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ABSTRACT

A simplified model of natural convection, similar to the Lorenz system, is compared to computational fluid

dynamics simulations of a thermosyphon in order to test data assimilation (DA) methods and better

understand the dynamics of convection. The thermosyphon is represented by a long time flow simulation,

which serves as a reference ‘truth’. Forecasts are then made using the Lorenz-like model and synchronised to

noisy and limited observations of the truth using DA. The resulting analysis is observed to infer dynamics

absent from the model when using short assimilation windows. Furthermore, chaotic flow reversal occurrence

and residency times in each rotational state are forecast using analysis data. Flow reversals have been

successfully forecast in the related Lorenz system, as part of a perfect model experiment, but never in the

presence of significant model error or unobserved variables. Finally, we provide new details concerning the

fluid dynamical processes present in the thermosyphon during these flow reversals.
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1. Introduction

Forecasting methodologies, traditionally motivated by

numerical weather prediction (NWP), can find applications

in other fields such as engineering (Savely et al., 1972),

finance (Sornette and Zhou, 2006; Bollen et al., 2011),

epidemiology (Ginsberg et al., 2009) and marketing (Asur

and Huberman, 2010). Techniques borrowed from the

weather forecasting community may prove to be powerful

for forecasting the other types of complex systems. Fluid

systems can be particularly challenging due to dynamics

taking place at multiple interacting spatial and temporal

scales. However, because of their relationship to NWP,

fluid systems are among the most studied in the context of

forecasting.

In this study, we show that the flow in a computational

fluid dynamics (CFD) simulated thermosyphon undergoing

chaotic convection can be accurately forecast using an

ordinary differential equation (ODE) model akin to the

classic Lorenz (1963) system. The thermosyphon, a type of

natural convection loop or non-mechanical heat pump,

can be likened to a toy model of climate. Thermosyphons

are used in solar water heaters (Belessiotis and Mathiou-

lakis, 2002), cooling systems for computers (Beitelmal and

Patel, 2002), roads and railways that cross permafrost

(Lustgarten, 2006), nuclear power plants (Detman and

Whipp, 1968; Beine et al., 1992; Kwant and Boardman,

1992) and other industrial applications. In these heat

pumps, buoyant forces move fluid through a closed loop,

and at high amounts of forcing they can exhibit complex

aperiodic behaviour. As first suggested by Lorenz (1963),

this is illustrative of the unpredictable convection beha-

viour observed in weather and climate dynamics.

Synthetic observations of the thermosyphon are com-

bined with model data to produce new forecasts in the

process known as data assimilation (DA). DA is a generic

method of combining observations with past forecasts to

produce the analysis, an approximately optimal initial

condition (IC) for the next forecast cycle. Another inter-

pretation of the analysis is that it is a ‘best guess’ for

the true system state as represented in the phase space

of the model. DA can be used as a platform for the

reanalysis of past observations, in which the dynamical

model plays a key role in constraining the state estimates
*Corresponding author.

email: kameron.harris@uvm.edu

Tellus A 2012. # 2012 K. D. Harris et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0

Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided

the original work is properly cited.

1

Citation: Tellus A 2012, 64, 17598, http://dx.doi.org/10.3402/tellusa.v64i0.17598

P U B L I S H E D  B Y  T H E  I N T E R N A T I O N A L  M E T E O R O L O G I C A L  I N S T I T U T E  I N  S T O C K H O L M

SERIES A
DYNAMIC
METEOROLOGY
AND OCEANOGRAPHY

(page number not for citation purpose)

http://www.tellusa.net/index.php/tellusa/article/view/17598


to be physically realistic (Compo et al., 2006). In the

present study, we use an analysis of simulated thermosy-

phon mass flow rate data to explain the heat transport

processes occurring during chaotic flow reversals and to

inform empirical forecasts of the occurrence of these flow

reversals. Although the flow reversals are chaotic, we show

they have short-term predictability, quantifying the extent

to which this is possible with our methods.

This paper is structured in the following way: in

Section 2, we explain the CFD simulation used to generate

a synthetic true state or ‘nature run’ of the thermosyphon

and the separate forecasting model. In Section 3, we

present an overview of how DA was applied to this

experiment and its performance. In Section 4, we explain

and present the results for flow reversal and rotational

state residency time forecasts. Finally, Section 5 contains

concluding remarks. In Appendices S1-4 in the Supporting

Information, we present a derivation of the model, detail

the tuning of model parameters and explain in detail the

DA methods used.

2. Models and the DA algorithm

Following previous experiments that examined the periodic

(Keller, 1966) and chaotic (Welander, 1967; Creveling

et al., 1975; Gorman and Widmann, 1984; Gorman et al.,

1986; Ehrhard and Müller, 1990; Yuen and Bau, 1999;

Jiang and Shoji, 2003; Burroughs et al., 2005; Desrayaud

et al., 2006; Yang et al., 2006; Ridouane et al., 2009)

behaviour of toroidal thermosyphons, we also consider

a circular thermosyphon geometry. Picture a vertically

oriented hula hoop, as shown in Fig. 1. An imposed

wall temperature Th on the lower half of the loop

f½�ðp=2Þ�B/Bðp=2Þg heats the fluid contained in this

section. Similarly, a wall temperature TcBTh is imposed

on the upper half ½ðp=2ÞB/Bð3p=2Þ� to cool the upper

section (Fig. 1). The forcing, proportional to the tempera-

ture difference DTw ¼ Th � Tc, is constant. We focus on the

case of developed flow, ignoring transient behaviour.

The behaviour of the fluid can be qualitatively under-

stood as follows. As the heating parameter is increased,

the flow behaviour transitions from a conduction state

(conducting equilibrium) to a steady, unidirectional state

of convection (convecting equilibrium). No particular

rotational state (clockwise, CW, or counterclockwise,

CCW) is favoured due to symmetry. At still higher heating

values, chaotic flow oscillations can be observed. In the

chaotic regime, the flow is observed to oscillate around one

unstable convecting equilibrium state until flow reversal.

Each flow reversals causes the system to transition between

CW and CCW rotational states.

2.1. Thermosyphon simulation

The reference state of the thermosyphon is represented

by a CFD-based numerical simulation in two spatial

dimensions (2-D). The details of the computational model

have been described in detail in a previous study by

Ridouane et al. (2009); however, for completeness, we

summarise here its essential elements.

It is assumed that the temperature differential DTw is

sufficiently small so that temperature-dependent variations

of material properties can be regarded as negligible, save

for the density. The standard Boussinesq approximation is

invoked, and all fluid properties are assumed to be constant

and evaluated at the reference temperature ðTh þ TcÞ=2.

The flow is assumed to be laminar, 2-D, with negligible

viscous dissipation due to low velocities. Under these

circumstances, the governing dimensionless equations

are the unsteady, 2-D laminar Navier�Stokes equations

along with the energy equation and equation of state for

the density. No slip velocity boundary conditions are

imposed on the walls, and isothermal boundary conditions

of Th and Tc are imposed on the heated and cooled lower

and upper walls, respectively.

Fig. 1. The thermosyphon has a simple circular geometry. The

bottom wall is heated to a constant hot temperature Th while the

top wall is maintained at the temperature Tc, creating a tempera-

ture inversion of hot fluid below cold fluid. If conduction alone

cannot stabilise this temperature inversion, then the fluid will begin

to rotate and convection becomes the dominant process of heat

transfer. The relevant model state variables are proportional to the

bulk fluid velocity u and the temperature difference across the loop

DT3�9. For CCW flow, as indicated by the arrow near 9 o’clock,

fluid velocity u > 0 and DT3�9 is typically �0. The radius ratio

R=r ¼ 24 used in our experiments is shown to scale.
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The dimensionless control parameter for convection is

the Rayleigh number, defined here as

Ra ¼ 8gcr3DTw

nj
; (1)

where g is the gravitational acceleration, c is the thermal

expansion coefficient, v is the kinematic viscosity and k

is the thermal diffusivity.

The one dimensionless geometric parameter is the

ratio of major (loop) radius R to minor (tube) radius r,

hereafter referred to as the radius ratio. Consistent with

the previous study, the dimensions of the loop are chosen

with R�36 cm and r�1.5 cm to yield a radius ratio

of 24.

As in the classic Rayleigh�Bénard problem, the

Rayleigh number determines the onset of convection in

the thermosyphon. For the numerical simulations on this

fixed geometry, a range of Rayleigh numbers can be

imposed by varying the value of the gravitational accelera-

tion. As the Rayleigh number is increased from 0, the

flow behaviour transitions from a stationary, conduction

state to a steady, unidirectional state of convection. At

still higher values of Ra, chaotic flow oscillations can be

observed. Unless otherwise indicated, the simulation results

presented in this paper correspond to a value of

Ra �1.5�105, which is within the chaotic regime.

All numerical simulations were performed using the

commercial CFD software ANSYS Fluent (2006), which

is based on the finite-volume method. (An example of the

output is shown in Fig. 8, in the discussion of flow

reversals.) During the course of the simulations, the time-

varying mass flow rate, a scalar denoted by q and

proportional to u, is saved at 10 s intervals. This reporting

interval is conservative, as laboratory thermocouples can

be sampled more than once per second. In doing so, a

timeseries of the ‘true’ synthetic thermosyphon state is

recorded to be used in a forecasting scheme.

2.2. Forecast model

The Ehrhard�Müller (EM) system is a three-variable

ODE derived specifically to model bulk flow in the

thermosyphon (Ehrhard and Müller, 1990; also see

Appendix S1 in the Supporting Information for an alter-

native derivation). Written in dimensionless form, the

governing equations are

dx1

dt0
¼ aðx2 � x1Þ (2a)

dx2

dt0
¼ bx1 � x2ð1þ Khðjx1jÞÞ � x1x3 (2b)

dx3

dt0
¼ x1x2 � x3ð1þ Khðjx1jÞÞ: (2c)

The state variable x1 is proportional to the mass flow rate

or mean fluid velocity, x2 to the temperature difference

across the convection cell (DT3�9, measured between 3

and 9 o’clock) and x3 to the deviation of the vertical

temperature profile from the value it takes during conduc-

tion; specifically, x3 / ðð4=pÞDTw � DT6�12Þ, where DT6�12

is the temperature difference measured between 6 and

12 o’clock. The parameter a is comparable to the

Prandtl number, the ratio of momentum diffusivity and

thermal diffusivity. Similar to the Rayleigh number, the

heating parameter b / DTw determines the onset of con-

vection as well as the transition to the chaotic regime.

Finally, K determines the magnitude of variation of the

wall heat transfer coefficient with velocity. The functional

form of that variation is determined by h : Rþ ! Rþ,

where

hðxÞ ¼
44
9

x2 � 55
9

x3 þ 20
9

x4 when xB1

x1=3 when x � 1

�
: (3)

The interested reader is referred to Appendix S1 in the

Supporting Information for an explanation of this piece-

wise form, which differs slightly from the original model

of Ehrhard and Müller (1990).

Note that when K�0, the system is analogous to the

Lorenz (1963) system, with geometric factor (Lorenz’s b)

equal to 1. The lack of a geometric factor in the EM system

is due to the circular geometry of the convection cell.

Lorenz equations have been widely used in non-linear

dynamics to study chaos and in NWP as a model system

for testing DA (Miller and Ghil, 1994; Yuen and Bau, 1999;

Annan and Hargreaves, 2004; Evans et al., 2004; Yang

et al., 2006; Kalnay et al., 2007).

When in the chaotic parameter regime, the EM

system exhibits growing oscillations in the x1 and x2 state

variables around their convecting equilibrium values until

flow reversal. In this system, the CCW rotational state

is characterised by x1 > 0 and x2 > 0, and the CW

rotational state by x1B0 and x2B0. However, one should

note that near a flow reversal x1 and x2 can have opposite

signs, because zero-crossings of the x1 variable typically

lag behind those of x2.

The parameters found to match the simulated thermo-

syphon were a ¼ 7:99, b ¼ 27:3 and K ¼ 0:148. The

characteristic time and mass flow rate scales, used to

transform the dimensionless model variables t0 and x1
into dimensional time and ‘observations’ of mass flow

rate, were 631.6 s and 0.0136 kg s�1, respectively. The

q scale is the one non-zero entry in the observation

operator H, eq. (4). The above parameters were found

using a multiple shooting algorithm explained in Appendix

S1.2 in the Supporting Information. Numerical integra-

tion of this autonomous ODE was performed with a

PREDICTING FLOW REVERSALS IN CHAOTIC NATURAL CONVECTION 3



fourth-order Runge�Kutta method and timestep 0.01

(corresponding to 6.316 s) in Matlab (2009).

2.3. Data assimilation

Data assimilation is the process by which observations

of a dynamical system are combined with forecasts from

a model to estimate error co-variances and calculate

an optimal estimate for the current state of the system,

called the analysis. The inherent difficulties are com-

pounded by the fact that the forecaster uses an inexact

forecasting model and never knows the true state of

the dynamical system. The number of state variables in

an NWP model is typically Oð103Þ times larger than

the number of observations. Nevertheless, the analysis

becomes the IC for a new forecast. The time interval

between successive applications of the DA algorithm, that

is the time between analysis steps (usually determined

by the availability of observations but here allowed to

vary), is called the assimilation window. The process is

shown in Fig. 2.

A variety of filters are capable of solving the DA

problem. The canonical example is the Kalman filter

(KF; Kalman, 1960), the optimal state estimation algo-

rithm for a linear system. One of DA’s first applications

was to trajectory estimation and correction of missiles

and rockets (Savely et al., 1972). A number of non-linear

DA schemes are implemented in this study. In 3-D

variational DA (3-D-Var; here 3-D refers to the spatial

dimensions for weather models), the background error

covariance is estimated a single time, offline, prior to the

DA procedure. In the extended Kalman filter (EKF),

background error is evolved according to the linear tangent

model, which approximates the evolution of small pertur-

bations about the trajectory. Ensemble Kalman filters

(collectively EnKFs) use ensembles of forecasts to estimate

the background error and better capture non-linear beha-

viour. The methods examined in this study were 3-D-Var,

the EKF, the ensemble square root Kalman filter (EnSRF)

and the ensemble transform Kalman filter (ETKF).

Detailed descriptions of each method are included in

Appendix S2 in the Supporting Information. A full review

of DA is beyond the scope of the present paper; for a

comprehensive treatment, we refer the reader to Kalnay

(2002).

3. Data assimilation experiments

3.1. Methods

A perfect model experiment, in which the Lorenz equations

were used to forecast a synthetic truth created by the

exact same system, was tested first but not included here.

We found analysis errors similar to those reported by

Yang et al. (2006) (3-D-Var and EKF) and Kalnay et al.

(2007) (ETKF), using the same model and tuning para-

meters. This ensured that the DA algorithms were working

before applying them to the synthetic thermosyphon data.

As stated in Section 2.1, forecasts of the thermosyphon

are made observing one scalar variable, the mass flow rate

q / x1. Gaussian noise with SD equal to 6�10�4 kg s�1,

approximately 0.8% of the mass flow rate climatological

mean,
ffiffiffiffiffiffiffiffi
hq2i

p
¼ 0:075812 kg s�1, is added to the synthetic

truth to create observations. The relative magnitude of this

error is comparable to that of experimental measurements.

The EM model is used in the forecast step to integrate

the analysis forward in time and create the new background

forecast. The end results of applying DA are a background

and analysis timeseries of x1; x2; x3, informed by both

the timeseries of thermosyphon mass flow rate and the

EM model dynamics.

In this realistic forecasting scenario, where only limited

information about the true state is available, the observa-

tions of state variable q provide the only validation. For

this reason, we calculate the forecast errors in observa-

tion space. These are given as root mean square error

(RMSE), where RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffi
hdq2i

p
. The residual at a

specific assimilation cycle is given by dq ¼ q�Hxb. Here,

xb is the background forecast made by the model, and

H : R3 ! R is the linear observation operator

H ¼ 0:0136; 0; 0½ � (4)
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Fig. 2. An illustration of the basic predict-observe-update DA

cycle. The EM model states (background forecast and analysis) are

transformed into observations of the mass flow rate q by the

observation operator [eq. (4)] for comparison with the truth. Here,

using the 3-D-Var algorithm and an assimilation window of 5min,

the filter has satisfactory overall performance (scaled error:35%).

Note the error spike around 135min when the forecast and truth

end up in different rotational states. The largest errors tend to

occur at or near flow reversals due to inherent sensitivity near that

transition and to the qualitatively different behaviour of the

different flow directions.
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in units of kilogram per second. All errors are then

scaled by
ffiffiffiffiffiffiffiffi
hq2i

p
, the climatology of q. Analysis error is a

common metric for assessing DA performance in perfect

model experiments. In this study, however, we assert that

background error is preferable. Analysis error in observa-

tion space, which will be small even for large assimilation

windows, is not an appropriate metric for assessing

model performance since it can disagree substantially

with the background error. For example, 3-D-Var in one

experiment with a 10-min assimilation window yielded

analysis and background scaled errors of 0.08 and 0.86,

respectively. The analysis error would seem to indicate

that forecasting is doing a good job, but the background

error shows that background forecasts are essentially

meaningless. The filter, however, accounts for this and

weights the observations heavily over the background

forecasts when producing the analysis. Since we are

concerned with forecasting, background error is a more

representative metric.
When applying DA to non-linear systems, some type

of covariance inflation is performed to prevent filter

divergence due to error underestimation. Kalnay et al.

(2007) found that a Lorenz forecasting model with a

slightly different forcing parameter required a 10-fold

increase in the multiplicative inflation factor when using

a three-member EnKF. Model error is more pronounced

for our forecasts, since the EM model is a reduced

approximation of the numerically simulated thermosy-

phon. We relied upon additive and multiplicative back-

ground covariance inflation to capture model error.

Additive inflation was particularly important for the

stability of the EKF and EnKFs. Additive noise provides

a different exploration of dynamically accessible regions

of state space, and it would be interesting to explore

why additive versus multiplicative is preferred in certain

cases, although this is beyond the scope of this paper.

The specifics of how inflation was performed and tuned,

and the parameters used are given in Appendix S2 in

the Supporting Information.

All EM and DA parameter tuning was performed using

a separate mass flow rate timeseries than was used for

validation. Each DA algorithm was allowed 500 cycles

to spin up, and its performance was measured over the

following 2500 cycles. Ensemble size in each case was

set to 10 members.

3.2. Results

With proper tuning, all DA algorithms were capable

of synchronising the EM model to observations of mass

flow rate alone. As the assimilation window increased,

scaled background error increased in a sigmoidal fashion,

as expected (see Fig. 3). For assimilation windows up to

2.5min, all DA algorithms have nearly indistinguishable

errors. For assimilation windows between 3 and 6min,

3-D-Var performs noticeably worse than the other meth-

ods, which remain indistinguishable. Then, with assimila-

tion windows greater than 6min, the ensemble methods

(EnSRF and ETKF) outperform the EKF noticeably. This

is perhaps surprising, at first glance, because the ensemble

size is significantly smaller than the dimension of the

simulated thermosyphon state space [Oð105Þ variables].

However, we know that the thermosyphon dynamics

effectively take place on the EM equations’ attractor

(a manifold in three dimensions). The superior perfor-

mance of EnKFs here is likely due to the ensemble methods

capturing non-linear effects that dominate at larger

windows.

Following the historical S1 score convention, scaled

error above 70% is considered a ‘useless’ forecast while

under 20% the forecast is ‘perfect’ (Kalnay, 2002). Perfect

forecasts for 3-D-Var were found up to a 4-min assimila-

tion window while the other methods (EnSRF, ETKF

and EKF) produced perfect forecasts with assimilation

windows 1.5min longer.

A persistent spike in background error for the 5-min

assimilation window (Fig. 3) is possibly due to that time

being approximately the same as the characteristic period

of oscillations in q (evident in Fig. 2). We conjecture that
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Fig. 3. Background RMSE scaled by
ffiffiffiffiffiffiffiffi
hq2i

p
over 2500 assim-

ilation cycles plotted for different DA algorithms and varying

assimilation windows. As the window becomes larger, the error

increases towards saturation. The lower dashed line in the main

figure shows the limit of a ‘perfect’ forecast while the upper

demarcates a ‘useless’ forecast.
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this may lead to a type of resonance in the DA-coupled

EM system, which degrades the DA performance.

Besides these results pertaining to forecast skill, we

also found that the DA algorithms infer thermosyphon

dynamics which are absent from the EM model. In Fig. 4,

we show the simulated thermosyphon’s attractor obtained

by both a time-delay embedding (Fig. 4a; Alligood et al.,

1996) and a projection of the EM analysis states to the

x1�x2 plane (Fig. 4b). If the thermosyphon fluid flow

stalls in the midst of a reversal, fluid in the bottom

can quickly heat up while that in the top is cooled, leading

to an unstable, strong temperature inversion. This causes

the fluid to move very quickly in the reversed direction,

but this new direction also ends up being unstable, and

a new flow reversal can occur immediately. Absent DA,

the EM model system does not exhibit this behaviour of

stalling followed by large swings of the trajectory.

In the time-delay embedding (Fig. 4a), this phenomenon

is exhibited by small loops in the trajectory as it moves

near the convective fixed points. The flow stalls when

the system state is near the conductive fixed point at the

origin, then it swings wildly, which brings it near the

convective fixed point, but in such a way that it does not

end up spiraling outward in the usual fashion as during a

normal flow reversal, as exhibited by the Lorenz equations.

Instead, it quickly reverses again, which we call non-Lorenz

behaviour. This non-Lorenz behaviour is further elabo-

rated upon in Section 4.5. Forecast skill is worst at the far

edges of the assimilated attractor (Fig. 4b). This could be

due to the wild swings of the EM trajectory after being

ejected from the region of state space near the conducting

equilibrium, or to the non-linear dynamical instabilities at

the edge of the attractor found by Palmer (1993) and Evans

et al. (2004).

We also explicitly show one of these stalled flow reversals

in Fig. 5, where we plot the EKF-assimilated EM trajectory

using a 30 s assimilation window. When the fluid stalls, the

x3 variable moves closer to 0 (i.e. DT6�12 increases) while x1
and x2 (proportional to q and DT3�9, respectively) are

approximately 0, reflecting the growing temperature inver-

sion while the fluid remains stationary. When the fluid

starts to move, the assimilated trajectory swings wildly to

the left attractor lobe (CW rotational state) and then right

(CCW rotational state). The trajectory undergoes another

stall-swing cycle before finally resuming Lorenz behaviour,

where the trajectory spirals outward from the CCW

convecting equilibria. This contrasts the Lorenz and EM

model dynamics, for which large deviations in the system

state from convecting equilibrium are driven close to the

other convecting equilibrium during a flow reversal, which

stabilises the system (see also Section 4.5, Fig. 7 and the

accompanying discussion). This result remains unchanged

for the other DA algorithms also using a 30 s assimilation

window. The inference remains using EKF and a 60 s

assimilation window, but the trajectory appears much

noisier, leading us to believe that this is due to the rapid

update. With larger assimilation windows, the trajectory

becomes uninterpretable as error in the unobserved vari-

ables increases.

Fig. 4. Two views of the numerically simulated thermosyphon

attractor. A time-delay reconstruction, using the monitored mass

flow rate, is shown in (a). In (b), plotted points show x1 and x2
of the EM analysis generated by EKF with an assimilation window

of 120 s. Each is coloured by the scaled background forecast error

at that point. The delay time of 60 s used for (a) was chosen

because it yielded a good approximation of the attractor in (b).

Note how in (a) trajectories that move through the far edge of

either lobe create distinctive loops near the centre of the opposite

lobe. This is an example of dynamics which are not present in the

EM model without DA. It may explain the higher error for points

in (b) at the far edge of each attractor lobe. See text for further

description and Fig. 5 for another example.
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4. Flow reversal experiments

4.1. Experimental setup

For the purpose of flow reversal forecasts, we picked

a single DA algorithm and assimilation window. In this

section, all analyses were generated by the extended KF

and an assimilation window of 30 s. This interval corre-

sponds to five time steps of the model and is shorter

than that used in Yang et al. (2006) and Kalnay et al.

(2007). The following could certainly be repeated using

other algorithms, observations and assimilation windows,

but this was beyond the scope of this paper. The flow

reversal tests in Section 4.3 and the residency time fore-

casts in Section 4.4 were tuned and validated on separate

analysis timeseries. The length of the tuning and validation

timeseries were approximately 39 and 93 d, respectively.

4.2. Occurrence of flow reversals: traditional

explanation

The first explanation of the mechanism responsible for

flow reversals was presented by Welander (1967) and

repeated by Creveling et al. (1975). Welander, who was

also the first to discover that thermosyphons exhibit

aperiodic oscillatory behaviour, explained the instability

of steady convecting flow by considering a thermal

anomaly or ‘warm pocket’ of fluid. For low heating

rates, the convecting equilibrium is stable because viscous

and thermal dissipation are in phase, thus an increase

(decrease) in flow rate leads to an increase (decrease) in

friction and a decrease (increase) in buoyancy, and such

perturbations are damped out. At higher heating rates,

the warm pocket is amplified with each cycle through the

loop due to out of phase viscous and thermal dissipations.

Welander explained that when the warm pocket emerges

from the heating section and enters the cooling section,

it feels a greater buoyant force than the surrounding

fluid and accelerates, exiting the cooling section quickly,

giving it less time to radiate away its energy. As the

pocket moves into the section with warm boundary, the

buoyant force it experiences is again higher than normal,

so now the pocket decelerates and passes slowly through

the heating section, gaining more energy. This positive

feedback effect causes the pocket to grow hotter and larger

with each pass through the loop. These oscillations in

the fluid temperature and velocity do not grow unhindered,

however. The pocket eventually becomes large and hot

enough that its descent towards the heating section is

stopped entirely by its own buoyancy. Without movement,

the pocket dissipates, but its remnant heat biases new

rotation in the opposite direction, and the flow reverses.

In the Lorenz and EM systems, this feedback is

embodied in the spiraling repulsion of trajectories from

the unstable convecting equilibria at the centre of each

lobe or wing of the attractor before moving to the other

lobe. Because the growth of oscillations is an important

component to the flow reversal process in both the CFD

simulated thermosyphon and EM system, we define here

what is meant by oscillation amplitude in each case.

In the CFD simulated thermosyphon, it is the maximum

distance of the system state from the nearest convecting

equilibrium, where system state is understood to mean the

state of the entire temperature and velocity flow fields in

the CFD simulation. When considering the DA-generated

EM analysis, the kth x1 oscillation amplitude xmax
1 is

defined as the maximum amplitude

xmax
1 ¼ max

t2T
jx1ðtÞj (5)

where T ¼ t
ðkÞ
0 ; t

ðkÞ
f

� �
is the time interval of the kth

oscillation.

4.3. Flow reversal forecasting methods

Three separate tests were developed to predict, at each

assimilation step, whether a flow reversal would occur

within the next oscillation period (approximately 11 min),

here taken to be within the next 20 DA cycles.

See Section 4.6 and Appendix S3 in the Supporting
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Fig. 5. The assimilated trajectory during a very large oscillation,

non-Lorenz flow reversal. The EKF algorithm with a 30 s

assimilation window was used. Colour indicates the scaled back-

ground error. The state starts (a) in the CCW rotational region and

stalls near the conducting state for an extended period, causing

fluid in the bottom to heat up, manifesting in an x3 that creeps

towards 0 with x1, x2:0, before the state swings quickly (b)

through one oscillation in the CW rotational state. This is followed

by one oscillation in the CCW state (c) before another stall near

the conducting point and subsequent swing (b again) before

settling into Lorenz-like oscillations (d). Note that the filter only

observes the x1 variable but is able to reconstruct the dynamics in

the full state space.
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Information for a description of how the tunable para-

meters were chosen.

4.3.1. Lead forecast. The simplest test forecasts a flow

reversal whenever the background forecast changes rota-

tional state. Note that to forecast a flow reversal occurring

in the future, the background forecast started from the

most recent analysis IC provides our only information

about the system’s future state. Ignoring the 3-D nature

of the state space, a flow reversal is forecast whenever x1
crosses through zero. Note also that the forecast is unable

to predict flow reversals that occur beyond the lead time,

and that lead forecast quality quickly degrades as the lead

time is increased. We impose a limit on the number of

assimilation cycles to look ahead, klead ¼ 7, so that the

algorithm does not trust forecasts too far in advance.

4.3.2. Bred vectors. An ensemble of perturbed states

forming a small ball around the analysis can be used to

represent uncertainty in the IC. A non-linear system will

dynamically stretch and shrink such a ball around its

trajectory as it moves through the attractor (Danforth and

Yorke, 2006). Small perturbations to points on a trajectory

are integrated forward in time, and the differences between

perturbed and unperturbed solutions are called bred

vectors (BVs). Here, the rescaling amplitude is 0.001, and

the integration time coincides with the 30 s assimilation

window.

The average BV growth rate is a useful measure of

local instabilities (Hoffman et al., 2009). Evans et al.

(2004), studying perfect-model forecasting of the Lorenz

system, set a BV growth rate threshold that accounted

for 91.4% of the observed flow reversals (hit rate).

Our BV test simply forecasts a flow reversal whenever the

average BV growth rate over the previous assimilation

window exceeds a threshold, qBV ¼ 0:6786.

4.3.3. Correlation. The final test uses the fact that

flow reversals are suspected to be caused by out of phase

viscous and thermal dissipation. Since the friction term

grows with fluid velocity / x1 and the thermal dissipation

grows with the size of the temperature anomaly, related

to x2, we examined the correlation between those two

variables over a tunable number of previous analysis

cycles. Specifically, when the slope of the least-squares

linear fit of kcorr ¼ 18 previous analysis points

½x2ðt� iÞ; x1ðt� iÞ�T for i ¼ 0; 1; . . . ; ðkcorr � 1Þ exceeds a

threshold qcorr ¼ 1:42, a flow reversal is forecast

(see Fig. 6 for an illustration of this process). Interestingly,

increasing autocorrelation of the state seems to be a

universal property of many systems in advance of cri-

tical transitions (Scheffer et al., 2009; Hines et al., 2012).

4.4. Forecasting residency times in the new rotational

state

We found that the analysis’ x1 oscillation amplitude

preceding each flow reversal is correlated with the duration

of the following rotational state, as shown in Fig. 7.

We refer to these durations between flow reversals as

residency times. Residency times are observed at discernible

‘steps’ corresponding to integer numbers of oscillations.

This correlation makes the x1 oscillation amplitude a

plausible predictor for residency time in the new rotational

state.

Furthermore, the average BV growth rate measured

over the assimilation window preceding that extremum

follows a clear gradient in Fig. 7, the growth rate increasing

with oscillation amplitude. The BV growth rate gradient

implies that more unstable system states precede longer

residency times in the next rotational state. Outliers with

xmax
1 �14:5 result in shorter residency times than expected

from making similar plots to Fig. 7 for the pure Lorenz

and EM systems (not shown). In the Lorenz and EM

systems, the steps continue to move upwards with x1
oscillation amplitude. The discrepancy is due to the non-

Lorenz behaviour that was mentioned at the end of

Section 3.2.

Our residency time prediction algorithm proceeds as

follows. When a flow reversal is forecast by one of the
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Fig. 6. Correlation test: whenever the slope (green) of the

½x2; x1�
T
correlation exceeds a threshold (red), a flow reversal is

forecast. Correct positive predictions are shown as filled circles and

false positives as open circles. The starred point corresponds to the

inset, which shows how correlation is computed as the slope of the

least squares fit (green line) of previous analysis points, and the

arrow shows the direction of the trajectory. Note that each analysis

cycle where the correlation fails to exceed the threshold counts as a

correct negative forecast (not shown). There are no false negatives,

that is misses, in this timeseries. Here, qcorr and kcorr are the same as

for Table 1.
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methods described in Section 4.3, the algorithm first

calculates xmax
1 as defined by eq. (5) for the presently

occurring oscillation. The algorithm uses only the analysis

and lead forecast data available at the time the flow

reversal test is triggered when estimating xmax
1 . The algo-

rithm then examines the residency times of all flow

reversals, which followed an xmax
1 in the interval

xmax
1 � 0:5; xmax

1 þ 0:5ð Þ. These ordered pairs of amplitudes

and residency times are drawn from the training timeseries.

From the relative abundance of residency times in this

sample, we assign a probability to the number of flow

oscillations in the forthcoming rotational state (see the inset

histogram in Fig. 7). The categories are restricted to

one to six oscillations (a duration of seven oscillations, as

shown in Fig. 7, is observed exactly once in the training

timeseries, so it was considered too rare an event to merit

a category). The typical residency times corresponding to

one, two, three, four, five and six oscillations are taken

to be 11.48, 23.09, 33.72, 44.38, 55.11 and 66.08min,

respectively; the oscillation category associated with a

given residency time is taken to be that with the closest

time in this list. This algorithm generates a probabilistic

forecast from the relative abundance of points in each

oscillation category. An example output would be 20, 40,

30 and 10% chance of one, two, three and four oscillations

in the next rotational state and zero probability of five

or six oscillations.

4.5. New details regarding the flow reversal

mechanism

Not all flow reversals occur when the system reaches

the same flow oscillation amplitude, nor do all rotational

states last the same amount of time. During a flow

reversal, the fluid motion stalls after hot fluid extends

across the entire heating section into the cooling section

(see Section 4.2 and Fig. 8). The magnitudes of this hot

‘tongue’ and, likewise, the opposite cold tongue affect the
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Fig. 7. Residency time in the new rotational state is plotted versus the amplitude of x1 (proportional to the mass flow rate) at the last

extremum before flow reversal. This amplitude is calculated from the EM model EKF analysis of thermosyphon observations, using a 30 s

assimilation window. This figure contains over 39 d of simulated flow and 1796 flow reversals. Points are coloured by the average BV
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axes. Inset, upper left: a timeseries corresponding to a single point in the scatter plot, marked with a black cross. The x1 oscillation
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showing the likelihood of residency times following an xmax
1 2 ð11; 12Þ. This is the interval that we would consider for an x1 oscillation

amplitude of 10.5 preceding flow reversal. The most likely residency time is about 23min or two oscillations, the middle ‘step’ for the

histogram range.
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stability of the system as it reverses. If the oscillation is

small, it will mostly dissipate before the new rotational

state is entered, bringing the temperature profile close to

that of conduction. This is a highly unstable equilibrium,

since the vertical temperature gradient builds until the fluid

in the bottom is much hotter than the fluid above

(illustrated in the analysis in Fig. 5). When the fluid begins

to rotate, it accelerates rapidly. The large amount of heat

carried by the fluid brings the system state far from the

convecting equilibrium. If the oscillation is large (corre-

sponding to a large deviation from convecting equilibrium

in temperature and velocity), remnant warm and cool areas

will be present in the top and bottom sections of the loop,

respectively. These stabilise the new rotational state near its

convective equilibrium. The resulting duration is longer

since the instability requires more time to grow before

causing the next reversal. These two situations are shown in

Fig. 8 and explain the trend in the Lorenz region of Fig. 7.

Animations of the simulated temperature field during

flow reversal are consistent with this explanation. A movie

similar to the case shown in Fig. 8 is provided as

supplementary material and may also be found online at

http://www.uvm.edu/�kharris/thermosyphon/T-Ra-18000-

new.mp4.

We believe that the behaviour in the extremely large

oscillation, non-Lorenz region, where xmax
1 �14:5 and

shown in Fig. 7, is caused by excessive remnant thermal

energy after flow reversal. Although the temperature

distribution present after a flow reversal is configured in

a way that stabilises the flow in the new rotational state,

the very large magnitude of the temperature field is a

competing, destabilising factor that dominates as xmax
1

increases into the non-Lorenz region. This leads to shorter

durations in the new rotational state before a second flow

reversal occurs.

4.6. Flow reversal forecast skill

The results of the three tests are shown in Table 1 as two-

by-two contingency tables. Table 2 shows the threat score

(TS), false alarm ratio (FAR) and probability of detection

(POD) (Wilks, 1995). Given a non-probabilistic yes/no

forecast with a hits, b false alarms, c misses and d correct

negatives for a total of n events, these are defined as

TS ¼ a=ðaþ bþ cÞ, FAR ¼ b=ðaþ bÞ, POD ¼ a=ðaþ cÞ.
Because flow reversals are relatively rare events, the hit

rate ðaþ dÞ=n would be dominated by correct negatives.

Instead, TS is chosen as an appropriate overall perfor-

mance metric since it disregards these frequent negative

events and takes into account both false alarms and misses.

There are trade-offs among the various skill scores for

each flow reversal test. Tuning the reversal tests then

amounts to multiobjective optimisation, attempting to

maximise TS, RPS-avg and RPS-med (the skill scores

used for residency time forecasts, defined in Section 4.7),

minimise FAR and maintain POD above 95%. The goal

was to tune each method to all-around good performance,

for both reversal occurrence and residency time forecasts.

To guide the process, plots of the skill scores were made for

different tuning parameters, but the final tuning was

performed ad hoc. In Appendix S3 in the Supporting

Information, Fig. S3-2 shows one of these tuning experi-

ments, with the final parameters chosen appearing in the

centre of each subfigure.

Considering TS alone, the lead forecast performed best,

followed by the correlation test, with the BV test perform-

ing poorest. The BV test also had a very high FAR, leading

us to conclude, in contrast to the results of Evans et al.

(2004) for a perfect model experiment, that BV growth rate

is a poor overall predictor of flow reversals in a realistic

thermosyphon. On the other hand, the correlation test had

the lowest FAR while maintaining a high TS, but this

comes at the price of more misses, resulting in a lower

POD. The reasonable performance of the correlation test in

all areas lends circumstantial evidence to the claim that out

of phase dissipations are indeed the cause of flow reversals.

The flow reversal occurrence tests are triggered in

different situations, leading to variation in how far in

advance flow reversals are detected, the ‘warning time’.

Warning times were only computed for hits, that is forecast

flow reversals that were observed to occur. The lead, BV

and correlation tests had average warning times of 175,

217 and 304 s, respectively. Histograms of these warning

times are presented in Appendix S3 in the Supporting

Information.

4.7. Residency time forecast skill

A näive way of forecasting residency times would assign

each possible outcome a probability equal to that measured

from the climatology. In our case, this would amount to

using the marginal distribution of oscillation occurrence.

However, our method also takes into account the xmax
1

before the flow reversal (i.e. the joint distribution of events

by oscillation occurrence and xmax
1 ), which we have shown

contains important information about the number of

oscillations that the system will undergo in the new

rotational state. Therefore, we compare our method to

climatology using a ranked probability skill score (RPS,

see Wilks, 1995). This is only computed in the case of hits.

We actually computed two variants, by taking either the

mean (RPS-avg) or median (RPS-med) of the ranked

probability scores for each reversal event when computing

the skill. The results are shown in Table 2. The lead forecast

test performs best, followed by the BV test and the

correlation test. Unsurprisingly, the flow reversal tests
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Fig. 8. Temperature profiles before and after two flow reversals for the chaotic regime in units of Kelvin. For ease of visualisation, the

radius ratio is reduced to 3 (Ra ¼ 1:8� 104). The amplitude of the oscillation shown in (a) is relatively weak; the temperature profile

quickly approaches (b) that of conduction (c) where it heats up significantly before the reversal. The extreme instability of the conducting

state, near time 20min, produces a large oscillation in the CW direction (d), immediately causing another flow reversal back to CCW. As

the system enters the new rotational state, remnant heat stabilises the flow [contrast (e � f) with (b �c)], necessitating a longer residency in

the new rotational state while the instability grows (g � i) (note that for the radius ratio of 24 no more than seven oscillations are ever

observed).
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with smaller warning times performed better when making

residency time forecasts. Because there is more information

about the system state immediately preceding a flow

reversal if the warning time is small, the residency time

forecast is better informed. The magnitude of the improve-

ment over climatology is large for all methods. The RPS

scores in Table 2 are similar to or better than those for

probabilistic forecasts in NWP (Doblas-Reyes et al., 2000;

Tippett and Barnston, 2008).

5. Conclusion

Data assimilation was shown to be an effective way of

coupling a simplified model to CFD simulations of the

thermosyphon. Although background forecast errors were

always larger than observational noise, climatically scaled

background error was small for reasonable assimilation

windows. Proper tuning of multiplicative and additive

inflation factors was essential for avoiding filter divergence

and achieving low forecast error. All of the DA methods

used in this study accurately capture the behaviour of the

thermosyphon with short assimilation windows. Among

the DA methods, the ensemble methods show advantages

over 3-D-Var and EKF with longer assimilation windows,

when non-linear error growth becomes important. With

frequent analysis update, DA can reveal non-Lorenz

behaviour in the thermosyphon even with the EM (Lor-

enz-like) model.

Three different predictors of flow reversals were pro-

posed and tested with reasonable success. In comparison

with the two rules in Evans et al. (2004) for predicting the

behaviour of the Lorenz trajectory, the BV growth rate is a

useful measure of the EM model’s dynamical instabilities,

but it does not perform well on its own as a predictor of

flow reversals. Finally, the amplitude of the final oscillation

in the current rotational state was found to be correlated

with the residency time in the following rotational state,

and we provide a physical explanation for this phenomen-

on, elaborating on the details of flow reversals. Oscillation

amplitudes were then used to create probabilistic forecasts

of those residency times with significant improvements over

climatology.

A laboratory thermosyphon device is in construction.

The next stage of this research will apply similar methods

to forecasting the system state, flow reversals and residency

times using 3-D numerical flow simulations. Spatially

aware DA techniques, such as the local ETKF (Kalnay

et al., 2007; Hunt et al., 2007), could be applied to finite-

volume or finite-element models to study the spatial

structure of the fluid flow and error growth. These

imperfect model experiments could be used to compare

the relative performance of other DA algorithms (4-D-Var,

Kalnay et al., 2007), synchronisation approaches (adaptive

nudging, see Yang et al., 2006) and empirical correction

techniques (Danforth et al., 2007; Li et al., 2009; Allgaier

et al., 2012).

Although the thermosyphon is far from representing

anything as complex and vast as Earth’s weather and

climate, there are characteristics our toy climate shares with

global atmospheric models. Sophisticated atmospheric

models are, at best, only an approximate representation

of the numerous processes that govern the Earth’s climate.

Both global weather models and the EM model parame-

terise fine-scale processes that interact non-linearly to

determine large-scale behaviour. Clouds and precipitation

are subgrid-scale processes in a global weather model, and

the correlations for the heat transfer and friction coeffi-

cients are parameterisations of fluid behaviour on a finer

scale than can be dealt with in the reduced model. Cloud

formation is only partly understood, and moist convection

is an area of active research where some models bear

similarities to the EM model considered here (Weidauer

et al., 2011).

The methods we use to forecast the toy model are also

similar to the methods used for global geophysical systems.

Both require state estimation to find the IC from which to

generate forecasts. Also, when forecasts are made in either

Table 1. Contingency tables for the three flow reversal tests

Forecast Observed

Yes No

(a) Lead forecast (n�175 592)

Yes 4472 744

No 13 170 363

(b) BV test (n�121 120)

Yes 4383 3203

No 102 121 258

(c) Correlation test (n�174 925)

Yes 3540 239

No 945 170 201

The parameters used were: qcorr ¼ 1:42, kcorr ¼ 18, qBV ¼ 0:6786

and klead ¼ 7. For a detailed description of the tuning, see the text

and Fig. S3-2 in Appendix S3 in the Supporting Information.

Table 2. Skill scores for flow reversal categorical forecasts (TS,

FAR and POD) and residency time probabilistic forecasts (RPS-

avg and RPS-med) for the three tests

Method TS FAR POD RPS-avg RPS-med

Lead 86 14 �99 71 87

Bred vector 57 42 98 67 86

Correlation 75 6 79 58 74

Note that for TS and POD, a perfect score is 100% while a perfect

FAR is 0%; RPS scores should be interpreted as a percent

improvement over climatology, so that any RPS�0 is an

improvement.
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system, climatology and dynamically accessible regimes are

often more important than specific behaviour: the occur-

rence of flow reversals for the thermosyphon; periodic

behaviour such as the El Niño Southern Oscillation and

statistics such as globally and regionally averaged tempera-

tures and their effects on rainfall, ice cover, etc. for climate.

Each of these is a statistic that must be post-processed from

the model output. To meet these global challenges, many

tools are needed in the modelling toolbox. These techniques

may also be useful for forecasting sociotechnological

systems, which are rapidly gaining importance as drivers

of human behaviour. In this way, toy models can provide

us with insights that are applicable to the important

scientific problems of today.
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