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ABSTRACT

We introduce a new formulation of the ensemble forecast sensitivity developed by Liu and Kalnay with a small

correction from Li et al. The new formulation, like the original one, is tested on the simple Lorenz 40-variable

model. We find that, except for short-range forecasts, the use of localization in the analysis, necessary in

ensemble Kalman filter (EnKF) when the number of ensemble members is much smaller than the model’s

degrees of freedom, has a negative impact on the accuracy of the sensitivity. This is because the impact of an

observation during the analysis (i.e. the analysis increment associated with the observation) is transported by

the flow during the integration, and this is ignored when the ensemble sensitivity uses a fixed localization. To

address this problem, we introduce two approaches that could be adapted to evolve the localization during the

estimation of forecast sensitivity to the observations. The first one estimates the non-linear evolution of the

initial localization but is computationally expensive. The second one moves the localization with a constant

estimation of the group velocity. Both methods succeed in improving the ensemble estimations for longer

forecasts.

Overall, the adjoint and ensemble forecast impact estimations give similarly accurate results for short-

range forecasts, except that the new formulation gives an estimation of the fraction of observations that

improve the forecast closer to that obtained by data denial (Observing System Experiments). For longer-range

forecasts, they both deteriorate for different reasons. The adjoint sensitivity becomes noisy due to the forecast

non-linearities not captured in the linear tangent model and the adjoint. The ensemble sensitivity becomes less

accurate due to the use of a fixed localization, a problem that could be ameliorated with an evolving adaptive

localization. Advantages of the new formulation include it being simpler than the original formulation and

computationally more efficient and that it can be applied to other EnKF methods in addition to the local

ensemble transform Kalman filter.

Keywords: Ensemble Kalman Filter, forecast sensitivity, observation impact, skill dropout, ensemble sensitivity,

data assimilation

1. Introduction

Langland and Baker (2004; LB04) wrote a fundamental

paper, showing how to answer the question: ‘‘Did the use of

any subset of the observations make the forecast better or

worse?’’ without having to carry out analyses and forecasts

with and without assimilating those observations, as re-

quired in conventional Observing System Experiments

(OSEs). Gelaro andZhu (2009;GZ09) derived a formulation

equivalent to LB04. These estimations of forecast sensitivity

to observations are based on adjoint sensitivity and have

proven to be a powerful monitoring tool adopted opera-

tionally at Naval Research Laboratory (NRL) andNational

Aeronautics and Space Administration/Global Modeling

and Assimilation Office (NASA/GMAO).

Liu and Kalnay (2008; LK08) proposed an ensemble

Kalman filter (EnKF) formulation algorithm equivalent to

LB04 or GZ09, without requiring the adjoint of either the

forecast model or the data assimilation scheme. Li et al.

(2010; LLK10) pointed out a minor error in the original

LK08 formulation and noted that the cost function

measuring the impact of the observations at the initial
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time on the forecast could be computed directly rather than

through the gradient of the cost function. LK08 and

LLK10 tested the ensemble sensitivity formulation within

the Local Ensemble Transform Kalman Filter (LETKF;

Hunt et al., 2007) coupled with the Lorenz and Emanuel

(1998) 40 variables model and found results comparable to

those obtained using the adjoint sensitivity, and Kunii et al.

(2012) successfully applied this methodology on real

observations for tropical cyclone prediction.

Here we present a formulation of the ensemble forecast

sensitivity to observations based on the direct computation

of the cost function, without computing its gradient.

Although it is essentially equivalent to the original LK08/

LLK10 formulation, it is simpler and computationally more

efficient since it uses available EnKF products. Unlike the

original LK08 formulation, it can be applied to the

Ensemble Square Root Filter (EnSRF; Whitaker and

Hamill, 2002) in which the analysis weights of the

background ensemble members cannot be explicitly

computed.

In addition, we find that the use of localization, necessary

in EnKF when the number of ensemble members is much

smaller than the number of degrees of freedom (DOF) of the

model, reduces the accuracy of the ensemble forecast

sensitivity. We show that two approaches to evolve the

observation localization during the forecast improve the

results.

Section 2 presents the new formulation and compares it

with the original one. Section 3 describes the experimental

design. Results from the two ensemble formulations and

from the adjoint sensitivity are compared in Section 4 using

the Lorenz and Emanuel (1998) model. Section 5 is a

summary of the results and relative advantages and a

discussion of the impact of localization on the EnKF

forecast sensitivity.

2. Adjoint and ensemble formulations

Let �xf

tj0 represents a forecast started from the analysis �xa
0 at

time 0 and verifying at time t. The overbars are used to

indicate ensemble mean and are relevant only for the

ensemble sensitivity formulation so that they can be ignored

in the adjoint sensitivity formulation. The perceived fore-

cast error at the verification time t from a forecast started

at time 0, and verified against the analysis �xa
t valid at

time t, is given by etj0 ¼ �xf

tj0 � �xa
t . The corresponding error

from the forecast started at time t��6 h is given by

etj�6 ¼ �xf

tj�6 � �xa
t (see schematic Fig. 1). Six hours is a typical

data assimilation window for numerical weather prediction

(NWP), but it could be different depending on the system of

our interest, for example, 1 h for mesoscale NWP, or 1 week

for global ocean data assimilation. As indicated in Fig. 1,

the difference between the forecast errors etj0and etj�6 at

verification time t is only due to the observations y0

assimilated at time 0 that change the background �xb
0j�6 by

the analysis increment

d�x0 ¼ �xa
0 � �xb

0j�6

� �
¼ Kdy0: (1)

Here K is the gain matrix that defines the data assimila-

tion algorithm, dy0 ¼ y�H �xb
0j�6

� �� �
is the observational

increment with respect to the first guess, and H is the

non-linear observation operator. We indicated with a

superscript b the 6-h forecast started from the analysis at

time �6 h and used as background at time 0.

LB04 introduced a cost function to measure the impact

of the observations at time 0 on the forecast at time t as the

difference between the squares of the forecast errors with

and without assimilating the observations y0:

J ¼ De2 ¼ ðe2
tj0 � e2

tj�6Þ ¼ eT
tj0Cetj0 � eT

tj�6Cetj�6

h i
; (2)

where the matrix of weights C defines the squared

norm to be used (dry total energy in the case of LB04

and GZ09).

Here we follow the suggestion of LLK10 and compute

the sensitivity to observations directly from the cost

function eq. (2) rather than from a Taylor series approx-

imation and assume that the forecast length is short enough

to allow the use of the linear tangent model

�xf

tj0 � �xf

tj�6

� �
� M �xa

0 � �xb
0j�6

� �
:

De2 ¼ eT
tj0Cetj0 � eT

tj�6Cetj�6 ¼ etj0 � etj�6

� �T

C etj0 þ etj�6

� �

¼ �xf

tj0 � �xf

tj�6

� �T

C etj0 þ etj�6

� �
� M �xa

0 � �xb
0j�6

� �h iT

C etj0 þ etj�6

� �
¼ MKdy0

� �T
C etj0 þ etj�6

� �
:

(3)

analysis time t

et|0

–6 hr 00 hr

et|–6

y0

Perceived
Forecast
Errors

Fig. 1. Schematic of the perceived forecast error etj0verified

against the analysis at the verification time t from two forecasts

started from the analysis at t�0 h, and from the analysis at

t��6 h etj�6. Since the forecast started at t��6 h serves as

first guess for the analysis at t�0 h, the only difference between

the two forecasts is the assimilation of the observations y0 at

t�0 h. Adapted from Langland and Baker (2004).
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LB04 and GZ09 solve eq. (3) by using the adjoint approach

(cf. eq. (7) in LB04 and eq. (7) in GZ09):

De2 � dyT
0 KT MT C etj0 þ etj�6

� �
; (4)

thus requiring the adjoint of both the model (MT) and of

the data assimilation (KT).

In their corrected ensemble formulation, LLK10 used the

LETKF formulation (Hunt et al., 2007) to rewrite eq. (3) as

De2 � dyT
0

~KT XfT

tj�6C etj0 þ etj�6

� �

� dyT
0

~KT XfT

tj�6C 2etj�6 þ Xf

tj�6
~Kdy0

� �
(5)

[cf. eq. (9b) in LLK10]. Here ~K ¼ ðK � 1ÞIþ ðHXbÞT
�

R�1HXb��1ðHXbÞT R�1 is an intermediate matrix used in

the LETKF, K is the number of ensemble members, and

Xf

tj�6is a matrix whose columns are the forecast ensemble

perturbations with respect to the mean, started from the

analysis at time �6 h and valid at time t. Equation (5)

requires estimating the Kalman gain matrix at each grid

point and is therefore computationally burdensome.

In the new formulation of the forecast sensitivity in a

deterministic EnKF framework, we start from eq. (3) and

use the Kalman gain matrix K ¼ 1
K�1

Xa
0XaT

0 HT R�1

and the matrix Ya
0 ¼ HXa

0 composed of analysis ensemble

perturbations in observation space. Here Pa
0 ¼ 1

K�1
Xa

0XaT
0 is

the analysis ensemble error covariance. We can then write

MK ¼ 1
K�1

MXa
0XaT

0 HT R�1 � 1
K�1

Xf

tj0YaT
0 R�1 so that the cost

function eq. (3) becomes

De2 � 1

K � 1
dyT

0 R�1Ya
0XfT

tj0C etj0 þ etj�6

� �
: (6)

Each column k of the perturbation forecast matrix XfT

tj0
can be computed with the full non-linear model

MðxaðkÞ
0 Þ �MðxaðjÞ

0 Þ
h i

. The new formulation eq. (6) uses

analysis ensemble products rather than the Kalman

gain and is more efficient than the original LK08/LLK10

formulation eq. (5). Unlike eq. (5), the new formulation eq.

(6) does not introduce an approximation of etj0 þ etj�6

� �
,

and it uses MXa
0 � Xf

tj0 rather than MXb
0j�6 � Xf

tj�6 used in

eq. (5). As a result, although the two formulations are

essentially equivalent, eq. (6) should be slightly more

accurate than eq. (5). In addition, this formulation can be

applied to EnKF methods other than the LETKF.

3. Experimental design

We use the Lorenz and Emanuel (1998) 40 variables model

for the experiments. This model is governed by the

equation:

dxj

dt
¼ xjþ1 � xj�2

� �
xj�1 � xj þ F ; (7)

where j is an index of the variables and 15j540 with

periodic boundary conditions. As in LK08, we allow for

model errors by using F�8.0 for the truth run and F�7.6

for the data assimilation cycle and the forecast. The time

integration is performed with the fourth-order Runge-

Kutta scheme with time step 0.01 in non-dimensional

time. Data assimilation with the LETKF is performed

every 0.05 time units, estimated by Lorenz and Emanuel

(1998), to be equivalent to 6 h when F�8.0. Observations

are created at every grid point on each analysis time

by adding independent Gaussian random errors with a

standard deviation (SD) of 0.2 to the truth run. Like the

experiment in LK08, observations at the 11th grid point

have larger random errors (SD of 0.8), but we still use 0.2

as the observation errors for these observations in the

assimilation process. We run 10 sets of 14,600 data

assimilation cycles with different truth runs. In each set,

we verify over the last 14,360 cycles.

We performed observation impact estimations using the

three methods LB04/GZ09 (eq. 4 using adjoint formula-

tion, denoted 4-ADJ), LK08/LLK10 (eq. 5, denoted

5-OLD) and the new ensemble formulation (eq. 6, denoted

6-NEW). For the adjoint formulation, the gradient of the

cost function is constructed at forecast time and brought

back to the initial time by the adjoint model as in LB04/

GZ09. In the Runge-Kutta time scheme, the non-linear

trajectories are used at every time step and substep of the

time integration for the adjoint operation. The adjoint code

is validated by the test described in Appendix. The same

background covariance (full matrix with the same covar-

iance localization as in the EnKF) is constructed from the

EnKF perturbations and used in the computation of KT.

Since EnKF requires space localization when the number

of ensemble members is much smaller than the number of

DOF of the model, comparisons are made both with and

without localization. For the experiments with localization,

we applied a Gaussian localization function with an

e-folding scale of 3
ffiffiffi
2
p

grid points. The same localization

is also applied to the observation impact estimation (Kunii

et al., 2012). For the LK08/LLK10 method (5-OLD),

A SIMPLER FORMULATION OF FORECAST SENSITIVITY TO OBSERVATIONS 3



observation impacts are computed on each grid point

j and observation l as

De2
� �

j;l
¼ dy0

� �
l

~K Xf T
tj�6

� �
j
Cjj 2 etj�6

� �
j
þ Xf

tj�6

� �
j

~Kdy0Þ
	 


l

:

�

(8)

The same localization as in the LETKF analysis is applied

in the computation of ~K so that it does not explicitly appear

in eq. (8). For eq. (6) (the NEW formulation), this becomes

De2
� �

j;l
¼ 1

K � 1
dy0

� �
l

qjR
�1Ya

0 Xf T
tj0

� �
j
Cjj etj0 þ etj�6

� �
j

� 


l

;

(9)

where rj is the localization function on grid point j. Both

eq. (8) and eq. (9) can be simply summed up to get the

impact of each observation. The localization function is

fixed during the analysis and forecast times except as noted

in Section 4.3. Multiplicative inflation (Anderson, 2001)

is applied with a tuned parameter of 1.152. The observation

impact estimations are computed at the forecast times

equivalent to 6 h and 0.5, 1, 2, 3, 5 and 7 d.

4. Results

In Section 4.1, experiments are made with an ensemble of

40 members (same as the number of DOF of the model) so

that no spatial localization is needed. In Section 4.2, we run

the ensemble with only 10 members, more representative of

operational applications for which the number of ensemble

members is much smaller than the model DOF, so that

localization is required. Since the results deteriorate with

the use of localization, in Section 4.3 we introduce two

methods that ameliorate this problem in longer forecasts,

and compare the percentage observations that improve the

forecasts in each of the methods with that obtained with a

much more expensive OSE. In Section 4.4, we compare

how well the different methods can detect ‘‘bad’’ observa-

tions with much higher error variance than specified in the

assimilation system.

4.1. Analysis with 40 ensemble members without

localization

Table 1 shows the average forecast error reduction amount

of each experiment. For completeness, our results include

estimates of forecast error reduction compared with values

obtained from (1) the truth run and (2) the analysis cycles,

as the truth is not known in real forecast applications.

Because the number of ensemble members is as large as the

number of DOF of the model, spatial localization is not

required and, therefore, not applied here. The verification

results against the analysis have very similar means and

SDs as the verifications against the truth. The adjoint

formulation (eq. 4) and the new ensemble formulation

(eq. 6) both estimate well the average impacts throughout

the forecast range, with eq. (6) being the most accurate at

longer forecast ranges but with much higher SD. The old

ensemble formulation (eq. 5) estimates similar, sometimes

slightly better, observation impacts up to 3-d forecast but

tends to underestimate the average impact for longer

forecast times.

Figure 2 shows a skill score (SS) of the corresponding

time�mean root mean square error (RMSE) of the different

estimations of the total forecast error reduction verified

against the true error reduction:

SSestimated ¼

P
time

De2
trueð Þ2

	 �1=2

�
P
time

De2
true � De2

estimatedð Þ2
� 
1=2

P
time

De2
trueð Þ2

	 �1=2
;

so that if the estimated reduction is always zero, SS�0,

and if the estimated reduction always agrees with the true

reduction (eq. 2), SS�1. Note that in Figs. 2�4, the skill

peaks at 2�3 d because the forecast error is estimated

against the analysis (affected by observation errors) and

verified against the truth. It is only after a day or two that

the forecast errors become large compared to the analysis

errors. The performance of the adjoint and ensemble

estimations is essentially identical for the first 2 d of the

forecast, but the estimation by equation (4-ADJ) is some-

what better at 3- and 5-d forecasts, with the new ensemble

Table 1. Forecast error reduction of each formulation averaged over time and over 10 experiments. Truth and analysis show the average

forecast error reduction verified against the truth, and against the analysis, respectively. Values in the parenthesis show the standard

deviation of the 10 experiments. All values are multiplied by 100. No localization was used in the LETKF

6 hr 12 hr 1 d 2 d 3 d 5 d 7 d

Truth �24 (0) �33 (0) �57 (0) �122 (3) �218 (8) �606 (29) �1171 (52)

Analysis �27 (0) �32 (0) �53 (0) �116 (3) �211 (8) �593 (29) �1152 (51)

(4-ADJ) �23 (0) �28 (0) �46 (0) �101 (2) �181 (6) �467 (22) �840 (82)

(5-OLD) �27 (0) �33 (0) �54 (0) �121 (2) �218 (7) �421 (21) �260 (27)

(6-NEW) �31 (0) �37 (0) �60 (1) �128 (3) �220 (9) �564 (41) �1167 (86)
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formulation (6-NEW) better than the old one (5-OLD).

The adjoint formulation (4-ADJ) becomes increasingly

inaccurate and noisy beyond 6 d because, as shown in the

Appendix, the linearization assumption made in the adjoint

model does not hold anymore.

4.2. Analysis with 10 ensemble members and fixed

localization

Figure 3 and Table 2 are the same as Fig. 2 and Table 1 but

with only 10 ensemble members and now introducing

localization in the analysis. As a benchmark, no localiza-

tion was applied to the ensemble-based observation impact

computations, shown in Fig. 3 as (5-OLD) Noloc and

(6-NEW) Noloc. Compared with the results of 40 ensemble

members without localization, the accuracies of both en-

semble sensitivity methods in terms of RMSE are strongly

degraded relative to the adjoint sensitivity, especially for

(6-NEW) Noloc. This suggests that with much fewer

ensemble members compared to the number of DOF

of the model, spatial localization is also required in the

computation of the observation impacts. Fig. 4 shows

a graph similar to Fig. 3, but now with fixed spatial

localization (as in eqs. 8 and 9), denoted (5-OLD) Fxloc

and (6-NEW) Fxloc, respectively. The RMSEs of both

ensemble-based estimations are improved with the fixed

localization.

Table 2 includes the average forecast error reduction of

these experiments, as well as the new moving localization

methods introduced in Section 4.3. Although the RMSE

of the estimates is reduced by applying the localization,

the average estimate of (6-NEW) with fixed localization

(Fxloc) tends to underestimate the impacts especially for

the longer forecast times. Results using (5-OLD) have the

wrong sign, so clearly the new formulation eq. (6) outper-

forms eq. (5) in the estimation of the mean when the

ensemble size is smaller than the model DOF.

4.3. Analysis with 10 ensemble members and forecast

sensitivity with moving localization

The analysis increment for any observation (i.e. the impact

of the observation) evolves through the forecast. The

localization function should include this evolution, other-

wise the ensemble sensitivity will miss most of the observa-

tion impacts on longer forecast times. Unfortunately, the

localization used in eqs. (8) and (9) is fixed so that it should

become less accurate for longer forecasts.

The problem of how to evolve optimally the localization

function in the computation of the forecast sensitivity is not

trivial, and solving it is beyond the scope of this paper.

Here we show two approximations that could be used in

real systems.

The first approximation is to move the localization

function (a Gaussian localization function centred on the

location of observation l) with the non-linear incremental

evolution (denoted NL-loc). The localization function

of the observation l is added to the ensemble mean ana-

lysis field, and the evolution of the increment (Gl) is

forecasted as

Gl �xf

tj0

� �
¼

M �xa þ aflð Þ � �xf

tj0

a
; (10)

where a is small positive real number set here at 0.01.

We take the absolute value of eq. (10) and smooth it by

using the fourth-order Shapiro (1970) filter in order to

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Forecast Time [days]

Skill score verified against the true error reduction

(4-ADJ) (5-OLD) (6-NEW)

Fig. 2. Skill score of the estimation of the total forecast error

reduction verified against the true forecast error reduction. Black,

red and blue lines show the results of equations (4-ADJ), (5-OLD)

and (6-NEW). The vertical error bars show the standard deviation

of the 10 experiments. No localization was used in the LETKF.

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Forecast Time [days]

Skill score verified against the true error reduction

(4-ADJ) (5-OLD) Noloc (6-NEW) Noloc

Fig. 3. Same as Fig. 2 but with only 10 members and using

localization in the analysis. No localization was applied for the

ensemble-based observation impact computations.

A SIMPLER FORMULATION OF FORECAST SENSITIVITY TO OBSERVATIONS 5



remove 2-gridlength waves. Then we normalize it with

the area integral of the localization function and limit

the maximum and minimum values not exceeding 1 and 0.

This value is used as the localization function of observa-

tion l for the impact estimations. Fig. 5a shows an example

of the evolution of the localization function with the

NL-loc method. Figs. 4 and 6 and Table 2 include results

of the experiment with this moving localization. Both the

RMSE and the average estimation are improved by

applying the moving localization.

In a realistic geophysical data assimilation problem,

using eq. (10) would be prohibitive because it requires

a forecast for each observation. For this reason, we also

tested a much simpler method to evolve the localization

function. In this method, the localization centre is trans-

lated with a constant speed, �0.6 grid points per day, equal

to the climatological group velocity of the dominant

wavenumbers 6�8. The group velocity is estimated from

the modulation envelope of the space�time correlation

using the method of Yoon et al. (2010). Figure 5b shows

the evolution of the localization for the same case as Figure

5a but with the simpler constant linear method (CL-loc).

Figure 4 and Table 2 also include the results of CL-loc,

which, although simpler, is also clearly better than the fixed

localization (Fxloc).

Table 2. Same as Table 1 but with 10 ensemble members and localization when indicated

6 h 12 h 1 d 2 d 3 d 5 d 7 d

Truth �23 (0) �32 (0) �56 (0) �121 (2) �213 (6) �582 (27) �1144 (47)

Analysis �25 (0) �31 (0) �51 (0) �115 (2) �206 (6) �570 (27) �1126 (46)

(4-ADJ) �21 (0) �25 (0) �39 (0) �77 (1) �132 (4) �344 (17) �627 (52)

(5-OLD) Noloc �12 (0) �14 (0) �24 (1) �50 (3) �69 (4) 136 (22) 1163 (65)

(6-NEW) Noloc �32 (0) �39 (0) �62 (1) �133 (4) �227 (6) �574 (41) �1220 (80)

(5-OLD) Fxloc �25 (0) �30 (0) �47 (0) �89 (2) �117 (4) �9 (9) 486 (29)

(6-NEW) Fxloc �28 (0) �33 (0) �50 (0) �86 (2) �106 (4) �125 (11) �162 (29)

(6-NEW) NL-loc �24 (0) �24 (0) �47 (0) �107 (2) �178 (4) �422 (27) �788 (57)

(6-NEW) CL-loc �28 (0) �33 (0) �54 (0) �99 (2) �151 (5) �284 (18) �462 (30)
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(6-NEW) NL-loc (6-NEW) CL-loc

Fig. 4. As per Fig. 3 but now with localization used in the

observation impact computations. Red and blue lines show the

results of equations (5-OLD) and (6-NEW) with a fixed localiza-

tion (Fxloc) function as used in the LETKF analysis. Dotted green

and light blue lines show the results of equation (6-NEW) with

localization functions moving with non-linear evolution (NL-loc)

and constant speed equal to the group velocity (CL-loc).
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Figure 6 compares a time series of the total forecast error

reductions of (4-ADJ), (6-NEW) Fxloc with fixed localiza-

tion and (6-NEW) NL-loc with moving localization of

non-linear incremental evolution at 5 d with the true reduc-

tion of error. Ensemble-based estimates generally capture

the large peaks (degradations and improvements of the

forecast). However, (6-NEW) Fxloc sometimes misses a

peak, but the ensemble-based estimations with moving

localization (6-NEW) NL-loc capture the time series

very well.

Figure 7 shows the fraction of the observations that are

estimated to decrease the forecast error in eachmethod. As a

reference, we also performed the much more computation-

ally expensive data denial experiments of each observation

at each analysis time and derived the actual rate of

positive impacts (plotted as OSE). For short-range fore-

casts, the adjoint tends to underestimate the percentage of

observations providing a positive impact, whereas the

EnKF-based estimations have larger rate and are in better

agreement with the data denial experiments. The fraction of

positive impacts of (5-OLD) Fxloc is the largest up to

2-d forecast but becomes less than a half at 7-d forecast.

Other methods converge to just above 0.5 (the value

expected when forecasts have no more skill, and observa-

tions errors are Gaussian with zero bias) for long-range

forecasts with (6-NEW) NL-loc and (6-NEW) CL-loc being

closer to the OSE result.

4.4. Detection of bad observations

Finally, we compare the ability of the adjoint- and

ensemble-based impact estimates to detect flawed observa-

tions useful for realistic applications. In this subsection, we

show the results of 10-member ensemble experiments.

Figure 8 shows the average impact estimates of each

method at each observation point on 5-d forecasts. Estimates

are derived from the last 1000 (Fig. 8a) and the last 100

assimilation cycles (Fig. 8b). For a large sample of 1000, both

the adjoint and the two ensemble-based methods can clearly

detect the erroneous observation at the 11th grid point

(Section 3) with very similar results. With only 100 samples,

both methods still detect a peak at the 11th grid point, but at

other points the estimates aremuch noisier, especially for the

adjoint approach. In practical applications, the number of

samples (assimilation cycles) can be of the order of 100�
1000. This result suggests that all three methods are able to

detect bad observations even for relatively small samples,

but the adjoint approach may be noisier.

5. Summary and conclusions

In this article, we introduce a new formulation of the

ensemble forecast sensitivity developed by Liu and Kalnay

(2008) with the small correction of Li et al. (2010). The two

formulations are compared with the adjoint forecast

sensitivity using the same analysis with the Lorenz and

Emanuel (1998) 40-variables model. For the first 2 d, the

three formulations are essentially identical. From 3 to 5 d,

the adjoint formulation is the most accurate, but it becomes

the worst at longer time scales, when the linear approxima-

tion made in the adjoint formulation breaks down.
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We find that the use of localization in the analysis,

necessary in EnKF when the number of ensemble members

is much smaller than the model’s DOF, has a negative

impact on the accuracy of the ensemble sensitivity. This is

not surprising since the impact of an observation during

the analysis (i.e. the analysis increment associated with the

observation) is transported by the flow during the integra-

tion, and this is ignored with a fixed localization. To

address this problem, we also introduce two approaches

that could be adapted to evolve the localization function

during the estimation of forecast sensitivity to the observa-

tions. The first method estimates the non-linear evolution

of the initial localization and is very expensive. The second

one moves the localization with a constant estimation of

the group velocity. Both methods succeed in significantly

improving the estimations for longer forecasts. When

compared with the fraction of observations that reduce

the forecast errors obtained running with and without

each observation (as in an OSE) for short-range forecasts,

the adjoint approach tends to underestimate the percentage

of positive impact of the observations, and the new

ensemble formulation gives impacts closer to the OSEs.

In summary, the adjoint and ensemble forecast impact

estimations give similarly accurate results for short-range

forecasts, except that the new formulation estimation of the

fraction of observations that reduce forecast errors is closer

to that obtained with OSEs. For longer-range forecasts,

they both deteriorate for different reasons. The adjoint

sensitivity becomes noisy due to the fact that the adjoint

model is based on the tangent linear model and, therefore,

cannot capture forecast non-linearities that become large

with the forecast length. The ensemble sensitivity becomes

less accurate due to the use of fixed localization, a problem

that could be ameliorated with an evolving adaptive

localization method (Bishop and Hodyss, 2009a; 2009b).

Advantages of the new ensemble formulation are that it is

simpler, more computationally efficient, and that it can be

applied to other EnKF methods, and not just the LETKF.

It has been implemented and tested with real forecasts at

National Centers for Environmental Prediction (NCEP)

using the EnSRF (Whitaker and Hamill, 2002).

6. Appendix

Validation tests of the tangent linear and adjoint models,

and impact of non-linear forecast error growth.

A.1 Test of the tangent linear model

To test the adjoint code, we first tested a tangent linear

code of the Lorenz 96 model. If we have a basic state x0 and

a perturbation x?, the evolution of perturbation can be

derived using the non-linear model M and tangent linear

model M.

x0nl ¼ M x0 þ ax0ð Þ �M x0ð Þ½ �=a; and x0tl ¼ Mx0;

where aj jBB1. A similarity index (SI), equivalent to

the pattern correlation, is computed between the two

perturbations:

SI ¼ x0nl ; x
0
tlð Þ

x0nlj j x0tlj j
¼ M x0 þ ax0ð Þ �M x0ð Þ½ �T Mx0½ �

M x0 þ ax0ð Þ �M x0ð Þj j Mx0j j
¼ 1�O a2

� �
: (A1)

If tangent linear model M is correct and a is small

enough, we should observe such a dependence on a, since
SI is the cosine of the angle between the two vectors. x0 is

a
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Fig. 8. Time average of observation impact estimates at each

point on 5-d forecast with (a) 1000 and (b) 100 samples, using the

adjoint approach eq. (4), the LLK10 formulation eq. (5) and the

new ensemble formulation eq. (6), both with fixed localization.

The observation at grid point 11 has an error variance of 0.8

rather than the assumed value of 0.2.
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picked from a truth run and x? is generated from random

numbers with normal distribution. Table A1 shows the SI

with different orders of magnitude values of a after

evolving for 1 d. The relation eq. (A1) is clearly verified;

thus, the tangent linear code is validated.

A.2 Impact of non-linear error growth

To examine the accuracy of the tangent linear approxima-

tion in the forecast experiments, SI was also computed with

larger perturbations, namely, a values of 0.2, 0.5, 1.0 and

2.0, corresponding to forecast RMSEs (verified against the

truth) approximately observed after 1, 3, 5 and 8 d. In each

setting, the results are derived by averaging SI from 1000

realizations. Figure A1 shows the result. At least for the

short-range forecast (up to 3-d forecast), the tangent linear

model (and thus the adjoint) is accurate and validated for

use in this study. Due to the developing non-linear effect,

the tangent linear approximation as well as the adjoint

becomes less accurate for longer forecasts.

A.3 Test of the adjoint model

The adjoint code was validated through computing

Mx0ð ÞT Mx0ð Þ � x0T MT Mx0ð Þ½ �
Mx0ð ÞT Mx0ð Þ



; (A2)

where M and MT are tangent linear model and its adjoint

operator. This value should be of the order of the

truncation error of the computation. We verified that this

value was of the order of O(10�15) for double-precision

real computations.
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Table A1. Similarity indices between non-linear and tangent

linear evolution of the perturbations (1 day evolution) with various

perturbation amplitudes

Amplitude SI

10�5 0.9999999999953

10�4 0.9999999994920

10�3 0.9999999423196

10�2 0.9999937996438

10�1 0.9994241704626
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