as a particular

application of the adaptive signal processing technique

(e.g. Kulhavy, 1993; Tao, 2003) with the Bayes theory

[eq. (1)], we design a DAEPC in this section. Different from

standard ensemble filtering parameter estimation, DAEPC

facilitates parameter estimation using the covariances

between model states and parameters only after state

estimation reaches a ‘quasi-equilibrium’. The ‘quasi-equili-

brium’ of state estimation refers as to a state estimation

period in which the model ensemble with perturbed

parameters has been sufficiently constrained by observa-

tions and therefore, it becomes more controlled by para-

meter errors as discussed in Sections 3.1 and 3.2, so that a

background model ensemble is signal dominant for effec-

tive parameter estimation.

Data assimilation scheme for enhancive parameter

correction can be numerically implemented by the follow-

ing four steps:

Step 1: Same as Step 1 of TPE described in Section 2.1.

Step 2: Sequentially apply the observations in each

component into coupled model system through an ensemble

filter for state estimation until the state estimation reaches a

‘quasi-equilibrium’ (see Section 4.2). Denote the ‘quasi-

equilibrium’ time as t and the analysed model state as xa
s .

Step 3: After the state estimation is finished at time t,

compute the covariance between the initial parameter

ensemble (set in Step 1) and the model-estimated observa-

tion ensemble from xa
s ; apply the observation increment to

the covariance to update the parameter ensemble using eq.

(2). Denote the updated parameter ensemble as bu which is

the prior ensemble of the parameter for the next cycle of

parameter correction.

Step 4: Repeat Step 3 and check the spread of the updated

ensemble for each parameter. Without internal variability,

after a few steps of adjustments, the ensemble of a parameter

may rapidly lose its spread. If the prior ensemble spread is

too small, an inflation coefficient a (see Section 4.3) is

applied to enlarge the prior ensemble of a parameter aseb ¼ bþ aðb� bÞ so that the parameter ensemble still can be
adjusted by new observations, where an over bar represents

the ensemble mean and a tilde represents the inflated

ensemble. Loop Step 4 until the adaptive data assimilation

is completed with all observations available.

4.2. Detection of state estimation ‘quasi-equilibrium’

in a coupled system with multiple time scale variability

In practice, no pre-defined truth exists, so the diagnostic

quantities discussed in Section 3.2 are not accessible.

Instead, we estimate the time scale for state estimation to

reach a ‘quasi-equilibrium’ through examining changes of

the amplitude of analysis adjustments. Figure 5 shows an

example of the time series of the norm of the model state

ensemble adjustments for each coupled model variable

when the observations of x1 are assimilated into the model

ensemble. Consistent with the relatively long (short) time

scale of ‘oceanic’ (‘atmospheric’) variability, the dramatic

reduction of the adjustments of ‘oceanic’ (‘atmospheric’)
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variables is observed during the first five (5) [two (2)] TUs

of assimilation, representing direct observational con-

straints in the assimilation. However, the ‘atmosphere-

ocean’ interaction through exchanged fluxes between the

‘atmosphere’ and ‘ocean’ refines the state estimation, and

continuously reduces the adjustment amount, especially

during the transition period between attractor lobes

(showing as spikes of the adjustment norms in Fig. 5).

In general, to ensure a high signal-to-noise ratio for

ensemble-evaluated state-parameter covariances, in a

coupled system with multiple time scale variability, we may

use the time scale by which the norm of analysis increments

of the slowly varying component no longer systematically

decreases to represent the time of state estimation ‘quasi-

equilibrium’. For example, in the simple case shown inFig. 5,

wemay start to use the x1 observations to estimate themodel

parameters after 20 TUs of state estimation (marked as

‘State Estimation Quasi-Equilibrium’) where direct observa-

tional constraints have been donemostly, and the associated

dynamical adjustments no longer dramatically improve the

state estimation. It is worth to mention that the time scale of

state estimation ‘quasi-equilibrium’ has some dependence on

the observing systemused in the assimilation. For example, if

a full observing system described in Section 2.3 is used, the

direct observational constraint time scales for both the

‘atmosphere’ and ‘ocean’ become shorter and the corre-

sponding time scale of state estimation ‘quasi-equilibrium’ is

shorter too. However, test experiments show that parameter

estimation is robust as long as the state estimation has gone

through the direct observational constraints, although the

convergence is a little faster if parameter estimation is

activated a little later. For simplicity, for all DAEPC

experiments in this study, we use 20 TUs as the time scale

of state estimation ‘quasi-equilibrium’.

The results above suggest that it is necessary to leave at

least 5 yr for coupled assimilation spinup (Zhang et al.,

2007, 2009) before the global climate observing system is

used to estimate coupled model parameters with a CGCM.

4.3. Inflation of prior parameter ensemble based on

model sensitivities to parameters

The model sensitivity study with respect to parameters is an

important step to understand the role of each parameter in

the model and implement parameter estimation (e.g. Tong

and Xue, 2008a, 2008b). In particular, the sensitivity of a

model on a parameter is a key to determine the inflation of

the prior ensemble of the parameter which is an indis-

pensable part of ensemble-based parameter estimation (e.g.

Annan and Hargreaves, 2004; Annan et al., 2005; Aksoy

et al., 2006a, 2009b; Evensen, 2007). Here, the model

sensitivity to each parameter is assessed by examining the
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Fig. 5. Time series of the root mean square (Rms) of ensemble analysis increments of (a) x1,2,3 and (b) w, normalised by the ensemble

spread and climatological standard deviation (see the context of Section 4.4) produced by the ensemble filtering state estimation using x1
observations at every 0.1 time unit (TU). The thick dashed line marks an estimated time scale for state estimation to reach a ‘quasi-

equilibrium’.
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temporal evolution of the ensemble spread of model states

when the examined parameter is perturbed with a Gaussian

white noise on its default value at the initial time. To do so,

we iteratively integrate the model ensemble for each

parameter that is perturbed by the Gaussian random noise

superimposed on its default value (described in Section

2.3). Five percent of the default value is used as the

standard deviation of the Gaussian noise. The model

ensemble for each parameter is integrated for 2000 TUs

starting from the initial conditions created by the spinup

described in Section 2.3, and the resulting ensemble spread

for the two model components is shown in Fig. 6.

Generally, due to different time scales in the ‘atmosphere’

and ‘ocean’, the model shows a fast (slow) response on

‘atmospheric’ (‘ocean’) parameters, but the ensemble

spread resulting from different parameter perturbations is

indistinguishable after 5 (20) TUs of integrations for the

‘atmosphere’ (‘ocean’).

At each step of parameter estimation in DAEPC, the

prior ensemble of a parameter is inflated by the following

sensitivity-based scheme. Usually, the inflation amplitude

of a parameter ensemble is inversely proportional to the

model’s sensitivity with respect to the parameter. We first

set the inflation coefficient al in ebl ¼ bl þ alðbl � blÞ as
al�[1�(a0sl,0)/sl] where bl represents the prior ensemble

of the lth parameter, bl is its mean and ebl is the inflated

version. Here, sl represents an atmospheric (oceanic)

sensitivity if only atmospheric (oceanic) parameters are

estimated. If all atmospheric and oceanic parameters are

estimated simultaneously, sl is the average of the atmo-

spheric and oceanic sensitivities. We, then, conduct a few

trial-and-error tests and find a0�0.4 as the observational

frequency is 0.1 TU (it has some dependence on the

observational frequency). This means that the prior en-

semble of a parameter is enlarged to 0.4/sl times of its

initially guessed standard deviation sl,0 if the prior

ensemble spread is smaller than this amount. This inflation

scheme based on model sensitivities on parameters has been

applied to a simple decadal prediction model in which all 16

model parameters are optimised using ‘atmospheric’ and

‘oceanic’ observations for improving decadal predictions

(Zhang, 2011a, 2011b).

4.4. Proof-of-concept case studies

In this section, we conduct a series of DAEPC experiments

and compare the results to the corresponding TPE results if

applicable, as summarised in Table 1. Table 1 shows that all

DAEPC experiments successfully retrieve the truth value for

the parameter being estimated based on various different

observations, with different convergence time scales. Gen-

erally, the ‘atmospheric’ parameter converges faster than the

‘oceanic’ parameter and an ‘atmospheric’ or ‘oceanic’

parameter converges faster when the observations taken

from the same model component are used. Note, in all

examined six cases, only one case in which TPE converges
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but much slower than DAEPC, where all observations are

used to estimate the parameter k [i.e. TPE
oðallÞ
PðjÞ ].

To get more insights for the DAEPC performance

relative to the TPE, here we analyse more details of

DAEPC
OðallÞ
PðjÞ and TPE

OðallÞ
PðjÞ . While the DAEPC parameter

correction converges almost immediately (in five TUs) as it

starts after the ‘quasi-equilibrium’ of state estimation, TPE

does not converge within 400 TUs (Fig. 7a). After 40 TUs

of parameter correction, the error of the DAEPC-estimated

k is reduced by 99.5%. With the instantaneously corrected

parameter, DAEPC further reduces the Rms error of the

estimated ‘atmospheric’ (‘oceanic’) states by 63% (88%)

over the period of 100�200 TUs compared to the error of

SEO while the corresponding TPE error is larger than SEO

due to the diverged parameter in the assimilation model

(see Fig. 7b,c). In addition, unlike the errors of state

Table 1. List of experiments for data assimilation scheme for enhancive parameter correction (DAEPC) proof-of-concept studies

Experiment name Parameter being estimated Observations being used Convergence time in DAEPC Convergence time in TPE

DAEPC
o x1ð Þ
P jð Þ k x1 15 �

DAEPC
o wð Þ
P jð Þ k w 60 �

DAEPC
o x1ð Þ
P osð Þ

Od x1 400 �
DAEPC

o wð Þ
P osð Þ

Od w 360 �
DAEPC

o allð Þ
P jð Þ k All x1,2,3 and w obs 10 400

DAEPC
o allð Þ
P osð Þ Od All x1,2,3 and w obs 40 �

TPE, traditional parameter estimation.
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Fig. 7. Time series of (a) the ensemble mean of the k values estimated by traditional parameter estimation (TPE) (green) and the data
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at every 0.1 time unit (TU).
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variables in SEO and TPE that wiggle with time, the errors

in the DAEPC decrease towards zero consistently

(Fig. 7b,c) with the corrected parameter. This means that

while DAEPC parameter estimation corrects the errors of

parameters, it also helps constrain the computational

variability for state estimation.

We also want to see the importance of DAEPC to

correctly estimate the attractor pattern (the probability

distribution of weather events) when a serious bias arising

from a large parameter error exists in the assimilation

model. Fig. 8 gives an example in which an assimilation

model set with an erroneously guessed s(11.95) is used to

recover the ‘truth’ (with s�9.95) by assimilating all x1,2,3
and w observations (every 0.1 TU) into the model. It is

clear that without parameter correction, SEO fails to

correct the attractor over some period (green) although

reducing the Rms error of model states greatly (by 30% in

this case), while the DAEPC reconstructs the ‘true’

attractor (dotted-black) very precisely with the effective

parameter correction (red).

We also study the sensitivity of DAEPC to observa-

tional frequency by repeating the DAEPC
OðallÞ
PðjÞ experiment

but using observations at different intervals of 0.2, 0.5 and

1 TU. Generally, for a reduced observational frequency,

the convergence of parameter estimation requires a larger

inflation coefficient applied to the prior parameter en-

semble. When the observational interval changes from 0.1

to 1 TU, the ensemble mean of the parameter k is

corrected from 99% (the error is reduced from 0.78 to

0.005) to 90% (the error is reduced from 0.78 to 0.07). In

all the cases, the DAEPC further reduces the error of

estimated states from SEO, but when the observational

frequency decreases, both errors of estimated model states

and parameters increase.

5. DAEPC with biased ‘dynamical core’ and

‘physical scheme’

As discussed in Section 2.1, the model bias in a CGCM also

includes the misfittings of dynamical core and physical

schemes. With this simple model, we simulate the misfit-

tings of ‘dynamical core’ and ‘physical scheme’ by setting

different values for Om, Sm, Ss, Spd (representing ‘dynami-

cal core’) and c1 (representing ‘physical scheme’) in the

assimilation model from the values used in the truth model

that produces ‘observations’. Then, we can examine the

impact of the ‘dynamical core’ and ‘physical scheme’ biases

on DAEPC which may provide some insights into the

applications of CGCMs.

5.1. Perfect ‘dynamical core’ and ‘physical scheme’

We first assume that the assimilation model bias is only

caused by the erroneously set parameters s, k, b, Od and c2
(see Table 2), i.e. the ‘dynamical core’ and ‘physical

scheme’ in the assimilation model is perfect (the values of

Om, Sm, Ss, Spd and c1 are set as the ‘truth’).

With the initial setting for the ensemble of each

parameter in columns 4 and 5 of Table 2, DAEPC

activates its parameter estimation at the 100th analysis

step as state estimation reaches a ‘quasi-equilibrium’, by

which the entire set of adjustable model parameters is

corrected simultaneously using observations at every 0.2

TU. Generally, all parameters converge to the ‘truth’,

albeit with different time scales (Fig. 9). In this example,

somewhat unexpected, the convergence rate of the ‘atmo-

spheric’ parameter k is much slower than the ‘oceanic’

parameter Od (Fig. 9). This implies that the inflation used

in the parameter correction may need to be further tuned

by the different sensitivities of the ‘atmosphere’ and

‘ocean’. With the observation-updated parameters, going

through 1500 steps of adjustments (300 TUs of model

integrations), the accuracy of the estimated state (dashed-

red line in Fig. 10) is increased dramatically with a

diminishing assimilation error. The wiggling behaviour

of SEO errors (dashed-green) has been eliminated by

DAEPC almost completely, i.e. the compensation of state

variability for the parameter errors being removed through

the parameter correction. While SEO reduces the averaged
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Fig. 8. Variation of x3 in x1 space over the period of 110�115
time units (TUs) in the assimilations of data assimilation scheme

for enhancive parameter correction (DAEPC) (red) and state

estimation only (SEO) (green) when the default value of s is set to

be 11.95 in the assimilation model. The assimilations try to recover

the ‘true’ attractor produced by the model integration with

s�9.95 (dotted-black), using the observations that sample the

‘truth’ every 0.1 TU. The blue line is the free model run with

s�11.95 using the same initial conditions as in the assimilations

of DAEPC and SEO.
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Rms error of the ‘atmosphere’ and ‘ocean’ states from 7.76

to 4.17 (by 46%) from the model control, DAEPC further

reduces the Rms error to 0.23 (by 95% from SEO). In this

experiment with perfect model ‘dynamical core’ and

‘physical scheme’, DAEPC almost completely eliminates

the mean error of model states (from 0.15 to 0.008 of

SEO) (Table 3) by the parameter optimisation. Also, with

the parameter optimisation, DAEPC significantly im-

proves the ensemble assimilation consistency measured

by the ratio of the Rms error of the ensemble mean to the

ensemble spread (denoted by se in Table 3) compared to

its expectation value,
ffiffiffiffiffiffiffiffi
Mþ1

M

q
, where M is the ensemble size

(20 in this case) (see Murphy, 1988; Snyder and Zhang,

2003). Compared to the DAEPC ratio of 1.12, the SEO

ratio of 15.7 addresses the fact that for a biased coupled

model due to the use of erroneous parameter values,

without parameter optimisation with observations, it is

difficult for a filter that only performs state estimation to

be convergent.

5.2. Biased ‘dynamical core’ and ‘physical scheme’

Resetting (Om, Sm, Ss, Spd)�(11, 10.1, 1.01, 10.1), we

assume that the ocean ‘dynamical core’ in the assimilation

model is biased with respect to the ‘observations’, with

different heat capacity, external forcings and seasonal cycle

from the ‘truth’, in which the ‘ocean’ heat capacity is

significantly biased (10% stronger). Also, to set a systematic

misfitting of the ‘physical’ coupling scheme in the assimila-

tionmodel, we use 0.101 as the value of c1 in this biased case.

The experiment in Section 5.1 is rerun with this biased

‘dynamical core’ and ‘physical scheme’ model setting.

The bias of the ‘dynamical core’ and ‘physical scheme’

has a small impact on DAEPC but a large impact on SEO,

especially for the ‘atmospheric’ state estimation. For

example, while the Rms error of ‘atmospheric’ states

increases only 10% (0.46 to 0.51) from the perfect DAEPC

to the biased DAEPC, it increases by 30% from the perfect

SEO to the biased SEO. Interestingly, while SEO blends the

model bias into the estimated model variability, DAEPC

dramatically reduces the magnitude of such computational

modes caused by the misfitting of ocean dynamical core

(compare the solid-red line to the solid-green line of Fig.

10). Also, due to the compensation effect of parameter

errors to the model bias, the accuracy of the final values of

estimated parameters in the biased model case (column 7 of

Table 2) is slightly lower than that in the perfect model case

(column 6 of Table 2). Again, with the parameter correc-

tion, DAEPC significantly improves the ensemble assimila-

tion consistency, although the consistency is degraded

slightly by the biased model setting on ‘dynamical core’

and ‘physical scheme’ compared to the case with perfect

‘dynamical core’ and ‘physical scheme’ setting (see the

lower panel of column 5 of Table 3).

6. Impact of DAEPC on ‘climate’ prediction

We now examine the impact of parameter correction on

model prediction. We launch 20 forecasts (each forwarded

up to 50 TUs) with the initial conditions selected every 50

Table 2. Five parameters that are simultaneously estimated using observations and their values in the assimilation experiments

Parameter

names

Physical

meaning

Standard

(‘truth’) value

Guessed

(default) value

Guessed standard

deviation

Final value in perfect

model DAEPC

Final value in biased

model DAEPC

s Define ‘weather’

features

9.95 10.95 0.5 9.99 10.09

k 28 29 1.5 28.1 27.62

b 8/3 3.67 0.14 2.63 2.61

Od Ocean damping 1 0.5 0.03 1.18 1.2

c2 Coupling for

‘ocean’

1 0.5 0.03 1.05 1.05

DAEPC, Data assimilation scheme for enhancive parameter correction.
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Fig. 9. Time series of the errors of the ensemble mean of

parameters s, k, b, c2 and Od that are simultaneously estimated

using observations of all x1,2,3, and w at every 0.2 time unit (TU).
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TUs apart during 1000�2000 TUs (see red and green dots

in Fig. 10b). In this twin experiment framework, we

evaluate forecast skills using the anomaly correlation

coefficient (ACC) and root mean square (Rms) error of

forecasts verified with the ‘truth’. However in the real

world with a CGCM and instrumental data, the variance of

the innovation of forecasts to observations may be a more

appropriate quantity to compare forecast skills

from different data assimilation schemes (see e.g. Fuku-

mori et al., 1999).

6.1. ‘Weather’ forecast skill

With the improved initial conditions, DAEPC improves the

‘weather’ forecast (within twos TUs for x1,2,3) dramatically,

evidenced by much higher ACC and lower Rms error

compared to the SEO forecast (Fig. 11a,b). If an ad hoc

value of 0.6 ACC is used to characterise the time scale of a

valid weather forecast (Hollingsworth et al., 1980),

DAEPC extends a valid ‘atmospheric’ forecast two times

longer. Both the forecast skills produced by DAEPC and

SEO become indistinguishable after a lead time of three

Table 3. The time-mean and Rms errors of the ensemble mean produced by state estimation only (SEO) and the DAEPC scheme using a

perfect/biased model ‘dynamical core and physical scheme’ during the period of 1000�2000 time units (TUs)

Perfect/biased model Experiment

Mean error (ATM/

OCN)

Rms error (ATM/

OCN)

Rms =
ffiffiffiffiffiffiffiffi
Mþ1

M

q
re

� 

(ATM/

OCN)

Perfect ‘dynamical core and physical

scheme’

CTL 0.93 (1.31/0.54) 7.76 (13.97/1.54) 1.00 (1.00/1.02)

SEO 0.15 (0.23/0.06) 4.17 (7.61/0.73) 15.7 (15.3/22.4)

DAEPC 0.008 (0.01/0.006) 0.23 (0.46/0.008) 1.12 (1.11/1.77)

Biased ‘dynamical core and physical

scheme’

CTL 1.16 1.61 (1.61/0.70) 8.85 16.1 (16.1/1.6) 1.03 (1.02/1.14)

SEO 0.33 (0.45/0.21) 5.42 (9.89/0.95) 17.7 (17.5/27.4)

DAEPC 0.10 (0.07/0.12) 0.35 (0.51/0.18) 1.21 (1.19/2.46)

DAEPC, Data assimilation scheme for enhancive parameter correction.
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Fig. 10. Time series of the errors of the ensemble mean of w in the (a) first and (b) second thousand time units (TUs) produced by data

assimilation scheme for enhancive parameter correction (DAEPC) (red) and state estimation only (SEO) (green) using a perfect/biased

(dashed/solid) model, with observations at every 0.2 TU. In DAEPC, the whole set of five model parameters (see Table 2) are

simultaneously estimated using the observations. The dots denote the initial conditions from which 20 forecasts start in Figs. 11 and 12.
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TUs which is roughly the time scale of the predictability of

the ‘atmospheric’ signals in this simple model. A compar-

ison of the difference of forecast skills between the perfect

and biased settings of model ‘dynamical core’ and ‘physical

scheme’ shows that the biased setting has a greater impact

on the ‘weather’ forecast of SEO than that of DAEPC.

The phenomenon above can be understood by the

compensation effect between state errors and parameter

errors. In SEO, the compensation of state errors for

erroneous parameters creates extra errors in initial condi-

tions. The incorrect parameters and biased ‘dynamical

core’ and ‘physical scheme’ acting on larger initial errors

significantly restrict the forecast capability of the model. In

DAEPC, however, the corrected parameters in the assim-

ilation model create more accurate model states and reduce

the bias of the initial conditions. Furthermore, the cor-

rected parameters in the prediction model acting on the

improved initial conditions greatly limit the adverse impact

of the model bias on the forecast.

6.2. ‘Climate’ prediction skill

We first examine the prediction of the ‘climate’ variable w

in the experiments using perfect ‘dynamical core’ and

‘physical scheme’. With very small initial condition errors

(red dots on the dotted-red line of Fig. 10b) and observa-

tion-estimated parameters, all the predictions of w by

DAEPC show nearly perfect forecasts within two TUs

(Fig. 11c,d). The improved parameters applied to the

prediction model starting from more accurate initial

conditions in DAEPC extend a higher ACC and lower

Rms error up to about 15 TUs from about 5 TUs of SEO

(see dotted-dashed and dashed lines in Fig. 11c,d).

Compared to the SEO forecasts, overall speaking, the

mean and Rms errors of the DAEPC forecasts are reduced

over the entire lead time of 50 TUs (0.57 to 0.35 for mean

error, 1.46 to 1.29 for Rms error) (see also Fig. 11c).

However, the forecast Rms error is reduced more drama-

tically in the first 15 TUs (from 1.4 to 1) where the DAEPC

forecasts maintain a higher ACC than 0.6, whereas the

SEO forecasts have such a high value only in the first four

TUs (see the dashed line in Fig. 11d). For short-term

forecasts (within four TUs), DAEPC enhances the aver-

aged forecast ACC from 0.73 to 0.91 of SEO. For long-

term predictions (up to 15 TUs), DAEPC enhances the

averaged forecast ACC by 53% (from 0.47 to 0.72). Thus,

DAEPC improves the ‘climate’ predictability triply in this

case. Fig. 11d also shows that after 15 TUs, both SEO

(dashed) and DAEPC (dotted-dashed) ACCs are lower

than 0.6 and indistinguishable, suggesting the limitation of

the potential predictability of the ‘climate’ in this simple

model.

Again, the biased ‘dynamical core’ and ‘physical scheme’

have a much smaller impact on the ‘climate’ predictions

using the DAEPC initialisation and estimated parameters

than on the predictions using the SEO initialisation

(compare the difference of the solid and dotted-dashed

lines with the difference of the dotted and dashed lines in

Fig. 11c).
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DAEPC using perfect/biased ‘dynamical core’ and ‘physical scheme’ shown in Fig. 10.
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6.3. Relative importance of initial conditions and

parameters for ‘weather’ forecast and ‘climate’

prediction

To evaluate the relative importance of initial conditions

and parameters in improving ‘weather’ forecast and

‘climate’ prediction, here we conduct forecast experiments

using different settings on initial conditions and model

parameters. The forecast experiments described in the

beginning of Section 6 are repeated using the DAEPC-

produced (SEO-produced) initial conditions but applying

uncorrected (DAEPC corrected) parameters to the biased

prediction model as described in Section 5.2. Results show

that the more accurate initial conditions created by

DAEPC have a strong impact on both the ‘weather’

forecast (within two TUs for x1,2,3) and ‘climate’ prediction

(up to 15 TUs for w) (compare dotted-dashed to dashed

lines in Fig. 12). Applying the observation-estimated

parameters in the prediction model is particularly impor-

tant to produce better climate predictions (compare solid to

dotted-dashed lines in Fig. 12b). If the DAEPC-produced

initial conditions are used, the corrected parameters show a

strong impact on ‘weather’ forecasts while the impact of the

parameters becomes weak as the SEO-produced initial

conditions is used (compare the difference of solid and

dotted-dashed lines to the difference of dashed and dotted

lines in panel a). On the contrary, the impact of the

parameters on ‘climate’ predictions has a small sensitivity

on the accuracy of initial conditions (panel b).

7. Summary and discussions

A data assimilation scheme for enhancive parameter

correction (DAEPC), which is modified from the standard

data assimilation with adaptive parameter estimation,

has been designed to improve parameter estimation using

observations. DAEPC performs parameter correction only

when state estimation reaches a ‘quasi-equilibrium’ so that

the uncertainty of model states is sufficiently constrained

by observations, and the covariances between parameters
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Fig. 12. Variations of anomaly correlation coefficients (ACCs) of the forecasted ensemble mean of (a) x1 and (b) w with the forecast lead

time based on 20 forecast cases initialised from state estimation only (SEO)-produced initial conditions with data assimilation scheme for

enhancive parameter correction (DAEPC)-corrected parameters applied to the prediction model (dashed) and DAEPC-produced initial

conditions with uncorrected parameters applied to the prediction model (dotted-dashed). The prediction model is set with a biased

‘dynamical core and physical scheme’ described in Section 5.2. The original ACCs produced by SEO and DAEPC shown by the dotted and

solid lines in Fig. 11 are also marked here as references. The thin dotted black lines mark a 0.6 ACC level in both panels.
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and model states are signal dominant and thereby facilitate

effective parameter estimation. The observation-updated

parameters improve the state estimation of next cycle, and

the improved estimate of model states further enhances the

signal-to-noise ratio of the state-parameter covariances for

the next parameter correction.

Data assimilation scheme for enhancive parameter

correction has been implemented into a conceptual ‘atmo-

sphere-ocean’ coupled model with an ensemble filtering

algorithm (Anderson, 2001, 2003; Zhang and Anderson,

2003; Zhang et al., 2007). Numerical results show that

DAEPC provides a systematic approach to estimate the

whole array of coupled model parameters from observa-

tions, and produces more accurate state estimates. In

particular, based on a perfect or biased setting on the

‘dynamical core’ and ‘physical scheme’ of this simple

model, the impacts of the model bias arising from misfit-

tings of dynamical core and physical schemes on ‘climate’

estimation and prediction are tested and discussed.

Through effective parameter correction, DAEPC mitigates

computational variability of estimated states induced by

model bias. With improved initial conditions and observa-

tion-estimated parameters, the model forecast skill is

greatly improved and the drift of model predictions is

substantially constrained. Additional forecast experiments

using the DAEPC-improved initial conditions with uncor-

rected parameters or the initial conditions produced by

traditional state estimation with the DAEPC-corrected

parameters show that the use of observation-estimated

parameters in the prediction model is particularly impor-

tant for producing a better long-term climate prediction.

Despite many promising results shown with the simple

model, the low order model has many limitations, and

serious challenges remain in applying DAEPC to CGCMs.

First, in a CGCM, the misfitting from complex physical

processes introduces complicated model biases. How the

complex model biases impact on DAEPC needs to be

examined further. Second, the success of the parameter

correction relies on the representation of observations and

errors of state estimates. In a CGCM, a parameter usually

takes a globally uniform value. Given that the representa-

tion of real observations and model sensitivities with

respect to parameters always have a geographic depen-

dence, the use of sparse observations in a non-sensitive

region must degrade the signal-to-noise ratio of parameter

estimation. Based on the results of model sensitivity

studies, we may allow model parameters to vary geogra-

phically where observations are reliable and the impact of

the parameter is substantial, but retain the default value

elsewhere. Then, a CGCM-like model that has geographi-

cally dependent circulations is required to examine the

impact of the geographic dependence of model sensitivities

and an observing system on parameter optimisation. Third,

for this simple model case, a trial-and-error procedure has

been used to obtain an inflation coefficient. For a CGCM,

on model sensitivity studies (see e.g. Tong and Xue, 2008a),

we may need to implement an adaptive inflation correction

algorithm (Anderson, 2007). In addition, we found that

even in this low-order simple model, some parameters

require a long time for convergence. Given that the

observational records of the atmosphere and ocean extend

backwards in time only one century at most (the sea surface

temperature records may be longer), how to accelerate the

convergence of parameter estimation would also remain as

an important research topic.

8. Acknowledgements

The authors would like to thank Drs. Tony Gordon,

Andrew Wittenberg and Rym Msadek for their thorough

examination and comments on an earlier version of this

manuscript. Thanks also go to Dr. Issac Held for the

discussions that brought authors more thoughts on this

topic. The authors thank two anonymous reviewers for

their thorough examination and comments that are very

useful for improving the manuscript. This research is

supported by the NSF project Grant 0968383.

References

Aksoy, A., Zhang, F. and Nielsen-Gammon, J. W. 2006a.

Ensemble-based simultaneous state and parameter estimation.

Geophys. Res. Lett. 33, L12801, doi:10.1029/2006GL026186.

Aksoy, A., Zhang, F. and Nielsen-Gammon, J. W. 2006b.

Ensemble-based simultaneous state and parameter estimation

in a Two-Dimensional Sea-Breeze Model. Mon. Wea. Rev. 134,

2951�2970.
Anderson, J. L. 2001. An ensemble adjustment Kalman filter for

data assimilation. Mon. Wea. Rev. 129, 2884�2903.
Anderson, J. L. 2003. A local least squares framework for

ensemble filtering. Mon. Wea. Rev. 131, 634�642.
Anderson, J. L. 2007. An adaptive covariance inflation error

correction algorithm for ensemble filters. Tellus 59A, 210�224.
Annan, J. D. and Hargreaves, J. C. 2004. Efficient parameter

estimation for a highly chaotic system. Tellus 56A, 520�526.
Annan, J. D., Hargreaves, J. C., Edwards, N. R. and Marsh, R.

2005. Parameter estimation in an intermediate complexity Earth

System Model using an ensemble Kalman filter. Ocean

Modelling 8, 135�154.
Asselin, R. 1972. Frequency filter for time integrations. Mon. Wea.

Rev. 100, 487�490.
Banks, H. T. 1992a. Control and estimation in distributed

parameter systems. In: Frontiers in Applied Mathematics (ed.

H. T. Banks) Vol. 11,. SIAM, Philadelphia, 227 pp.

Banks, H. T. 1992b. Computational issues in parameter estimation

and feedback control problems for partial differential equation

systems. Physica D 60, 226�238.

ENHANCIVE PARAMETER CORRECTION WITH COUPLED DATA ASSIMILATION 19



Borkar, V. S. and Mundra, S. M. 1999. Bayesian parameter

estimation and adaptive control of Markov processes with time-

averaged cost. Applicationes Mathematicate 25(4), 339�358.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B.,

Bretherton, C. S. and co-authors. 2006. The Community

Climate System Model Version 3 (CCSM3). J. Clim. 19,

2122�2143.
Daley, R. 1991. Atmospheric Data Analysis. Cambridge University

Press, New York, 457 pp.

Dee, D. P. 2005. Bias and data assimilation. Quart. J. Roy. Meteor.

Soc. 131, 3323�3343.
Dee, D. P. and Silva, A. M. D. 1998. Data assimilation in the

presence of forecast bias. Quart. J. Roy. Meteor. Soc. 124,

269�295.
Delworth, T. L., Broccoli, A. J., Rosati, A., Balaji, R. J. S. V.,

Beesley, J. A. and co-authors. 2005. GFDL’s CM2 global

coupled climate models, Part I: Formulation and simulation

characteristics. J. Clim. 19(5), 643�674.
Evensen, G. 1994. Sequential data assimilation with a nonlinear

quasi-geostrophic model using Monte Carlo methods to forecast

error statistics. J. Geophys. Res. 99, 10143�10162.
Evensen, G. 2007. Data Assimilation: The Ensemble Kalman Filter.

Springer, Berlin, 187 pp.

Fukumori, I., Raghunath, R., Fu, L. and Chao, Y. 1999.

Assimilation of TOPEX/POSEIDON data into a global ocean

circulation model: how good are the results? J. Geophys. Res.

104, 647�665.
Ghil, M., Cohn, S., Tavantzis, J., Bube, K. and Isaacson, E. 1981.

Applications of estimation theory to numerical weather predic-

tion. In: Dynamical Meteorology. Data Assimilation Methods

(eds. Bengtsson et al.). Springer-Verlag, New York, 139�224.
Hansen, J. and Penland, C. 2007. On stochastic parameter

estimation using data assimilation. Physica D 230, 88�98.
Hollingsworth, A., Arpe, K., Tiedtke, M., Capaldo, M. and

Savijarvi, H. 1980. The performance of a medium range forecast

model in winter � impact of physical parameterizations. Mon.

Wea. Rev. 108, 1736�1773.
Houtekamer, P. L. and Mitchell, H. L. 2001. A sequential

ensemble Kalman filter for atmospheric data assimilation. Mon.

Wea. Res. 129, 123�137.
Jazwinski, A. H. 1970. Stochastic Processes and Filtering Theory.

Academic Press, New York, 376 pp.

Kalman, R. 1960. A new approach to linear filtering and

prediction problems. Trans. ASME, Ser. D, J. Basic Eng. 82,

35�45.
Kalman, R. and Bucy, R. 1961. New results in linear filtering

and prediction theory. Trans. ASME, Ser. D, J. Basic Eng. 83,

95�109.
Kalnay, E. 2003. Atmospheric Modeling, Data Assimilation and

Predictability. Cambridge University Press, New York, 341 pp.

Kondrashov, D., Sun, C. and Ghil, M. 2008. Data assimilation for

a coupled ocean-atmosphere model, Part II: Parameter estima-

tion. Mon. Wea. Rev. 136, 5062�5076.
Kulhavy, R. 1993. Implementation of Bayesian parameter estima-

tion in adaptive control and signal processing. J. Royal

Statistical Society. Series D (The Statistician) 42(4), 471�482.

Lorenz, E. N. 1963. Deterministic non-periodic flow. J. Atmos. Sci.

20, 130�141.
Molteni, F., Ferranti, L., Palmer, T. N. and Viterbo, P. 1993. A

dynamical interpretation of the global response to equatorial

pacific SST anomalies. J. Clim. 6, 777�795.
Murphy, J. M. 1988. The impact of ensemble forecasts on

predictability. Quart. J. Roy. Meteor. Soc. 114, 463�493.
Robert, A. 1969. The integration of a spectral model of the

atmosphere by the implicit method. Proceedings of the WMO/

IUGG Symposium on NWP. Japan Meteorological Society,

Tokyo, Japan, 19�24.
Snyder, C. and Zhang, F. 2003. Assimilation of simulated Doppler

radar observations with an ensemble Kalman filter. Mon. Wea.

Rev. 131, 1663�1677.
Tao, G. 2003. Adaptive Control Design and Analysis. John Wiley &

Sons, Hoboken, NJ, 640 pp.

Tong, M. and Xue, M. 2008a. Simultaneous estimation of

microphysical parameters and atmospheric state with simulated

Radar data and ensemble square root Kalman filter. Part I:

Sensitivity analysis and parameter identifiability. Mon. Wea.

Rev. 136, 1630�1648.
Tong, M. and Xue, M. 2008b. Simultaneous estimation of

microphysical parameters and atmospheric state with simulated

Radar data and ensemble square root Kalman filter. Part II:

Parameter estimation experiments. Mon. Wea. Rev. 136,

1649�1668.
Zhang, S. 2011a. Impact of observation-optimized model para-

meters on decadal predictions: simulation with a simple

pycnocline prediction model. Geophys. Res. Lett. 38, L02702,

doi: 10.1029/2010GL046133.

Zhang, S. 2011b. A study of impacts of coupled model initial

shocks and state-parameter optimization with observations on

climate predictions using a simple pycnocline prediction model.

J. Clim. 24, 6210�6226. doi: 10.1175/JCLI-D-10-05003.1.
Zhang, S. and Anderson, J. L. 2003. Impact of spatially and

temporally varying estimates of error covariance on assimilation

in a simple atmospheric model. Tellus 55A, 126�147.
Zhang, S., Anderson, J. L., Rosati, A., Harrison, M. J., Khare, S.

P. and co-authors. 2004. Multiple time level adjustment for data

assimilation. Tellus 56A, 2�15.
Zhang, S., Harrison, M. J., Rosati, A. and Wittenberg, A. T. 2007.

System design and evaluation of coupled ensemble data

assimilation for global oceanic climate studies. Mon. Wea.

Rev. 135, 3541�3564.
Zhang, S., Rosati, A. and Harrison, M. J. 2009. Detection of

multi-decadal oceanic variability by ocean data assimilation in

the context of a ‘‘perfect’’ coupled GCM. J. Geophys. Res. 114,

C12018, doi: 10.1029/2008JC005261.

Zhu, Y. and Navon, I. M. 1999. Impact of parameter estimation

on the performance of the FSU Global Spectral Model using its

full physics adjoint. Mon. Wea. Rev. 127, 1497�1517.

20 S. ZHANG ET AL.


