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ABSTRACT

A former publication proposed an idealised view of the global ocean ventilation consisting in a flow through

a porous pipe with decreasing section (a leaky funnel). The agreement between the domain-averaged ages as

obtained with a coarse-grid 3-D ocean general circulation model (OGCM) and the leaky funnel is excellent.

Further, the latter allows to infer characteristic scales, which are consistent with the current knowledge of the

ocean ventilation. However, the method, based on numerical experiments in which the circulation fields of

the OGCM were artificially modified, is questionable. Here, we revisit the leaky funnel and base our study on

the global water age distribution uðsÞ, where uðsÞDs is the ocean volume fraction with age in the interval

½s; sþ Ds�. The steady-state analytical solution for this distribution is shown to be in excellent agreement with

numerical results from two coarse grid OGCMs: an outcome that helps strengthening the leaky funnel

representation. The asymptotic analysis of uðsÞ suggests that, for large ages, water parcels have the same life

expectancy, whatever their age. Further, the leaky funnel provides bulk characteristics of the circulation in

OGCMs, which may serve as metrics in model intercomparison studies.
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1. Introduction

The rate at which the ocean can sequester excess heat and

carbon from the atmosphere is determined by its ventila-

tion, i.e. the renewal of interior waters by seawater that has

been in contact with the atmosphere. In the context of

climate and environmental studies, it is of importance to

better assess the ocean ventilation rate and its properties.

The age, which measures the time needed for water parcels

to travel from the ocean surface to the interior, is the

appropriate tool for this purpose. Of use are numerical

simulations and field measurements of appropriate tracer

concentrations. However, the intrinsic complexity of ocean

circulation and the huge amount of information provided

by ocean general circulation models (OGCMs) make it

difficult to extract the most relevant information on spatial

and temporal scales characterising ventilation. On the other

hand, low-order representations of the world ocean circu-

lation, despite their simplifying hypotheses, very often

supply the means allowing one to gain some insight into

the main flow characteristics (e.g. Munk, 1966; Craig, 1971;

Maier-Reimer, 1993; Jenkins, 1998; Munk and Wunsch,

1998; Broecker and Peng, 2000).

Along this line, Mouchet and Deleersnijder (2008)

(hereinafter referred to as MD08) suggested an idealised

model, which provides a scaling of the water age. A 1-D

advection-diffusion model is proposed in which the interior

ocean is represented as a leaky pipe with decreasing section

(i.e. a leaky funnel) � allowing recirculation of water and

tracers toward the surface (Fig. 1). The analytical solutions

to the steady-state problem are readily obtained and yield

expressions of the domain-averaged ages as functions of

three independent parameters, which determine the flow

characteristic scales. A series of experiments with a 3-D

OGCM allow for the calibration and assessment of the

leaky funnel representation. The agreement between the

domain-averaged ages (water and radiocarbon) as obtained

with the OGCM and with the leaky funnel is excellent.

Moreover, the parameters derived from this exercise have a

clear physical meaning; the turnover time, the mean length
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of trajectories and the diffusivity scale being consistent with

our current knowledge of the World Ocean circulation.

Yet, despite these converging results, MD08 raised

concerns about the calibration method. Specifically, their

method disregards the OGCM internal dynamics. MD08

generated a set of dynamical fields by multiplying by

spatially uniform values the reference velocity and diffu-

sivity fields from the OGCM. A similar approach was

previously used by Heinze et al. (1991) in the search for the

causes of the glacial�interglacial atmospheric CO2 varia-

tions. However, these artificial solutions do not represent

possible oceanic circulation states. Indeed, performing

experiments in which the diffusivity and the velocity fields

are independently multiplied by spatially homogeneous

values is in contradiction with the OGCM internal

dynamics (buoyancy, momentum, surface forcing, etc.)

and satisfy none of the finite-difference approximations

of the OGCM, except the continuity equation. Only the

reference state is entirely physically relevant. The perturbed

states were designed with the sole objective of answering

the question: ‘What would be the ventilation (or age

distribution) under different conditions of velocity and

diffusivity?’. This question arises from the need to evaluate

the parameters of the leaky funnel representation.

Further developments based on the water age distribu-

tion [a generalisation of the age distribution function of

Bolin and Rodhe (1973)] now offer the opportunity to

revisit the leaky funnel model and eliminate concerns about

possible biases stemming from the calibration method of

MD08. Lifting concerns about the method of MD08 is

essential in the purpose of pursuing our initial aim, which is

to develop simple tools allowing to help understand

differences in heat or gas uptake by different OGCMs in

the context of climate change. As will be shown, the leaky

funnel analogue has a potential for applications in model-

ling studies. It may help in evaluating the relative im-

portance, at the largest scales of motion, of advection and

diffusion in 3-D models.

Mixing is an essential mechanism in the ocean over-

turning circulation (Stommel and Arons, 1960a, b; Munk

and Wunsch, 1998). Vertical mixing by working against the

density gradient provides the necessary potential energy to

sustain the deep circulation at its largest scale (Huang,

1999; Kuhlbrodt et al., 2007; Saenko et al., 2012). In most

of the ocean interior, the vertical mixing is weak �10�5 m2

s�1 (Ledwell et al., 1993; Toole and McDougall, 2001) but

larger diapycnal diffusivities, up to 10�3 m2 s�1, occur in

very localised areas where tides and currents interact with

the rough bottom topography (Polzin et al., 1997; Webb

and Suginohara, 2001; Kunze et al., 2006; St. Laurent and

Simmons, 2006). In OGCMs, diapycnal diffusivity plays an

important role in determining the stability of the over-

turning circulation (Zhang et al., 1999; Schmittner and

Weaver, 2001). An inadequate representation of the mixing

processes in models may result in an unrealistic balance

between the driving mechanisms of the deep ocean circula-

tion and, consequently, to a possibly false assessment of

the climatic feedbacks (Kuhlbrodt et al., 2007). According

to Schmittner et al. (2009), the range in vertical mixing

between models is a contributing factor to the large ranges

in transient climate sensitivity and climate�carbon cycle

feedbacks. Hence, it is of importance to be able to assess

the mixing effectively taking place in models, i.e. including

both numerical and explicit diffusivities. The leaky funnel

model offers such a possibility.

The paper is organised as follows. After presenting the

water age distribution function in Section 2, the analytical

solutions for the leaky funnel are established in Section 3.

We then perform numerical experiments with two 3-D

OGCMs (Section 4). Section 5.1 is devoted to the calibra-

tion and the assessment of the leaky funnel model with

respect to the 3-D OGCMs. Section 5.2 examines the
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Fig. 1. Schematic representation of the leaky funnel model.

A 3-D view is given in the inset while the main figure consists of a

projection onto the x�z plane. The leaky funnel extends from x�0

to x�� with a decreasing section. The entrance of the funnel is

fueled with water from the ocean surface. The porous walls allow

water to escape the funnel. Advection and diffusion control the

transport within the funnel. At the entrance (boundary at x�0),

concentrations are set to unity and ages to zero. It is noteworthy

to mention that no assumption is made on the nature of the flow

outside the funnel nor on the actual position with respect to the

mixed layer.
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asymptotic behaviour of the global water age distribution

and their interpretation. Section 5.3 reevaluates the leaky

funnel characteristic scales in the light of numerical

diffusivity and addresses the relevance of the leaky funnel

model metrics. Conclusions are presented in Section 6.

2. Global water age distribution

As this work aims to assess ocean ventilation timescales,

the focus here is on the water age distribution. This

distribution naturally stems from the definition of the

concentration distribution function (Deleersnijder et al.,

2001; Delhez and Deleersnijder, 2002; Delhez et al., 2003)

expressed for seawater. The concentration distribution

function cðt; x; sÞ is defined so that cðt; x; sÞDs, for

Ds! 0, represents the contribution of the material with

an age that is in the interval ½s; sþ Ds� to the total

concentration1 Cðt; xÞ at time t and position x. Cðt; xÞ
is then obtained from the integration of c in the age space.

Since seawater is the aggregate of every constituent com-

posing it, its concentration is equal to unity, Cðt; xÞ ¼ 1. It

automatically follows that its concentration distribution

function c obeys the normalisation condition

Cðt; xÞ ¼
Z 1

0

cðt; x; sÞds ¼ 1 (1)

The mean water age a is obtained from the first-order

moment of the concentration distribution function (Delhez

et al., 1999; Deleersnijder et al., 2001):

aðt; xÞ ¼ 1

Cðt; xÞ

Z 1

0

scðt; x; sÞds ¼
Z 1

0

scðt; x; sÞds: (2)

Hence, cðt; x; sÞ is the distribution function for water age

and will from now on be referred to as the water age

distribution.

The global water age distribution results from the

integration of cðt; x; sÞ over the volume V of the domain

of interest:

uðt; sÞ ¼ 1

X

Z
X

cðt; x; sÞdX: (3)

For Ds! 0, X uðsÞDs represents the volume of water with

an age contained in the interval ½s; sþ Ds�. Expressions (3)
and (1) lead to the following normalisation condition on 8:

Z 1

0

uðt; sÞds ¼ 1: (4)

The global water age distribution as given by eq. (3) is a

generalisation of the age distribution function of Bolin and

Rodhe (1973), who restricted their study to steady-state

problems. Furthermore, the global water age distribution is

closely related to the cumulative ventilation rate distribution

UðsÞ introduced in Primeau and Holzer (2006). In the case

of a steady flow, MuðsÞ ¼ UðsÞ, where M is the total mass

of the fluid. The quantity UðsÞ having units of mass per

unit time can be interpreted as the entering mass flux

of surface waters that will reside in the interior for a time s
or longer before exiting (Primeau and Holzer, 2006; Hall

et al., 2007).

On the other hand, uðsÞ is conceptually different from

the global distribution of mean water age /ðaÞ examined in

MD08. The latter represents a global inventory of water

binned according to its steady-state mean age while the

former is based on globally averaged transient ages.

Computed directly with the mean water ages, /ðaÞDa

represents the fraction of the volume occupied by water

with mean ages included in the interval ½a; aþ Da�. It takes
the following form:

/ðt; aÞ ¼ lim
Da!0

1

XDa

Z
X
ua;aþDaða0ðxÞÞdX; (5)

in which u is the rectangular function:

ua;aþDaða0Þ ¼
1 if a � a0 � aþ Da;
0 otherwise:

�
(6)

Since the presence of diffusion generates differences in

pathways towards the final location, a water parcel is

characterised by a range of ages, rather than a single age.

Therefore, when diffusion is active, f(a) the global

distribution of mean water age does not adequately

represent the age distribution in the domain. On the other

hand, uðsÞ, which is based on the individual ages of the

water parcel constituents, provides the correct domain age

distribution. For both functions to be identical, it is

necessary that the flow be purely advective. This point is

further discussed in Section 5.1.

An additional quantity that will be of use further on is

the domain-averaged mean water age. This global mean

water age is identified with angle brackets and is related to

8 by

haðtÞi ¼ 1

X

Z
X

aðt; xÞdX ¼ 1

X

Z
X

Z 1

0

scðt; x; sÞdsdX

¼
Z 1

0

suðt; sÞds: (7)

The global water age distribution is obtained by computing

cðt; x; sÞ for the problem at stake and then integrating it

over the domain. The equation governing the evolution of

1C represents a mass fraction, i.e. the ratio of the total mass of the

constituent in the sample to the total mass of the sample.
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cðt; x; sÞ is (Delhez et al., 1999; Deleersnijder et al., 2001;

Delhez and Deleersnijder, 2002)

@c

@t
¼ �\ � ðuc� K �\cÞ � @c

@s
; (8)

with u the velocity vector and K the diffusivity tensor, which

must be symmetric and positive definite (Deleersnijder

et al., 2001).

In the context of ocean ventilation studies, solutions to

eq. (8) are sought by tagging water masses exposed to the

surface with unit concentration and zero mean age. This is

achieved through imposing that at the ocean surface S

cðt; x; sÞ ¼ dðsÞ; for x 2 S; (9)

where d is the Dirac function, i.e. dðs� s0Þ ¼ 0 when s 6¼ s0

with d satisfying the identity
R1
�1 dðsÞds ¼ 1.

3. Leaky funnel solutions

In this text, we restrict the description of the leaky funnel

to its key aspects. The interested reader will find a detailed

description of this model together with the mathematical

expressions and derivations of analytical solutions in

MD08.

The leaky funnel (Fig. 1) is a semi-infinite pipe char-

acterised by a cross-sectional area S(x), which is a

decreasing function of x, the downstream coordinate

(05xB�). Both advection and diffusion processes con-

tribute to the transport in the funnel. The porous

outer envelope allows water to escape the domain while

being transported downstream. Assuming further that all

variables and properties are homogeneously distributed

over S, i.e. they solely depend on x and t, yields a 1-D

problem.

In this configuration, the evolution of the water age

distribution cðt; x; sÞ in the leaky funnel obeys

S
@c

@t
þ @ SUcð Þ

@x
¼ �Qcþ @

@x
SK

@c

@x

� �
þ S

@c

@s
; (10)

with U and K the velocity and the diffusivity, respectively,

and where Qðt; xÞ represents the water flux leaving the

funnel through the porous lateral boundary. This flux is

obtained from the continuity equation, which reads

@ SUð Þ
@x

¼ �Q: (11)

In order to obtain analytical solutions, we take U and K as

positive constants and assume that all variables are at a

steady state. We also impose that the funnel section

decreases exponentially with a constant length scale L:

S(x)�S0 exp (�x/L).

Under these assumptions, eq. (10) reduces to the classical

1-D problem of advection and diffusion in a semi-infinite

pipe with a constant section:

@c

@s
¼ �U 0

@c

@x
þ K

@2c

@x2
: (12)

The modified velocity U?�U�K/L arises from the section

change with x.

We solve eq. (12) by imposing condition (9) at the funnel

entrance, cðx ¼ 0; sÞ ¼ dðsÞ, together with the additional

constraints

cðx; s ¼ 0Þ ¼ 0; and cðx ¼ 1; sÞ ¼ 0: (13)

The solution to eq. (12) under such conditions is found to

be (e.g. Hall and Haine, 2002; Delhez et al., 2003)

cðx; sÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffi
4pKs3
p exp �ðx�U 0sÞ2

4Ks

" #
: (14)

The leaky funnel domain is semi-infinite but its volume is

finite (X ¼
R1

0
SðxÞdx ¼ S0 L); therefore, domain-averaged

quantities may be computed.

The global water age distribution, obtained by integrat-

ing eq. (14) over V, is given by the following expression:

uðsÞ ¼ 1

L

Z
X

e�x=Lcðx; sÞdx ¼
ffiffiffiffiffiffiffiffiffiffi

K

pL2s

r
exp �U 0 2

4K
s

� �

þ 1

h
1þ erf

1

h

ffiffiffiffiffiffiffiffi
L2

K
s

s0
@

1
A

2
4

3
5 exp �U

L
s

� �
;

(15)

in which

1

h
¼ 1

2

U

L
� K

L2

� �
; and erfðyÞ ¼ 2ffiffiffi

p
p

Z y

0

e�n2

dn:

To get the global water age distribution [eq. (15)] as well as

forthcoming expression [eq. (16)], integrals involving the

water age distribution have to be performed, a task that

may be achieved with the help of Gradshteyn and Ryzhik

(2000) or a symbolic calculation software.

The normalisation condition (4) for uðsÞ holds true, as

is demonstrated in Appendix A.

The mean water age is found to be

aðxÞ ¼
Z 1

0

scðx; sÞds ¼ x

U 0
: (16)

The global mean water age or domain-averaged water age

�a� is given by the timescale L/U?:

hai ¼ X�1

Z 1

0

aðxÞSðxÞdx ¼
Z 1

0

suðsÞds ¼ L

U 0
: (17)
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4. 3-D OGCM experiments

In order to test the leaky funnel representation, we perform

numerical experiments with the help of two OGCMs.

Besides the annual mean circulation from the Louvain-la-

Neuve OGCM (UL-OM) (Deleersnijder and Campin,

1995; Campin and Goosse, 1999), which we utilised in

MD08, we also take 3-D fields provided by the dynamical

Large-Scale Geostrophic Ocean General Circulation Model

(LSG-OM) (Maier-Reimer et al., 1993) in its annually

averaged version (Winguth et al., 1999; Heinze et al., 2003).

A description of the main characteristics of these OGCMs

is given in Appendix B.

At a steady state, eq. (8) reduces to the usual equation

describing the evolution of concentration in which time is

replaced by s:

@c

@s
¼ �\ � ðuc� K �\cÞ: (18)

The steady-state water age distribution can, thus, be

obtained as the transient solution of a classical

advection�diffusion problem (Beckers et al., 2001; Delhez

and Deleersnijder, 2002).

Equation (18) is solved numerically with the same

transport scheme as that used for tracers in the 3-D model.

Advective and diffusive fluxes across the ocean floor and

lateral boundaries are set to zero. We impose homogeneous

initial conditions: cðx; s ¼ 0Þ ¼ 0 for x belonging to the

ocean domain.

At the ocean surface S, the boundary condition should

be given by eq. (9) rewritten for steady state

cðx; sÞ ¼ dðsÞ; for x 2 S: (19)

For a stationary problem, c is therefore the impulse

response or Green’s function (Beckers et al., 2001).

There are, however, technical difficulties linked to the

use of a Dirac impulse as boundary condition. In order to

circumvent these, we take advantage of the fact that the

impulse response may be obtained from the derivative of

the step response. Indeed, the delta function can be viewed

as the derivative of the unit or Heaviside step function,

dHðsÞ=ds ¼ dðsÞ HðsÞ ¼ 1ð for s]0 and HðsÞ ¼ 0 for

sB0Þ. We then numerically solve eq. (18) for a function,

which we denote as c*. This solution is obtained under the

same constraints as applied to c (homogeneous initial

conditions and no flux across the boundaries) at the

exception of the boundary condition at the ocean surface,

which for c* is given by

c�ðS; sÞ ¼ HðsÞ: (20)

The derivative with respect to s of c* yields the water

age distribution in the 3-D model. One finally ob-

tains the global water age distribution (Fig. 2) by

computing the domain-average of cðx; sÞ at each time

step.

5. Results and discussion

5.1. Characteristic scales

The parameters needed to fully determine the leaky funnel

distribution (15) may be deduced by fitting this expression

to the data resulting from the 3-D OGCM experiments.

For this purpose, it is necessary to identify independent

parameters. Two distinct timescales stem from a close

examination of the parameters intervening in eq. (15):

A0�L/U and AD�L2/K, i.e. the advection and diffusion

timescales characterising the flow. Reexpressing eq. (15) by

means of the definitions for A0 and AD leads to

uðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

1

pADs

s
exp � 1

4AD

1þ AD

A0

 !2

s

2
4

3
5

þ 1

h
1þ erf

1

h

ffiffiffiffiffiffiffiffiffi
ADs

p� �� �
exp � s

A0

 !
;

and
1

h
¼ 1

2

1

A0

� 1

AD

 !
:

(21)

We are hence left with two parameters to be determined,

A0, and AD.

The non-linear least squares fitting procedure in IDL

MPFIT (Markwardt, 2009) based on the Levenberg-

Marquardt algorithm (Moré, 1978) is used to evaluate

those two parameters from the OGCM global water age

distribution. In order to prevent large values at very low

ages to dominate the solution, we specify weights to the

OGCM results inversely proportional to the function

values.2 The OGCM responses were computed from

simulations performed over 20000 years.

Table 1 presents the values of A0 and AD obtained with

this method, together with the estimated Peclet number and

global mean water age �â�:

Pe ¼ UL

K
¼ AD

A0

; (22)

hâi ¼ L

U 0
¼ 1

A0

þ 1

AD

 !�1

: (23)

It should not be immediately concluded from the values in

Table 1 that the transport in LSG-OM is less diffusive than

2We tested this method by also considering weights linearly

increasing with s or by using the square root of the function.

Those methods produce results which are extremely close to those

presented herein.
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in UL-OM. As will be shown in Section 5.3, this is an

artefact due to the neglect of numerical diffusion in eq.

(21). Actually, the effective Pe of both models is of the

same order of magnitude.

As can be seen from Table 1, the concordance between

estimated and actual OGCM global mean water ages is

excellent. Further, there is a fair agreement between the

experimental (OGCM) and theoretical (leaky funnel)

curves (Fig. 2). Figure 2 also contains the distribution

given by eq. (21) but in which we imposed the parameters

as obtained with the MD08 method.

The differences between the curve resulting from the

present work and that produced by the MD08 method may

be explained by several factors. The least-squares fitting

procedures of MD08 and of the present work are

performed with the help of series containing quite different

information: in MD08, the series represents steady-state

globally averaged ages while, in the present work, it

consists of global average of transient ages. Hence, the

parameter values obtained with the MD08 method princi-

pally reflect the deep ocean properties (since it occupies the

largest volume and since the upper layers are characterised

by both small age and volume). On the contrary, the global

water age distribution contains information at all ages.

Despite the fact that we give more weight to older ages, the

parameters estimated with the help of 8 are significantly

influenced by younger ages. Hence, those estimates

are affected by characteristics of well-ventilated ocean

areas usually associated to a larger vertical diffusivity in

OGCMs. The heterogeneity of the OGCM regional dy-

namics also contributes to the differences between the two

curves. In addition, as exposed further in the text, the two

OGCMs differ with respect to the relative role played by

advection and diffusion (including numerical diffusion) in

setting their ventilation rate. This might be the reason for

the different behaviour of the MD08 curve with respect to
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Fig. 2. Global water age distribution 8 (solid line) versus age in two 3-D OGCMs, UL-OM (top left) and LSG-OM (top right),

compared to that predicted by the leaky funnel (dashed line). The leaky funnel curve in each panel is obtained with the parameters

appropriate to the corresponding OGCM from Table 1. In the two upper panels, the curve computed with the parameters as estimated by

the method of MD08 is also represented (dotted line). The arrow in those two panels points to the actual global mean water age �a�

obtained with each OGCM. The lower two panels allow the comparison of both OGCMs with focus on ages under 2000 years. Global

water age distribution 8 (bottom left) as obtained with LSG-OM (thin solid) and UL-OM (thick solid) and as estimated by the leaky funnel

for each OGCM: LSG-OM (dotted) and UL-OM (dashed). Relative difference (bottom right) between the OGCM and the leaky funnel

global water age distributions for LSG-OM (thin solid) and UL-OM (thick solid).
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uðsÞ in the UL-OM and LSG-OM cases. Nevertheless,

the similarity of the distributions obtained with the MD08

method and in the present work adds confidence to the

conclusions of MD08 as well as to the ability of the leaky

funnel at capturing properties of the deep-ocean ventilation

as computed by OGCMs.

Previous research has focussed on characterising the

local age distribution in terms of a parametric model

based on the solution of 1-D advection-diffusion equation

in a semi-infinite domain, (i.e. an inverse Gaussian

distribution). Peacock and Maltrud (2006) compared

the inverse Gaussian function to distributions computed

from an OGCM and documented regions where systematic

biases occurred, including regions of multimodality in the

Southern Ocean. Here, we focus on the global water age

distribution, a monotonically decreasing function, which is

more amenable to being described in terms of a simple

parametric model. The asymptotic analysis of the next

section shows that the leaky funnel is able to capture

OGCMs global water age distribution at both low and

large ages.

5.2. Asymptotic analysis

The asymptotic properties of the global distribution may

provide some insight into ocean processes as reproduced

by OGCMs. Two regimes are identified considering the

behaviour of 8 at low or large ages.

For s! 0, solution (21) behaves like

uðsÞ � 1ffiffiffiffiffiffiffiffiffiffiffi
pADs

p ; (24)

an expression that does not involve advection. Diffusion is

the main process controlling the distribution for s! 0. As

opposed to advection, which has a finite propagation

speed, the parabolic nature of diffusion transmits the initial

perturbation at once to areas far from the boundary.

Hence, in the early stages, regions rapidly exchanging with

the surface dominate the solution. This feature is made

clear in Fig. 3 where it is seen that the global water age

distribution closely follows eq. (24) for ages that are typical

of newly formed water masses.

The s�1=2 singularity of uðsÞ at s ¼ 0 is a physical

consequence of diffusion (Primeau and Holzer, 2006; Hall

et al., 2007). This singularity reflects the fact that the gross

(one-way) flux into the interior is infinite as it is dominated

by fluid elements that reside in the interior for infinitesi-

mally short times before they make contact with the surface

and exit the domain. A simple random walk model is

presented in Hall and Holzer (2003) to illustrate the

phenomenon.

The role of diffusion also explains the discrepancy

between the global distribution of mean age f and 8
(Fig. 3). For the leaky funnel, as established in MD08 (see

also Appendix D), f takes the form:

/ðaÞ ¼ e�a=Bâ>

Bâ >
: (25)

f is computed with the help of the global mean water age,

that is an equilibrium age reflecting mostly the deep ocean

properties. Only in the case of negligible diffusion does f
correctly approximate 8. Indeed, if K00, then 8 reduces to

uðsÞ � e�s=A0

A0

; (26)

which is equivalent to eq. (25) since �a�0A0 when K00.

For large ages, 8 may be approximated by

uðsÞ � ð2=hÞe�s=A0 ; for s!1: (27)

This distribution is identical to that characterising a first-

order removal process (Bolin and Rodhe, 1973) with an

Table 1. Parameters A0 and AD of the leaky funnel model as

obtained from a least squares fit to the 3-D model results

OGCM A0 (yr) AD (yr) Pe �â� (yr) �a� (yr)

UL-OM 1243 1982 1.6 764 764

LSG-OM 644 5249 8.1 574 573

The estimated Pe number and global mean water age are given in

columns 4 and 5, respectively. The last column contains the actual

global mean water age from the 3-D OGCM experiment.
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Fig. 3. Global water age distribution 8ðsÞ in the leaky funnel

(solid line) versus age. The two asymptotes when s! 0 and s!1
are represented by the dashed and dotted-dashed lines, respec-

tively. Also illustrated is the global distribution of mean water age

fðsÞ (dotted line). We build these curves with the help of the A0

and AD values obtained with the UL-OM model.
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e-folding decay given by the advection time scale A0. A0

being a constant the removal rate is identical for all ages.

Hence, above some age, the probability to escape the main

flow is the same for all particles, whatever their age.

The fact that both the leaky funnel and the OGCMs

behave as first-order removal processes for s!1 is a

consequence of the finite volume of their domains, which

ensures that the advection�diffusion transport operators

have discrete eigenmode expansions. In the limit s!1,

solutions are dominated by the most slowly decaying

eigenmode (Haine and Hall, 2002; Primeau and Holzer,

2006; Primeau and Deleersnijder, 2009). The least-squares

fit of the leaky funnel model parameters to the OGCMs’

global water age distribution for ages ranging from zero to

more than 20000 years ensured a close correspondence of

the most slowly decaying eigenvalues for the OGCMs and

the leaky funnel model. Indeed, if the least-squares fit had

been performed over an infinite age interval the dominance

of the solution by the most slowly decaying eigenmode for

large ages would have ensured exact equality between

the advective timescale A0 for the leaky funnel model and

the reciprocal of the most slowly decaying eigenmode of the

OGCMs’ advection-diffusion transport operator subject to

Dirichlet boundary conditions.

The age distribution as computed here also provides

information on the adjustment after a sudden change in the

system. The analysis of the leaky funnel approximation

suggests the existence of two regimes in the response of

ocean water masses. The amount of very young particles is

very large, indicating a fast exchange with the boundary.

This results in the rapid initial decrease in the adjustment.

As age (or time) progresses, a longer time scale controls

the distribution. The response or adjustment time of

the interior ocean as a whole is then given by A0, the

eigenmode with smallest absolute value.

5.3. Appraisal of leaky funnel metrics

It is of importance to assess the mixing effectively taking

place in models, i.e. including both numerical and explicit

diffusivities. Explicit diffusion has a clear physical

meaning. It is meant to take into account unresolved

subgridscale physical processes. On the contrary, numerical

diffusion, associated to the advection scheme, is a conse-

quence of the finite difference method and does not bear

any physical significance. However, its effects should not

be overlooked. Indeed, it seems that, in ocean models, the

numerical diffusivity of advection schemes is often of the

same order of magnitude as the explicit one (Kuhlbrodt

et al., 2007). Such numerical artefacts bear consequences to

the simulated tracer distributions (Oschlies, 2000; Doney

et al., 2004).

However, assessing the actual numerical diffusion mag-

nitude in OGCMs is not always straightforward (e.g.

Burchard and Rennau, 2008). The leaky funnel model on

the other hand offers such a possibility. The estimates of

both the explicit and numerical diffusivities, together

with the advective time scale, allow then to characterise

the transport in individual OGCM. At this stage, it is

important to mention that our aim is not to assess the

OGCMs used in this work but to evaluate the relevance

of the information provided by the leaky funnel represen-

tation in the purpose of providing metrics for model

appraisal.

Extracting any information about the numerical diffu-

sion from the global water age distribution proves to

be a very complex and intricate task. On the other hand,

the method from MD08 allows such a derivation. Since the

present work corroborates the results from MD08, the

latter approach can be used to derive the leaky funnel

parameters and assess the role of numerical diffusion in

OGCMs. Further, as commented on in MD08 and detailed

in Appendix C, ignoring the role played by numerical

diffusivity results in an overestimate of AD and, since eq.

(23) holds, in an underestimate of A0.

The effective Peclet number to be associated to the

transport in the OGCMs takes into account both the

explicit and numerical diffusivities. It is given by

1

Pe
¼ KE þ KN

UL
¼ 1

PeE
þ 1

PeN
; (28)

where PeE�UL/KE and PeN�UL/KN represent the Peclet

numbers associated with the explicit KE and numerical

diffusivity KN, respectively.

The leaky funnel parameters corresponding to UL-OM

were already determined by MD08. In the same way we

performed M�21 experiments with the LSG-OM, in

which the velocity and explicit diffusivity were homoge-

neously multiplied by constant factors (comprised in [1.,8.]

and [0.125,1.], for the explicit diffusivity and the velocity,

respectively). A least-squares fit to the 21 OGCM domain-

averaged ages provides estimates of the leaky funnel

parameters {A0, PeE, PeN} corresponding to LSG-OM.

These values as well as those for UL-OM from MD08 are

given in Table 2. The agreement between ages predicted by

the leaky funnel and those from the LSG-OM is not

illustrated here but is very good with correlation coeffi-

cients close to 1.

The two models differ drastically in their advection

timescales A0. As discussed earlier, the A0 scale represents

the adjustment time to a pertubation or the most slowly

decaying mode of the OGCMs’ transport operator. UL-

OM is characterised by a larger A0 value, which translates

in a longer timescale for anthropogenic CO2 uptake relative

to LSG-OM (Fig. 4). This is a consequence of the more
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sluggish circulation and longer pathways in the Pacific

Ocean predicted by UL-OM with respect to LSG-OM. In

the Pacific Ocean, the longer advection timescale charac-

terising UL-OM is consistent with larger trajectories

resulting in older, more radiocarbon-depleted water masses

in comparison with the LSG-OM (Fig. 5). The more

vigorous circulation in LSG-OM translates into less radio-

carbon-depleted water masses in that area.

The role played by numerical diffusion in the transport is

made clear from the values in Table 2. These values are in

agreement with the OGCMs mathematical formulation and

numerical scheme. Indeed, numerical diffusion is congruent

with the upstream scheme used for resolving advection in

LSG-OM both along the horizontal and the vertical. The

use of explicit diffusion in that model is restricted to

convective processes in addition to a small horizontal term

preventing mode divergence due to the use of an E-grid

(Appendix B). Hence, numerical diffusion contributes most

to the effective diffusion in that model.

In contrast, UL-OM makes use of a less diffusive

numerical scheme for advection. This explains the larger

PeN with respect to LSG-OM, while the generalised use of

explicit diffusion translates into a lower PeE. Though the

global, or effective, Peclet numbers associated to each

model are very close (line 4 in Table 2), the underlying

mechanisms are very different. The difference in the

mechanisms controlling the mixing results in contrasted

tracer vertical distributions (Fig. 5). Indeed, the vertical

profiles of tracers in the Atlantic Ocean predicted by LSG-

OM are much smoother than those obtained with UL-OM.

The Peclet numbers associated to the interior circulation

appear to be rather low. Other studies also pointed to the

possibility that the large scale transport in the ocean might

be more dominated by diffusion than previously thought

(Deleersnijder et al., 2002; Holzer and Primeau, 2006).

However, these conclusions result from experiments with

coarse grids OGCMs. Reassessing them by means of eddy-

resolving models would be necessary.

The results in Table 2 contrast with the figures presented

in Table 1. Two factors contribute to these differences.

First, the results presented in Table 2 are obtained with the

help of the global mean water ages, which mostly reflect

the deep ocean properties. In contrast, the global water

age distribution contains information spanning all ages.

The parameter estimates based on the latter is hence

significantly affected by near surface and convective mixing

processes, yielding lower Pe numbers than those predicted

with the help of the MD08 method when numerical

diffusion is not considered (compare values in Table 1 to

those in the lower half of Table 3). Second, it has not been

possible to extract any information on numerical diffusion

from the global water age distribution. On the contrary, the

MD08 method allows to discriminate between explicit and

numerical diffusivities. As detailed in Appendix C, neglect-

ing the contribution from numerical diffusion in the least

squares fitting procedure does not bear any consequences

on the goodness of the fit for water ages. Omitting

it, however, results in biased estimates of A0 and Pe; A0

is moderately underestimated while AD (hence Pe) is

significantly overestimated.

It is noteworthy that A0 appears to be comparatively less

affected by the method used to estimate it than AD, hence

Pe (Tables 1 and 2). A0 being the timescale characterising

the global water age distribution for large ages (eq. 27), it is

expected that estimating that timescale with the help of

uðsÞ or by the MD08 method would result in similar

values, since the latter method is based on domain averaged

ages, which implicitly give more weight to the larger ages

Table 2. Parameters of the leaky funnel model as obtained from a

least squares fit to the domain-averaged water ages resulting from

several experiments with two 3-D models (UL-OM, column 2, and

LSG-OM, column 3)

UL-OM LSG-OM

A0 (yr) 1010 690

PeE 6.4 14.0

PeN 7.0 2.8

Pe 3.3 2.4

AD (yr) 3333 1656

The values in this Table are obtained by the MD08 method with

numerical diffusion explicitly considered. Line 4 gives the effective

Peclet number computed from eq. (28) and the last line contains

the effective AD scale (AD�Pe A0).
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Fig. 4. Difference in CO2 cumulative uptake (thick solid line) by

two ocean global carbon models. The individual uptakes (repre-

sented as anomalies with respect to 1765 A.D.) are obtained from

abiotic constrained CO2 experiments with LSG-OM (dashed line)

and UL-OM (dotted line). The thin solid line corresponds to the

atmospheric CO2 forcing used in these experiments. Units for the

atmospheric CO2 are given on the right axis.
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characterising the deep ocean. The MD08 method is

probably more appropriate in the purpose of assessing

the characteristics of the deep ocean circulation as repro-

duced by OGCMs. First, the figures obtained with this

method are less influenced by surface processes since it

relies on global mean water ages. Second, it allows to

extract pertinent information on the relative roles of

numerical and explicit diffusivities in setting the distribu-

tion of tracers in OGCMs.

6. Conclusion

The method of MD08 was questionable since it disregards

the OGCM internal dynamics. The present work allows to

alleviate such concerns by using a different concept, the

global water age distribution. The good correlation be-

tween the age distributions in the leaky funnel and in the

OGCMs provides a further assessment of the leaky funnel.

This assessment is performed in a way that is fully coherent

with the OGCM dynamics.

The leaky funnel representation seems able to capture

not only the mean water ages (Mouchet and Deleersnijder,

2008) but also, as demonstrated in this work, the global

water age distribution predicted by two different OGCMs.

One conclusion of this work is that the deep ocean in coarse

grid OGCMs seems to behave as first-order removal

process for large ages with an e-folding timescale given

by the advective timescale A0. This timescale for the leaky

funnel model may be related to the reciprocal of the most

slowly decaying eigenmode of the OGCMs advection-

diffusion transport operator subject to Dirichlet boundary

conditions.

The leaky funnel model provides analytical solutions

that are simple to deal with, making it possible to obtain

characteristic scales of the deep-ocean circulation as

reproduced by OGCMs. It also provides a simple mean

to evaluate the relative roles of advection and diffusion in

complex OGCMs. Furthermore, it offers the possibility to

evaluate the extent to which numerical diffusion affects this

circulation. The values provided by the leaky funnel appear

to be fully coherent with the OGCMs’ physics and

numerics. Although a 1-D model may not always provide

a pertinent representation of the complex 3-D circulation

(Olbers and Wenzel, 1989), there are many examples of

reduced-dimension models that proved highly successful

at helping interpret the results from much more complex

models (e.g. Deleersnijder et al., 1997; Tartinville et al.,

1997; Deleersnijder et al., 1998).

We are aware that, up to now, the leaky funnel has

only been tested with coarse grid OGCMs. Testing it

against 3-D models with increased resolution and

more detailed vertical mixing would perhaps be necessary

before generalising the conclusions of this analysis.

Further, the fact that the information provided is

exclusively global, representing a spatially integrated

measure of heterogeneously distributed processes, may

constitute a limitation in its use.
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8. Appendix A: proof that uðsÞ as given by eq.

(15) verifies the normalisation condition (4)

The integration of eq. (15) is made easier by first rewriting

it as follows:

uðsÞ ¼
ffiffiffiffiffiffiffiffiffiffi

K

pL2s

r
exp �U 0 2s

4K

� �
þ 1

h
exp �Us

L

� �

þ 1

h
erf

1

h

ffiffiffiffiffiffiffiffi
L2s

K

s0
@

1
A exp �Us

L

� �
: (A1)

We treat separately the integration of each of the three

terms on the right-hand side of eq. (A1).

The integration of the first term is performed with

the help of
R1

0
yn expð�ayÞdy ¼ Cðnþ1Þ

anþ1 (Abramowitz and

Table 3. Best fit parameters of the leaky funnel when numerical

diffusion is considered (rows 4 and 5) or not (rows 7 and 8) in the

least squares fitting procedure of MD08

OGCM A0 (yr) PeE PeN Pe �â� (yr) �a� (yr)

Numerical diffusion considered

UL-OM 1010 6.4 7.0 3.3 778 764

LSG-OM 690 14.0 2.8 2.4 485 573

Numerical diffusion neglected

UL-OM 884 7.3 � 7.3 778 764

LSG-OM 511 18.9 � 18.9 485 573

For each OGCM (column 1), this table gives the advective

timescale (column 2), the Peclet numbers associated to the

explicit and numerical diffusivities (columns 3 and 4) and the

effective Pe (column 5). Column 6 contains the estimated domain

averaged water age �â� computed from eq. (23) with the help of A0

and Pe in the present table. The global mean age predicted by the

standard version of the OGCMs (that is, for bi �gi�1) is given in

column 7.
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Stegun, 1972) in which we set n��1/2 and a�U?2/(4K).
Since G(1/2)�

ffiffiffi
p
p

, we get

ffiffiffiffiffiffiffiffi
K

pL2

r Z 1

0

s�1=2 exp �U 0 2s

4K

� �
ds ¼ 2K

LU 0
: (A2)

The integration of the second term is straightforward

Z 1

0

1

h
exp �Us

L

� �
ds ¼ L

Uh
: (A3)

For the treatment of the last term, we take advantage of the

following properties of the error function:

d

dy
erfðyÞ ¼ 2ffiffiffi

p
p expð�y2Þ; erfð0Þ ¼ 0 and erfð1Þ ¼ 1:

We then make use of the integration by parts re-

lationship
R

f ðsÞg0ðsÞds ¼ f ðsÞgðsÞ �
R

f 0 ðsÞgðsÞds: Set-

ting f ¼ erf 1
h

ffiffiffiffiffi
L2s
K

q� 	
and g0 ¼ exp � Us

L


 �
; it follows:

f 0 ¼ 1

h

ffiffiffiffiffiffiffi
L2

Kp

s
s�1=2 exp � L2s

Kh2

� �

and

g ¼ � L

U
exp �Us

L

� �
:

The integral then becomes

Z 1

0

1

h
erf

1

h

ffiffiffiffiffiffiffiffi
L2s

K

s0
@

1
A exp �Us

L

� �
ds ¼ � L

hU

� erf
1

h

ffiffiffiffiffiffiffiffi
L2s

K

s0
@

1
A exp �Us

L

� �2
4

3
5
1

0

þ L2

Uh2
ffiffiffiffiffiffiffi
Kp
p

Z 1

0

s�1=2

�exp �ðU
L
þ L2

Kh2
Þs

� �
ds ¼ L2

Uh2

Cð1=2Þffiffiffiffiffiffiffi
Kp
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U
L
þ L2

Kh2

q

¼ L2

Uh2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UK
L
þ L2

h2

q :

(A4)

Adding together eqs. (A2), (A3) and (A4), one easily gets

that eq. (15) verifies condition (4).

9. Appendix B: main features of the OGCMs

used in this study

The transport model is driven by 3-D fields of velocity

components, potential temperature, salinity and convective

mixing from two OGCMs in their annually averaged

versions. The numerical scheme of the offline transport

model is adapted according to the OGCM fields driving it

so that the physics determining the distribution of tracers is

as close as possible to that determining the distribution of

active variables in the dynamical model. Both these models

belong to the coarse-grid OGCM class as none of them is

eddy-resolving. They, nevertheless, capture the essential of

deep ocean circulation. A short description of both

OGCMs follows:

� UL-OM (Deleersnijder and Campin, 1995; Campin

and Goosse, 1999): UL-OM is a primitive-equation,

free-surface OGCM resting on the usual set of

assumptions, i.e. the hydrostatic equilibrium and

the Boussinesq approximation. The horizontal re-

solution is 38�38. The so-called ‘z-coordinate’

underlies a vertical discretisation with 15 levels

ranging in thickness from 20 m at the surface to

700 m in the deep ocean. A realistic bathymetry is

used. The parameterisation of vertical mixing is

based on the Pacanowski and Philander (1981)

formulation. Wherever the vertical density profile

is unstable, the vertical diffusivity (Marotzke, 1991)

is increased to 10 m2 s�1. The parameterisation of

dense water flow down topographic features of

Campin and Goosse (1999) is applied in the model.

The experimental set up for the OGCM circulation

corresponds to the control run described in Campin

et al. (1999). This OGCM was assessed against the

global distributions of temperatures, salinities as

well as the estimated values of water transport in

different locations (North Atlantic, Drake passage,

etc.). The circulation of this OGCM reasonably

reproduces the pre-bomb D14C distribution in the

deep ocean (Mouchet and Deleersnijder, 2008).

� LSG-OM (Maier-Reimer et al., 1993; Mikolajewicz

et al., 1993): The Hamburg LSG has been used in a

number of climate and ocean tracer studies (e.g.

Mikolajewicz et al., 1997; Winguth et al., 1999;

Heinze et al., 2003; Dutay et al., 2004). It is based

on the conservation laws for heat, salt and momen-

tum, the full equations of state, the hydrostatic

approximation and the Boussinesq approximation.

The circulation is divided into a barotropic and a

baroclinic components, allowing for free surface

elevation changes. It also includes a simple sea ice

model to account for brine release during freezing.

The formulation of the model is fully implicit. It has

a horizontal resolution of 3.58�3.58 on a E-grid

(Arakawa and Lamb, 1977). The water column is

subdivided into 11 layers. This model has a

smoothed realistic topography. Advection of tracers

is solved with the help of an upstream scheme both

horizontally and vertically. A horizontal diffusion

term (200 m2 s�1) suppresses mode divergence

resulting from the use of a staggered E-grid.
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Our offline transport model formulation is very close

to that of Heinze et al. (2003). The only difference lies

in the treatment of open-ocean convection process,

which in our model version takes the form of an

explicit diffusion term. As in Heinze and Dittert

(2005), the annually averaged fields needed to drive

the model represent the pre-industrial ocean state

and are obtained from a LSG run resolving the

seasonal cycle (Winguth et al., 1999).

10. Appendix C: impact of numerical diffusivity

on the leaky funnel parameters

The leaky funnel parameters are determined with the help

of M experiments, in which the velocity and explicit

diffusivity are homogeneously multiplied by constant

factors. Since numerical diffusion is proportional to the

velocity magnitude (Roache, 1972), numerical diffusivity in

these experiments is affected by the same factor as the

velocity field. Hence, the velocity and diffusivity corre-

sponding to experiments i (i�1, . . ., M) may be expressed

relatively to those of the unperturbed state as

Ui ¼ ciU and Ki ¼ biK
E þ ciK

N ; (C1)

where bi and gi are constant and positive numbers.

If the leaky funnel adequately represents the circulation

in the ocean interior, then the predicted global water age

for experiment i, �â�i, would be given by eq. (21) rewritten

with the help of eqs. (26) and (C1):

hâii ¼
L

Ui

Pei

1þ Pei

¼ A0

ci

1

1þ bi

ci

1
PeE þ 1

PeN

: (C2)

Let us consider two working hypotheses: either numerical

diffusion is significant or it may be neglected.

Under the first hypothesis (i.e. the standard case), the

theoretical model to be fitted to the M 3-D domain

averaged ages �a�i is �a�i (gi, bi, A0, Pe
E, PeN), where {A0,

PeE, PeN} are the three unknown parameters. The best-fit

parameters will be those minimising in a least squares sense

� (A0, Pe
E, PeN) defined as

eðA0;PeE ;PeNÞ ¼
XM
i¼1

haii � hâiiðci; bi;A0;PeE ;PeNÞ
ri

 !2

;

(C3)

in which si is the standard deviation of the uncertainty

associated to �a�i. The �â�i intervening in eq. (C3) is given

by

ci hâii ¼
A0

PeNþ1
PeN


 � ci=bi

PeN

PeNþ1

� 	
1

PeE þ ci=bi

; (C4)

which is obtained after some manipulation of eq. (C2). If

numerical diffusion is considered to be negligible, then the

theoretical model to be fitted is hâ0iiðci; bi;A
0
0;Pe0EÞ with

only two unknown parameters fA00;Pe0Eg. We use primed

quantities in order to differentiate them from those

corresponding to the first case. The cost-function to be

minimised in a least squares sense hence reads

eðA00;Pe0EÞ ¼
XM
i¼1

haii � hâ0iiðci; bi;A
0
0;Pe0EÞ

ri

 !2

; (C5)

in which �â?�i obeys

ci hâ0ii ¼ A00
ci=bi

1
Pe0E
þ ci=bi

: (C6)

Expressions (C4) and (C6) correspond to two different

theoretical models. Since the gis and bis are identical in

both cases as are the 3-D domain-averaged water ages �a�i,

it can readily be seen that replacing A0? and Pe?E in eq. (C6)

with the following expressions

A00 ¼
PeN

PeN þ 1

� �
A0; (C7)

Pe0E ¼ PeN þ 1

PeN

� �
PeE ; (C8)

results in eq. (C4).

The equalities (C7) and (C8) do not imply that any PeN

value in eq. (C4) would give equally good fit to the

domain-averaged water ages �a�i. It is indeed important

to note that taking into account numerical diffusion results

in an additional constraint on the evolution of �a�i
with gi.
The respective sets of unknown parameters ({A0, Pe

E,

PeN} in the first case, {A0? , Pe?
E} in the second case) are

obtained from the minimisation of the cost function for

two different problems. Hence, they represent the best-fit

set of parameters that may be obtained in each case. When

neglecting numerical diffusion the apparent A0 decreases

while the apparent Pe increases as predicted by eqs. (C7)

and (C8) such that

hâii ¼ hâ0ii: (C9)

We obtained the parameter sets corresponding to the two

problems (C3) and (C5) for each OGCM. The results are

given in Table 3. It is readily seen from the table that the

values {A0, Pe
E, PeN} and {A0?, Pe?

E} obtained with both

OGCMs satisfy the ratios (C7) and (C8).

Since eq. (C9) holds true, there is no impact on the fit of

water age. Predicted water ages are exactly the same under

both hypotheses (Table 3). This agreement occurs because

any decrease in A0 is balanced by the increase of Pe. The

correlation coefficient as well as the mean residual in the
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case of water age are strictly identical whether or not

numerical diffusion is considered. The constraint (C9) is

also valid for the global water age distribution since it is

implicit from the mathematical development in Section 2

that uðsÞ must verify
R1

0
suðsÞds ¼ hai:

The situation is different for the ages of radioactive

tracers whose analytical expression involves cross products

of ai and bi. The linear correlation coefficient increases

and the mean residual decreases when the estimate of

the leaky funnel parameter is performed while including

numerical diffusion. Hence, for radioactive tracer ages, eq.

(C4) leads to better result than eq. (C6) (Mouchet, 2011).

11. Appendix D: erratum for MD08

It appears that typing errors affected several equations in

MD08. The correct versions follow:

Equations (9) and (10) of MD08 should read:

S
@Ck

@t
þ @ SUCkð Þ

@x
¼ Ck

@ðUSÞ
@x

þ @

@x
SK

@Ck

@x

� �
� kSCk;

S
@ak

@t
þ @ SUakð Þ

@x
¼ak

@ðUSÞ
@x

þ @

@x
SK

@ak

@x

� �
� kSak þ SCk:

The correct expression for the volume distribution of water

age (third equation in Appendix A of MD08) is

/ðawÞ ¼
e�aw=Baw>

Baw >
:
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