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ABSTRACT

A multi-model archive of global deterministic forecasts and analyses from three operational systems is

constructed to analyse recent Northern Hemisphere mid-latitude forecast skill from 2007 to 2012 and its

relation to large-scale atmospheric flow anomalies defined by the Arctic Oscillation (AO) index. We find that

the anomaly correlation coefficient (ACC) in 120-hr forecasts of 500 hPa geopotential height has similar

variability on synoptic, monthly, and seasonal time scales in each of the three forecast systems examined here:

the European Centre for Medium-Range Weather Forecasts, the National Centers for Environmental

Prediction Global Forecast System, and the U.S. Navy Operational Global Atmospheric Prediction System.

The results indicate that forecast skill as measured by the ACC is significantly correlated with the AO index

and its transitions between negative and positive phase. Intervals of exceptionally high ACC skill during the

2009�2010 and 2010�2011 winters are associated with periods in which the AO remained in a persistent

negative phase pattern. Episodes of low ACC, including so-called ‘forecast skill dropouts’ most frequently

occur during transitions between negative and positive AO index and with positive AO index. The root mean

square error (RMSE) of 120-hr forecast 500 hPa height is also modulated by the AO index, but to a lesser

extent than the ACC. In two recent winters, the RMSE indicates lower 120-hr forecast accuracy during periods

with negative AO index, which is opposite to ‘skill’ patterns provided by the ACC. These results suggest that

the ACC is not in all situations an optimal metric with which to quantify model forecast skill, since the ACC

can be higher when the large-scale atmospheric flow contains strong anomalies even if there is no actual

improvement in model forecasts of that atmospheric state.
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1. Introduction

The objective of this study is to investigate and quantify

possible correlation between metrics of skill in operational

weather forecast models and measures of large-scale atmos-

pheric anomalies, specifically here the Arctic Oscillation

(AO). Three numerical weather prediction (NWP) systems

are used in the study. These are the operational global

forecast models of the European Centre for Medium-Range

Weather Forecasts (ECMWF), the National Centers for

Environmental Prediction (NCEP) Global Forecast System

(GFS) and the U.S. Navy Operational Global Atmospheric

Prediction System (NOGAPS). The metrics of forecast

performance are the anomaly correlation coefficient

(ACC, which is a measure of forecast skill in the context

of forecasts relative to climatology) and root mean

square error (RMSE, which is a measure of forecast

accuracy) of 120-hr forecast 500 hPa geopotential height

over the Northern Hemisphere (NHEM) mid-latitudes

(208�808N).

Earlier studies have reported some correspondence be-

tween forecast skill and indices of large-scale atmospheric

flow anomalies. For example, Johansson (2007) shows

higher skill in terms of ACC with large negative and posi-

tive values of the Pacific-North American (PNA) telecon-

nection pattern index and the North Atlantic Oscillation

(NAO) index. Thompson and Wallace (1998) describe the

AO as incorporating many features of the NAO, although

the AO is somewhat larger in horizontal scale. We can thus

hypothesise that forecast skill (at least in terms of ACC)

may be enhanced when the atmosphere is in a strong

negative or positive AO pattern.
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Shapiro et al. (2001) note the effect of El Niño-Southern

Oscillation (ENSO) phase during 1998 and 1999 on

modulation of baroclinic wave life cycles and reduction

of a 72-hr forecast error norm in the Navy global model

during the strong El Niño event of 1997�1998. Higher

forecast accuracy during the 1997�1998 El Niño, relative to

the 1998�2001 La Niña is reported by Reynolds and

Gelaro (2001).

The relation of forecast skill and atmospheric predict-

ability to large-scale flow anomalies (AO, NAO, ENSO, and

others) is an issue of some importance, since the onset and

persistence of certain atmospheric flow regimes can have

significant effects on model performance (Ferranti et al.,

2002; Simmons and Hollingsworth, 2002; Archambault

et al., 2008), and on reliability in forecasts of extreme and

high-impact weather events including mid-latitude extra-

tropical cyclone activity (Colle and Charles, 2011).

Here, we expand upon results of previous studies,

comparing variations in AO index with model medium-

range forecast skill (ACC) and accuracy (RMSE) of 500

hPa geopotential height. A unique aspect of this study is

the compilation of AO, ACC, and RMSE results for five

complete years (2007�2012) using three model systems. In

Section 2, we briefly describe the multi-model, multi-year

data archive and calculation of the ACC and AO measures

used in the study. In Section 3, we discuss and compare

patterns of ACC in the three models from daily to seasonal

time-scales. In Section 4, we describe the correspondence

of forecast skill and accuracy to phase of the AO index. In

Section 5, we examine model capability to forecast the AO

itself, and in Section 6, we provide a summary and

conclusion.

2. Data and methods

To assemble a multi-model, multi-year archive of determi-

nistic model forecasts, we have used public forecast data

repositories from several global NWP centres, including the

ECMWF, the NCEP GFS and the US Navy NOGAPS, for

2007�2012.
A conventionally defined ACC is calculated to quantify

the spatial correlation between forecast and observed de-

viations from climatology (Miyakoda et al., 1972; Murphy

and Epstein, 1989). The ACC spatially aggregates forecast

pattern similarity and is a leading measure of forecast skill

used by global operational NWP centres. It should be noted

that ACC does not penalise either conditional or uncondi-

tional biases, and is strongly modulated by the strength

of forecast and analysed atmospheric flow anomalies (e.g.

departures from climatology) that are not related to actual

forecast accuracy. Other limitations and aspects of ACC

interpretation are discussed below.

In this study, unless otherwise stated, ACC refers to the

un-centred ACC of 120-hr forecast 500 hPa geopotential

height for the NHEM mid-latitudes (NHEM, 208�808N).

Operational centres generally use centred ACC, although

for hemispheric domains centred and un-centred ACC

provide essentially the same measure of skill. At each grid

point, the forecast and observed 500 hPa geopotential height

are compared to a reference climatology. This climatology is

calculated by moving a weighted 21-d centred mean window

at each grid point and synoptic time (00UTC and 12 UTC)

following the methodology of Jung and Leutbecher (2008)

and using the new NCEP Climate Forecast System Reana-

lysis (CFSR; Saha et al., 2010). As in operational practice,

each model forecast is verified against its own analysis. The

values of ACC calculated here have been compared and

found consistent with those published by operational

forecast centres (ECMWF, NCEP, and US Navy). It is

also possible to perform spatial decomposition of atmo-

spheric fields into wavenumber bands (e.g. Jung and

Leutbecher, 2008); however, this study uses complete

fields for both forecast and verification, thus retaining

characteristics of the full atmospheric flow at all scales.

Another representation of ACC can be derived using the

so-called Fisher z-transformation (Branstator, 1986), which

is a normalisation of the usual ACC. Although this pro-

vides useful properties for interpretation of ACC in some

contexts, we here examine the usual (‘raw’) values of ACC,

since an objective of this study is to make interpretations

regarding ACC as used by operational forecast centres.

In addition to ACC, we also calculate the RMSE of

forecast 500 hPa geopotential height. In this study, RMSE

refers to 120-hr forecast error for the NHEM mid-latitudes

(208�808N). We will compare the two metrics (ACC and

RMSE) and determine if they provide consistent informa-

tion regarding forecast performance.

The AO index is defined as the first leading mode of an

Empirical Orthogonal Function (EOF) analysis (Thompson

and Wallace, 1998) of monthly mean 1000-hPa geopoten-

tial height anomalies (208�908N, 08�3608E) from the

NCEP CFSR (1981�2010). To generate daily AO index

values, daily geopotential anomalies are projected onto the

monthly loading patterns and then normalised to the stan-

dard deviation of the monthly AO index. One may also

choose a different reanalysis dataset (e.g. ERA Interim)

for the calculation of the AO, although this does not

substantially affect the results or conclusions.

3. Anomaly correlation patterns

ACC scores from October 2006 to September 2012 for each

model (ECMWF, GFS, NOGAPS) are shown in Fig. 1a

(as a 30-d centred-mean) for the NHEM to illustrate

aspects of medium-range and forecast skill.
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First, there is a definite seasonal signal with ACC scores

considerably lower on average during summer and higher

in winter. Weather prediction models, in general, show

considerably more success in forecasts of synoptic-scale

baroclinic waves that dominate error growth in winter, in

comparison to smaller-scale errors on the meso- and con-

vective scale that occur during the warm season (Ferranti

et al., 1990). The change between higher ACC scores in

winter and lower scores in summer often occurs abruptly

during the transition months of April and October.

For the years examined here, the ECMWF model con-

sistently outperforms both GFS and NOGAPS in terms of

ACC score, and maintains that lead during all seasons. The

ACC score of each forecast system has increased over time,

due to higher resolution, improvements to model physics

and dynamics, as well as improved initial conditions from

new observations and better data assimilation procedures.

When represented as a 30-d centred-mean (Fig. 1a),

transient episodes of relatively high or low ACC score are

remarkably well-correlated between the three forecast sys-

tems. This illustrates that intrinsic and episodic variations

in atmospheric predictability (or the presence of large-scale

flow anomalies) tend to increase or decrease the ACC in

each model in a similar way, although the magnitudes

of ACC are different in each forecast system. This pro-

perty can be seen more clearly in Fig. 1b, which depicts a

centred 7-d mean ACC subtracted from the 30-d centred-

mean of ACC. Here, a positive value indicates a forecast

that is more-predictable than the monthly average while

a negative value demonstrates a less-predictable forecast.

Remarkably, the ACC scores of the models closely cor-

relate with each other (above or below average) at nearly
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Fig. 1. (a) Anomaly correlation coefficient (ACC) for 120-hr

forecasts of 500 hPa geopotential height in the domain 208�808N
for three global numerical weather prediction (NWP) models:

European Centre for Medium-Range Weather Forecasts

(ECMWF) (red), National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS) (black), and U.S. Navy

Operational Global Atmospheric Prediction System (NOGAPS)

(blue), from October 2006 to September 2012. Time series are

smoothed with a 30-d centred mean. (b) as in (a), except ACC

shown as the subtraction of a 7-d centred mean from the 30-d

centred mean for January 2009�September 2012. The x-axis

indicates initial-time of forecasts from 00UTC and 12 UTC.
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Fig. 2. Scatter plot of the anomaly correlation coefficient (ACC)

for 120-hr forecasts of 500 hPa geopotential height in the domain

208�808N for European Centre for Medium-Range Weather

Forecasts (ECMWF) and National Centers for Environmental

Prediction (NCEP) Global Forecast System (GFS). Includes all

forecasts made from 00UTC and 12UTC during October 2006

to September 2012. Red square markers indicate ACC values of

0.70 or less.
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all times and all seasons, despite differences in model

formulation, data assimilation procedures and observation

selection between the three forecast systems.

The scatter plot in Fig. 2 shows ACC for several thou-

sand ECMWF and GFS 120-hr forecasts from October

2006 to September 2012. It is very uncommon for either

GFS or ECMWF to report an ACC below 0.80 while the

ACC of the other model in the same forecast is above 0.90.

Very high ACC scores (above 0.90) also tend to occur

simultaneously in GFS and ECWMF.

One notable difference in model performance is the

smaller variability of ACC in ECMWF forecasts (red line

in Fig. 1b) when compared to GFS and NOGAPS. This

indicates greater reliability in the ECWMF forecasts. In

both ECMWF and GFS, variability of ACC is much larger

during summer months, as seen for ECMWF (Fig. 3a)

and GFS (Fig. 3b). Episodic forecasts with very low-skill

(sometimes referred to as ‘forecast dropouts’, and defined

according to various criteria) are also more common in

summer and fall, which partially explains the lower average

values of ACC in those seasons. Traditionally, a value of

ACC�0.60 is considered the limit below which a forecast

has no practical value (Hollingsworth et al., 1980). This

rarely occurs in current operational 120-hr forecasts.

4. AO phase and forecast error metrics

During the winter (DJF) of 2009�2010, historically-

extreme values of both the NAO (Overland and Wang,

2010; Jung et al., 2011) and AO (L’Heureux et al., 2010)

were associated with bitterly cold and snowy mid-latitude

weather conditions over Northern Europe (Cattiaux et al.,

2010; Ouzeau et al., 2011) and the United States (Seager

et al., 2010; Wang et al., 2010). The frequency and per-

sistence of the negative AO and negative NAO blocked

phase have been linked to hemispheric-scale cold-air out-

breaks (Thompson and Wallace, 2000; Guirguis et al.,

2011). But is there a relation between AO phase, its asso-

ciated large-scale flow anomalies, and model predictive

skill in the medium-range, as found by Johansson (2007) in

association with the PNA and NAO?

We find that both ECMWF and GFS performed ex-

ceptionally well in terms of ACC score during two recent

winters (2009�2010 and 2010�2011), and specifically

when there were extended episodes of strong and persis-

tent negative AO index. For example, 120-hr ACC scores for

ECMWF and GFS typically exceeded 0.90 during Decem-

ber 2009 and February 2010 (Fig. 4a, c) and from late

November 2010 to mid-January 2011 (Fig. 5a, c). Each of

these intervals with exceptionally-high values of ACC

occurred in conjunction with strong and persistent nega-

tive AO index, in some cases with AO index of less than

�4.0. The frequency of 120-hr forecasts with very low

ACC (‘dropouts’) was also reduced during the periods with

strongly negative AO index (Fig. 4a, c, 5a, c), and record-

high values of 10-d ACC (between 0.7 and 0.8) for ECMWF

were reported (Andersson and Richardson 2011; see also

Fig. 6b).

In contrast, average ACC scores were lower during

transitions between negative and positive AO phase and,

to some extent, during periods of positive AO phase, in

which there tend to be increased numbers of relatively

low-skill forecasts (‘dropouts’). These forecasts with lower
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Fig. 3. Anomaly correlation coefficient (ACC) for 120-hr

forecasts of 500 hPa geopotential height in the domain 208�808N
for: a) European Centre for Medium-Range Weather Forecasts

(ECMWF) and b) National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS), from January 2007 to

September 2012. Individual forecasts (from 00UTC and 12UTC)

are shown as blue circles, the 30-d centred mean as a black solid

line, and the 90-d centred mean as a solid red line. The x-axis

indicates initial-time of the forecasts.
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Fig. 4. Time series of the Arctic Oscillation (AO) index (shown as a solid black line and scaled on the left y-axis). Panels

a) and c) show the anomaly correlation coefficient (ACC) for 120-hr forecasts of 500 hPa geopotential height in the domain 208�808N for,

respectively, European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS), plotted as a blue line and scaled on the right y-axis. Panels b) and d) show the root mean square

error (RMSE) for 120-hr forecasts of 500 hPa geopotential height in the domain 208�808N for, respectively, ECMWF and GFS, plotted as

a blue line and scaled on the right y-axis. The x-axis indicates initial time of forecasts made from 00UTC and 12UTC, during the period 1

November 2009 to 30 April 2010.
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Fig. 5. As in Fig. 4, but for the time period 1 November 2010 to 30 April 2011.
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AC can be seen in Fig. 4a, c during onset of the December

2009 negative AO phase, and the short episode of positive

AO of in January 2010. Upon reestablishment of another

extreme negative AO event around 1 February 2010,

ECMWF forecasts rebounded with much higher ACC

(Fig. 4a). With the onset of 2010 NHEM spring, the AO

negative phase ends, accompanied by lower ACC and

larger variability in forecast skill. Similar patterns are seen

in the GFS forecasts during these years, keeping in mind

differences in average ACC magnitude between the models.

Our results with AO are partially consistent with those

of Johansson (2007), who reports a correlation of increased

5-d ACC with strong anomalies of the PNA and NAO in

both positive and negative phase. Since the PNA, NAO

and AO represent somewhat different measures of large-

scale atmospheric circulation anomalies, it is not unex-

pected to find differences in the correlation of these various

indices with the ACC measure of forecast skill.

In the current study, whereas high values of ACC are

strongly correlated with negative AO index, we find a

weaker connection between ACC and positive AO index.

In some instances, the ACC is reduced during intervals

with positive AO index. It is possible for example, that a

potential increase of ACC from the strong positive AO that

develops in March�April 2011 is offset by the transition to

the spring season. That is, the positive AO could be a factor
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Fig. 6. (a) European Centre for Medium-Range Weather Forecasts (ECMWF) deterministic forecasts (shown at 6-hr intervals) of the

Arctic Oscillation (AO) index. 120-hr forecasts of AO index are shown as blue circles, and 240-hr forecasts as red circles. Forecasts are

made from 00UTC and 12UTC. The actual AO index (derived from ECMWF analyses at 00UTC and 12UTC) appears as a solid black line

at forecast verification time. Panel (b) shows the anomaly correlation coefficient (ACC) for ECMWF 240-hr forecasts of 500 hPa

geopotential height in the domain 208�808N. The x-axis indicates verification time, from 1 November 2010 to 30 April 2011.
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tending to increase the ACC, which is partially or totally

offset by the typical spring season decrease in ACC.

We now examine forecast accuracy using the RMSE for

the same two winters, those of 2009�2010 and 2010�2011.
The results, shown in Figs. 4b, d and 5b, d, suggest that

lower forecast accuracy (higher RMSE) occurs during

intervals with negative AO, and higher forecast accuracy

(lower RMSE) occurs with positive AO. Note in particular

the larger RMSE during the periods of negative AO in

December 2009 (Fig. 4b, d) and December 2010 to January

2010 (Fig. 5b, d), and the smaller RMSE during the period

of positive AO in April 2011 (Fig. 5b, d).

Although the ACC and RMSE are partially-related error

measures (both include a measure of mean-square error,

Murphy and Epstein, 1989) these results indicate that ACC

and RMSE do not necessarily provide consistent con-

clusions regarding model performance or the relation of

atmospheric predictability to large-scale atmospheric flow

anomalies such as those represented by the AO index. With

negative AO index, the atmosphere may be more predict-

able in terms of large-scale features such as those measured

by the 500 hPa ACC, while in terms of features measured by

the 500 hPa RMSE, the atmosphere may be less predictable.

In addition, the ACC is partly a measure of ‘potential’,

rather than actual forecast skill. Therefore, when the at-

mosphere contains strong and persistent anomalies, the

potential forecast skill (and the ACC) is inherently higher

than during anomaly index transition periods.

5. Forecasts of the AO

In terms of ability to forecast the AO, current models have

fairly good accuracy through about 5-d. Johansson (2007)

showed the NAO and PNA teleconnection pattern could

be forecast reasonably well at 5-d range. However, model

accuracy in forecasts of AO index decreases considerably in

the 6 to 10-d range, with considerable uncertainty in the

predicted AO index.

In Fig. 6a, we show error in ECMWF forecasts of AO

index at d-5 and d-10 during winter 2010�2011. The

forecast AO index (open circles) are plotted at 6-hourly

intervals, with the analysed AO value shown as a solid

black line. At 5 d (blue circles) typical errors in forecasts of

AO value are relatively small, but at 10 d (red circles), large

errors in forecasts of the AO index are common. In some

cases, even the AO phase (negative or positive) is incor-

rectly forecast at 5 or 10 d. However, as with 120-hr ACC

(Fig. 4), the highest 240-hr ACC scores (Fig. 6b) during this

winter are achieved during the period of strong negative

AO index from November 2010 to January 2011.

Although forecast skill as measured by ACC is con-

sistently higher during negative AO phase, accuracy in

forecasting the AO index at either 5 or 10 d (Fig. 7a, b)

seems to have no particular correlation with AO phase.

Of central interest here is the discrepancy between model

skill in forecasts of the AO itself, which does not appear

correlated with AO phase or magnitude of the AO index,

as opposed to the relatively strong correlation of ACC

with AO phase � in particular the correspondence of high

ACC with negative AO index in both ECMWF and GFS.

This may be understood by again noting that the ACC will

be higher when the large-scale atmospheric flow contains

strong anomalies, even if the atmospheric state associated
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time. The figure includes Northern Hemisphere (NHEM) cold

season forecasts (1 October to 1 March), 2008 to 2012.
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with the anomalies is not well-forecast. In the presence of

significant large-scale flow anomalies, such as those repre-

sented by strongly negative AO index, there is larger

potential forecast skill, which is quantified as higher values

of ACC. In fact, the actual forecast accuracy as measured

by other metrics, such as the RMSE (Fig. 5b) may not be

improved during intervals of strong negative AO index.

6. Summary

In this brief report, we have used a multi-model, multi-year

data archive to investigate some aspects of model forecast

performance as measured by the 500 hPa geopotential

height ACC and root mean square forecast error, in the

context of variations of the AO index of large-scale flow

anomalies in the NHEM. The recent winters of 2009�2010
and 2010�2011 saw extended periods with extreme negative

values of the AO index, accompanied by exceptionally high

(in some cases record high) ACC skill scores, as shown here

and reported by ECMWF.1 However, these periods with

negative AO and very high ACC did not have exceptional

forecast accuracy as quantified by 500 hPa RMSE.

Our main conclusions are:

(1) The ACC for 120-hr forecast 500 hPa height is

strongly modulated by variations in AO index. The

highest values of ACC occur during extended periods

of strongly negative AO index. The ACC is lower on

average and has greater variability during transitions

between positive and negative AO phase, and when

the AO index has episodes of positive phase.

(2) The RMSE of 120-hr forecast 500 hPa height shows

a weaker (compared to ACC) correlation with the

AO index, and there is some evidence that forecast

accuracy in terms of RMSE is reduced during periods

of negative AO index, which is in contradiction to

interpretations of model skill based on ACC.

(3) Increases and decreases of ACC on various time-

scales (from daily to 30-d mean) tend to occur simul-

taneously in the ECMWF, GFS and NOGAPS

forecast models. This includes the timing and occur-

rence of forecast skill ‘dropouts’, which frequently

occur at the same forecast time in each model,

although there are substantial differences in average

ACC scores between the models.

(4) Predictions of the AO index are made with rela-

tively good skill in the ECMWF model at 120-hr,

with little or no correlation of AO-forecast skill to

strength or sign of the AO index. This is additional

evidence that high values of ACC in association with

strong negative AO index are at least partly an

artefact of large-scale anomaly magnitude, and not

entirely due to enhanced forecast accuracy.
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