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A B S T R A C T
Different initial perturbation methods for the mesoscale ensemble prediction were compared by the Meteorological
Research Institute (MRI) as a part of the intercomparison of mesoscale ensemble prediction systems (EPSs) of the
World Weather Research Programme (WWRP) Beijing 2008 Olympics Research and Development Project (B08RDP).

Five initial perturbation methods for mesoscale ensemble prediction were developed for B08RDP and compared at
MRI: (1) a downscaling method of the Japan Meteorological Agency (JMA)’s operational one-week EPS (WEP), (2) a
targeted global model singular vector (GSV) method, (3) a mesoscale model singular vector (MSV) method based on
the adjoint model of the JMA non-hydrostatic model (NHM), (4) a mesoscale breeding growing mode (MBD) method
based on the NHM forecast and (5) a local ensemble transform (LET) method based on the local ensemble transform
Kalman filter (LETKF) using NHM. These perturbation methods were applied to the preliminary experiments of the
B08RDP Tier-1 mesoscale ensemble prediction with a horizontal resolution of 15 km. To make the comparison easier,
the same horizontal resolution (40 km) was employed for the three mesoscale model-based initial perturbation methods
(MSV, MBD and LET).

The GSV method completely outperformed the WEP method, confirming the advantage of targeting in mesoscale
EPS. The GSV method generally performed well with regard to root mean square errors of the ensemble mean, large
growth rates of ensemble spreads throughout the 36-h forecast period, and high detection rates and high Brier skill
scores (BSSs) for weak rains. On the other hand, the mesoscale model-based initial perturbation methods showed
good detection rates and BSSs for intense rains. The MSV method showed a rapid growth in the ensemble spread of
precipitation up to a forecast time of 6 h, which suggests suitability of the mesoscale SV for short-range EPSs, but the
initial large growth of the perturbation did not last long. The performance of the MBD method was good for ensemble
prediction of intense rain with a relatively small computing cost. The LET method showed similar characteristics to
the MBD method, but the spread and growth rate were slightly smaller and the relative operating characteristic area
skill score and BSS did not surpass those of MBD. These characteristic features of the five methods were confirmed by
checking the evolution of the total energy norms and their growth rates.

Characteristics of the initial perturbations obtained by four methods (GSV, MSV, MBD and LET) were examined
for the case of a synoptic low-pressure system passing over eastern China. With GSV and MSV, the regions of large
spread were near the low-pressure system, but with MSV, the distribution was more concentrated on the mesoscale
disturbance. On the other hand, large-spread areas were observed southwest of the disturbance in MBD and LET. The
horizontal pattern of LET perturbation was similar to that of MBD, but the amplitude of the LET perturbation reflected
the observation density.
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1. Introduction

Rapid progress in computer power in recent years has enabled
us to develop higher resolution models for numerical weather
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prediction (NWP). The accuracy of operational NWP in the
world’s major forecast centres has been considerably improved
by advances in numerical modelling and data assimilation tech-
niques, and meso-β scale convective systems are now becom-
ing the target of short-range forecasting (Shapiro and Thorpe,
2004). However, there are still many difficulties in producing
predictions of severe mesoscale phenomena that specify their
intensity, location and timing. The performance of quantitative
precipitation forecasting is totally unsatisfactory if we focus
on the statistical scores of intense rain (e.g. Ebert et al., 2003;
Bousquet et al., 2006). One reason for this low performance of
current operational NWP of intense rains is the lack of avail-
able observations for high-resolution real time data assimilation
(e.g. Nuret et al., 2005). Another reason is the inherent low
predictability of severe small-scale phenomena, which occur
under convectively unstable atmospheric conditions. Without an
orographic trigger or synoptic-scale forcing, initiation of such
phenomena is very sensitive to small differences in the initial
conditions. In some cases, trivial initial perturbations with mag-
nitudes less than those of the direct in-situ observation errors
result in a completely different evolution of deep convection
(e.g. Hohenegger and Schar, 2007; Yoden, 2007).

To consider forecast errors due to uncertainties in initial con-
ditions, ensemble prediction systems (EPSs) are widely used
for medium range NWP. These systems, however, are designed
for global forecasts and mainly focus on the uncertainties due
to synoptic-scale baroclinic instability, whereas many natural
hazards, such as local heavy rainfall or wind gusts, are caused
by mesoscale disturbances rather than by synoptic-scale sys-
tems. To cope with the significant forecast uncertainty of se-
vere mesoscale phenomena, there is now increasing interest in
the development of mesoscale EPSs. Several forecast centres
have begun to use short-range regional EPSs: the Short-Range
Ensemble Forecast (SREF) system of the National Center for
Environment Prediction (NCEP) (Du et al., 2003; Stensrud and
Yussouf, 2007); the Met Office Global and Regional Ensemble
Prediction System (MOGREPS) of the UK Met Office (Bowler
et al., 2008); the Limited Area Ensemble Prediction System
within the COnsortium for Small-scale Modeling consortium
(COSMO-LEPS) of Agenzia Regionale Prevenzione e Ambi-
ennte Romagna (ARPA-SMR) of Italy (Marsigli et al., 2005);
and the Limited Area Ensemble Forecasting system using the
ALADIN model (ALADIN-LAEF) of the Central Institute for
Meteorology and Geodynamics (Zentralanstalt für Meteorologie
und Geodynamik, ZAMG) of Austria (Wang et al., 2011).

Initial perturbation is a key problem in ensemble forecasting.
Hoffman and Kalnay (1983) proposed lagged average forecast-
ing (LAF) and showed superiority to Monte Carlo forecasting.
Toth and Kalnay (1993, 1997), at NCEP, developed the first op-
erational ensemble forecasting method, the breeding growing
mode (BGM) method, in which Lyapunov vectors are obtained
by time integration of the non-linear forecast model. The sin-
gular vector (SV) method, developed by Buizza and Palmer

(1995), was implemented at the European Centre for Medium-
Range Weather Forecasts (ECMWF; Molteni et al., 1996). The
SV method computes the leading eigenvectors using a linear
tangent model and its adjoint. JMA’s operational global EPS
has also implemented the SV method for 1-week forecasting
since 2006 and for typhoon prediction since 2007 (Yamaguchi
et al., 2009). Yamaguchi and Majumdar (2010) compared global
ensemble initial perturbations by ECMWF, NCEP and JMA us-
ing The Observing System Research and Predictability Experi-
ment (THORPEX) Interactive Grand Global Ensemble (TIGGE)
data, and investigated the dynamical mechanisms of perturbation
growth associated with the tropical cyclone.

Recently, the ensemble transform of the ETKF (Bishop et al.,
2001) is becoming more popular as a generator of initial per-
turbations for global EPSs. Wang and Bishop (2003) compared
BGM and ETKF for global ensemble prediction and showed that
ETKF has the advantage that the amplitude of the initial pertur-
bation reflects the magnitude of the local analysis error. Global
EPS of the UK Met Office (Bowler et al., 2008) uses ETKF, while
the Meteorological Service of Canada (MSC; Houtekamer and
Mitchell, 2005) uses an incremental EnKF system.

The features of regional EPSs differ from those of global
EPSs. One choice for the initial perturbation method of a lim-
ited model is dynamical downscaling of the global EPS. Several
current operational regional EPSs use downscaling of pertur-
bations processed by a global EPS (e.g. Marsigli et al., 2005;
Bowler et al., 2008; Houtekamer et al., 2009). On the other
hand, some regional EPSs generate initial perturbations using
regional model-based perturbation methods such as BGM (Du
et al., 2003; Wang et al., 2011), SV (Li et al., 2008) and ETKF
(Bowler and Mylne, 2009).

Another important factor in regional EPSs is the existence
of lateral boundary conditions, which influence ensemble so-
lutions. Nutter et al. (2004) first examined the effect of lateral
boundary perturbations on limited-area ensemble forecasts. Torn
et al. (2006) tested ensemble boundary conditions on limited-
area ensemble Kalman filters (EnKF), but a coarse horizontal
resolution of 100 km was used in their study. Since mesoscale
EPSs are relatively new applications in the NWP field, their
perturbation methods have not been fully investigated. For ex-
ample, Wang and Bishop (2003) compared BGM and ETKF,
but employed a low-resolution (T42 and 18 levels) global cli-
mate model. Bowler (2006) compared SV, BGM and ETKF in
ensemble prediction, but with a simple Lorenz model. Bowler
and Mylne (2009) tested ETKF for the regional MOGREPS
with a horizontal resolution of 24 km, but they failed to show
any relative advantage to using a regional ETKF compared with
downscaling a global ETKF. No comparisons between a regional
ETKF and a regional BGM have been made. The regional SV
method is a relatively new application, and its performance in
mesoscale EPS has not been investigated so far.

In 2008, the World Weather Research Programme
(WWRP) Beijing 2008 Olympics Forecast Demonstration

Tellus 63A (2011), 3



COMPARISON OF INITIAL PERTURBATION METHODS 447

Project/Research and Development Project (B08FDP/RDP), an
international research project of the WWRP of the World Me-
teorological Organization (WMO) for short-range weather fore-
casting, was conducted in conjunction with the Beijing Olympic
Games. The main part of B08RDP, called Tier-1, was an in-
tercomparison of mesoscale EPSs with a horizontal resolution
of 15 km. The Meteorological Research Institute (MRI) of the
Japan Meteorological Agency (JMA) participated in this project,
applying the JMA non-hydrostatic model (NHM). Prior to the
2008 intercomparison period (one month from 25 July to 23
August 2008), MRI developed five initial perturbation methods:
(1) a downscaling method of JMA’s operational one-week EPS
(hereafter, WEP), (2) a targeted GSV method, (3) a mesoscale
singular vector (MSV) method based on the adjoint model of
NHM, (4) a mesoscale breeding growing mode (MBD) method
based on the NHM forecast and (5) a local ensemble transform
(LET) method based on the local ETKF using NHM (NHM-
LETKF). Results of the ensemble forecasts made with these
five methods were compared objectively by evaluating the evo-
lution of the ensemble spreads, the root mean square error
(RMSE) of the ensemble mean against the four-dimensional
variational data assimilation (4D-Var) analysis, and two quanti-
tative precipitation scores, the relative operating characteristics
area skill score (ROCSS) and the Brier skill score (BSS). In
addition, two lateral boundary perturbation methods were de-
veloped, and their impacts on the ensemble forecast were also
examined.

In this paper we compare the use of these five initial perturba-
tion methods for the mesoscale ensemble prediction as the first
part of the MRI’s studies for the B08RDP project. To the best
of our knowledge, this is the first comprehensive comparison of
initial perturbation methods for a full-scale mesoscale EPS that
includes global and mesoscale SVs, BGM and LETKF.

This paper is organized as follows. Section 2 describes the
WWRP B08FDP/RDP project and MRI’s participation in that
project. Section 3 presents the five initial perturbation methods
for mesoscale ensembles developed at MRI for the B08RDP
Tier-1 ensemble prediction. Section 4 presents the design of the
experiments. Section 5 shows the results of the comparison of
the five perturbation methods. Section 6 discusses the vertical
structures of the energy norms and their time evolutions in the
ensemble prediction. Characteristics of horizontal and vertical
distributions of the initial perturbations by the five methods are
also discussed. Summary and concluding remarks are given in
Section 7.

2. The WWRP B08FDP/RDP project

The B08FDP/RDP was an international research project of
WWRP conducted in conjunction with the Beijing 2008
Olympic Games. The plan was first proposed by the China
Meteorological Administration (CMA) in September 2003 as
a research project which succeeded the Sydney 2000 Forecast

Demonstration Project (Sydney 2000FDP; Keenan et al., 2003).
In October 2004 the project was endorsed at the seventh session
of the WWRP Science Steering Committee. The B08FDP/RDP
was divided into two components: a FDP component for very
short-range forecasting of up to 6 h based on nowcasting, and a
RDP component for short-range forecasting of up to 36 h based
on mesoscale EPSs. MRI participated in the RDP component in
collaboration with the Numerical Prediction Division (NPD) of
JMA. The RDP component was further divided into two parts:
Tier-1, consisting of mesoscale ensemble prediction by regional
models with a horizontal resolution of 15 km, and Tier-2, case
studies using cloud-resolving models with horizontal resolutions
of less than 3 km. Prior to the intercomparison performed in sum-
mer 2008, preliminary experiments testing the data transfer and
the EPSs of the project participants were carried out in 2006 and
2007.

The 2008 B08FDP/RDP experiment was conducted over
about one month in summer 2008 to coincide with the period
of the Beijing Olympic Games, which took place from 8 to 24
August 2008. In the Tier-1 ensemble experiment, the six partic-
ipants [MRI/JMA, NCEP, MSC, ZAMG, the National Meteo-
rological Center (NMC) of CMA and the Chinese Academy of
Meteorological Sciences (CAMS)] were requested to run their
ensemble predictions for a forecast time (FT) of up to 36 h,
starting every day at 12 UTC. The results were interpolated
into verification grids with a resolution of 0.15◦ over a common
verification domain (105–125◦E, 30–45◦N). Duan et al. (2009)
provide a detailed overview of B08RDP, and Kunii et al. (2011)
have reported the results of the international EPS intercom-
parison. Details of MRI and JMA’s activities in B08FDP/RDP
have been published as an MRI Technical Report (Saito et al.,
2010a).

3. Initial perturbation methods

Five initial perturbation methods were developed at MRI in
collaboration with NPD/JMA and applied in the B08RDP Tier-1
mesoscale EPS. Considering different features of horizontal and
vertical distributions of initial perturbations by the five methods
(see section 6.2), we did not apply the same scaling factor but
employed different scaling manners in the five methods. The
details are as follows.

3.1. WEP method

The WEP method employs perturbations of the forecast of
JMA’s operational one-week EPS, which uses a singular vec-
tor method in a global model. This perturbation method was
regarded as a reference method for the comparison of initial per-
turbation methods and was also used to supply lateral boundary
perturbations to the mesoscale ensemble predictions, except for
that employing the GSV method. We employed 6-hourly pres-
sure plane (12 levels) forecast grid point values (GPVs) of JMA’s
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one-week EPS, which covers the Regional Specialized Meteo-
rological Center (RSMC) Tokyo responsible area (90–180◦E,
0–71.5◦N) with a horizontal grid interval of 1.25◦. The data
(hereafter, JMA EPS GPV) are processed at NPD/JMA in Tokyo
once a day at the initial time of 12 UTC and transferred to MRI
in Tsukuba through an exclusive line.

As described later in Section 4, an NHM with a horizontal
resolution of 15 km and 40 vertical levels (NHM L40) is em-
ployed in the ensemble prediction, but the highest JMA EPS
GPV level is 100 hPa, which is lower than the top of NHM L40
(22.1 km, ∼40 hPa). The procedure to prepare the initial pertur-
bation is as follows. First, JMA EPS GPV data are interpolated
to model planes of a 32-level NHM (NHM L32; the model top
is at 13.8 km, ∼160 hPa), and perturbations are extracted by
subtracting the interpolated field of the control run from those
of the perturbed runs. Then, the perturbations are normalized
and added to the initial conditions of the NHM L40 control
run. Next, the perturbation at the top of NHM L32 is vertically
extrapolated to the highest eight levels of NHM L40. At the
kz-th level, the amplitude of perturbation is multiplied by the
coefficient c1:

c1 = 1 − cos{π∗(kz − 32)/8}
2

, (1)

so that the perturbation amplitude becomes zero at the top of
NHM L40.

Because the timing of the file transfer of JMA EPS GPV from
NPD/JMA to MRI is too late to conduct a near-real-time EPS
run of B08RDP, instead of the initial conditions of the JMA EPS,
24-h forecast of the JMA EPS from 12 UTC 1 d before was used
for the experiment. The amplitudes of JMA EPS GPV were
adjusted to take into account the analysis errors of the initial
conditions of NHM L40 given by JMA’s hydrostatic 4D-VAR
system (Meso 4D-VAR; Koizumi et al., 2005). Normalization
coefficients were determined so that the root mean square val-
ues of the perturbations at each model level did not exceed the
prescribed upper limits of the standard errors of the Meso 4D-
VAR analysis [0.7 hPa for mean sea level pressure, 1.8 m/s for
horizontal winds (U and V), 0.7 K for potential temperature,
and 15% for relative humidity]. These values are about 70% of
the magnitudes of JMA’s operational Meso 4D-VAR’s statisti-
cal background errors. Although this ‘capping’ may deform the
structures of the 24-h forecasted perturbations of JMA’s global
EPS, the resulting perturbations do not badly degrade the dy-
namical balance of the NHM initial conditions (as shown the
RMSEs of the ensemble mean in Fig. 7). A similar method has
been used in mesoscale ensemble experiments for a heavy rain-
fall event in northern Japan (Saito et al., 2006b). Seko et al.
(2009) also applied this method to estimate potential parameters
for Tornado formation in Japan and obtained a good result.

Figure 1 depicts the procedures used to prepare the initial
conditions by the WEP method. To prepare the lateral boundary

Fig. 1. Schematic chart of the procedures
used for preparing initial conditions by the
WEP method.

Tellus 63A (2011), 3



COMPARISON OF INITIAL PERTURBATION METHODS 449

perturbations, a similar procedure was applied to the 6-hourly
JMA EPS GPV data of 1 d previously, but instead of applying the
same limiters in the initial perturbations, the amplitudes of the
global EPS forecast perturbations were adjusted by taking into
account the difference in initial times between the global and
mesoscale EPSs. Details of the procedure are given in Section
E-5 of Saito et al. (2010a). Similar procedures were employed
in the ensemble prediction experiment for the Myanmar cyclone
Nargis (Saito et al., 2010b), but in that case, instead of the 6-
hourly RSMC Tokyo EPS GPV data of 1 d previously, other
12-hourly global EPS GPV data of JMA for the same day were
used.1

3.2. GSV method

The GSV method is based on the targeted GSV method of the
typhoon EPS at JMA (Yamaguchi et al., 2009). To calculate
the SVs, a tangent linear model (TLM) and its ADjoint Model
(ADM) of the JMA global 4D-VAR system (Kadowaki, 2005)
were used. In the B08RDP application, the horizontal resolutions
and vertical levels of TLM and ADM were T63 (about 200 km)
and L40. The models consist of a full dynamical core and phys-
ical processes, including vertical diffusion, gravity wave drag,
large-scale condensation, long-wave radiation, and deep cumu-
lus convection. The chosen optimization time of the SVs was
24 h. The moist total energy (TE) norm (Barkmeijer et al., 2001)
was used:

T E = 1

2

∫ 1

0

∫
s

(
∇�−1ζx · ∇�−1ζy + ∇�−1Dx∇�−1Dy

+ cp

Tr

TxTy+wq

L2

cpTr

qxqy

)
dS

(
∂p

∂η

)
dη

+ 1

2

∫
S

RdTrPr ln πx · ln πydS, (2)

where ζ , D, T , q and ln π are the vorticity, divergence, temper-
ature, specific humidity and logarithm of the surface pressure,
respectively. cp is the specific heat at constant pressure, Rd the
gas constant for dry air, and L the latent heat of condensation.
Tr = 300 K is the reference temperature, Pr = 800 hPa is the
reference pressure, and wq is a weight constant for moist en-
ergy. wq = 1.0 was the value employed in JMA’s operational
typhoon EPS,2 whereas wq = 0.6 was employed in the prelim-
inary experiment in 2007 to increase the initial perturbation of
specific humidity. On the basis of the results of the 2007 exper-
iment, wq = 0.3 was chosen in the 2008 B08RDP experiment

1 Saito et al. (2010b) did not use the RSMC Tokyo EPS data set for the
Nargis EPS because its coverage area (90–180◦E, 0–71.5◦N) does not
include all of the Bay of Bengal. In the case of the Nargis simulation, we
did not have to finish the computation within a specific time; thus, we
could use the data at the initial time of the mesoscale model simulation
without considering the timing of the file transfer from NPD/JMA to
MRI.
2 wq = 0.04 is used in JMA’s operational 1-week EPS.

(this study) to further increase the initial perturbation of specific
humidity.

As a tuning in B08RDP, the target area of the GSV was
shifted southeastward from the common verification area (from
105–125◦E, 30–45◦N to 110–130◦E, 27–42◦N) to capture the
northward water vapour flux at lower levels in the southern part
of the model domain and to improve the ensemble spreads in the
early stage of the forecast period.

To obtain consistent initial and lateral boundary perturbations
for NHM, both perturbations were given by initial conditions and
the forecast of the global spectral model (GSM) of JMA. The
first five SVs were added to the initial conditions (JMA global
analysis) of GSM (T63L40), and time integration of GSM was
performed for 36 h in the control run and in the five ensemble
members, using only positive perturbations. The SV amplitudes
were adjusted so that none of the maximum values of the five
variables (temperature, specific humidity, x and y components
of the horizontal velocity, and surface pressure) exceeded the
typical GSM forecast error estimated from the statistics of the
2007 experiment.3 Then, forecasted 3-hourly GSM model-plane
data were interpolated into the NHM model planes. The initial
and lateral boundary perturbations for the mesoscale EPS were
obtained from the differences between the control run and the
perturbed runs of the GSM EPS. Then, the perturbations were
added to (or subtracted from) the initial and boundary conditions
of the NHM control run. Super-saturation was removed from
the perturbed fields. For more details of the GSV method and its
modifications in B08RDP, see Hara (2010a).

3.3. MSV method

In the MSV method, the SVs are calculated using the TLM
and ADM of the JMA non-hydrostatic mesoscale 4D-VAR sys-
tem (Honda et al., 2005). In TLM and ADM, some parts of
the non-linear model are simplified; only the large-scale con-
densation and the moisture convective adjustment are used
in moisture processes. To solve the eigenvalue problem, the
Lanczos algorithm (Simon and Parlett, 1980) with Gram-
Schmidt re-orthogonalization was adopted. The TE norm in-
cluding the moisture term (Ehrendorfer et al., 1999) is

T E = 1

S

∫ z2

z1

∫
s

1

2
ρ

[
u′2 + v′2 + w′2 + wt

cp(θ )′2




+ RTr

(
p′

pr

)2

+ wq

L2

cpTr

q ′2
]

dSdz, (3)

where ρ is density; u, v and w are wind components; θ , p and q
are potential temperature, pressure, and the mixing ratio of wa-
ter vapour, respectively; and Cp is the specific heat at constant

3 In the 2007 preliminary experiment, the amplitude of the initial pertur-
bation was fixed at the mean value of the estimated standard error of the
Meso 4D-VAR analysis, but the ensemble spread was insufficient (see
section D-4–2 of Saito et al. (2010a)).
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pressure. 
 = 300 K, Tr = 300 K and Pr = 105 hPa are the refer-
ence values of potential temperature, temperature, and pressure.
R is the gas constant, L the latent heat constant, and wt = 3.0 and
wq = 0.5 are the weights of the potential temperature and wa-
ter vapour mixing ratio terms, respectively. These weights were
determined so that the composition ratio of individual terms in
the initial norm would be equivalent to that calculated using
standard analysis errors.

Because mesoscale model-based SVs sometimes show an un-
natural ‘peak’ value for a particular parameter such as qv, a
simple normalization based on the maximum value only tends
to rescale the perturbation amplitude unreasonably small. To
overcome the problem, a two-step approach to the normaliza-
tion of the initial perturbations was used. In this approach, first, a
normalization factor to the initial perturbations is determined so
that one of their maximum values becomes any of p = 1.0 hPa,
(u, v) = 6.0 m s−1, θ = 3.0 K, and qv = 3.0 g kg−1. Then, the
maximum peak size limit was set to three times the analysis
error. In other words, if the absolute value of the initial perturba-
tion exceeded three times the standard deviation of the analysis
error, the amplitude was reduced to equal three times the analy-
sis error. The analysis errors used here were functions of height,
based on the background errors of the JMA Meso 4D-VAR,
which were calculated statistically for a summer season. These
procedures may deform the structure of each SV, but we con-
firmed that the modified initial perturbations could grow in the
non-linear model as steadily as in the linear model. Furthermore,
the variance minimum method (Yamaguchi et al., 2009) for re-
organizing initial perturbations was utilized. For more details of
the MSV method and its modifications in B08RDP, see Kunii
(2010).

3.5. MBD method

The MBD method employs a self-breeding cycle with NHM. To
evaluate the magnitude of the bred perturbations, the moist TE
norm by Barkmeijer et al. (2001), similar to eq. (3), is employed.
In B08RDP, referring to the JMA global EPS, the values of

 = 300 K, Pr = 800 hPa and wq = 0.1 were used, and the
norm was computed below the height of 5.3 km above ground
level.

Six-hourly self-breeding cycles with a horizontal resolution
of 40 km were conducted (Fig. 2a). In the 2007 preliminary
experiment, self-breeding cycles were conducted with a hori-
zontal resolution of 15 km as in the extended ensemble run, but
bred vectors contained small-scale (high wavenumber) pertur-
bations, which tended to shrink in a short period (see section D-4
of Saito et al., 2010a). In the 2008 intercomparison, we unified
the horizontal resolutions of the three mesoscale model-based
initial perturbation methods (MSV, MBD and LET) to 40 km.
This unification made implementation of the lateral boundary
perturbations easier, and contributed to the elimination of such
small-scale perturbations.

The moist TE norms are computed from the differences be-
tween the control runs and perturbed runs, and the bred perturba-
tions of all prognostic variables except four-levels soil temper-
atures are normalized every 6 h. The normalization coefficients
are determined by the square root of the ratios of the TE norms
of perturbed runs to the standard norm, which is computed by
using the prescribed values of the model variables (0.35 hPa
for mean sea level pressure, 1.0 m s−1 for U and V, 0.4 K for θ

and 5% for relative humidity). These values are about 50% of
the magnitudes of JMA’s operational Meso 4D-VAR’s statistical
background errors (Koizumi et al., 2005).

Perturbations from the operational global one-week EPS of
JMA at 12 UTC 2 July 2008 were used as the initial seed of
the ensemble perturbation, and 6-h breeding cycles were per-
formed sequentially throughout the experimental period using
JMA’s operational global 4D-VAR analyses without orthogo-
nalization. A sequential breeding cycle without orthogonaliza-
tion may cause conversion of bred vectors to a single Liapunov
vector, but this problem was avoided by inclusion of the lat-
eral boundary perturbations in the breeding cycles (Saito et al.,
2009). Water vapour supersaturation was removed for each per-
turbed member at the initial times of all breeding cycles. To save
computational cost, forecasts in breeding cycles were performed
by using the warm rain process.

Five bred vectors were interpolated and added to the ini-
tial condition of the control run as the incremental perturba-
tion to make five positive ensemble members with a horizontal
resolution of 15 km. Additionally, the interpolated bred vec-
tors were subtracted from the initial condition of the control
run to make five negative ensemble members. These negative
members are almost symmetric to positive members, but the
ensemble mean is slightly modified owing to the saturation
adjustment.

3.6. Local ensemble transform Kalman
filter (LET) method

The LET method uses the ensemble transform of LETKF (Hunt
et al., 2007) as the initial perturbation generator. NHM-LETKF
(Miyoshi and Aranami, 2006) was modified for B08RDP. The
procedures of the LET method are outlined in Fig. 2b. As in
the MBD method, 6-hourly forecast-analysis cycles with NHM
(40 km, L40) are performed, with 20 ensemble members. Also
as in the MBD method, the warm rain process was adopted in
the EnKF forecast-analysis cycles to reduce the computation
time. An inflation factor of 10% (i.e. 21% covariance inflation)
is employed. Localization is performed with the observation lo-
calization scales of five grid points in the horizontal and three
vertical levels, in which the influence of an observation is cut
off when the distance from the observation is larger than the
product of the localization scale and 2.0∗sqrt(10/3). Surface
and upper-level sounding data that have passed JMA’s opera-
tional quality control procedures are assimilated by LETKF. The
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Fig. 2. Schematic diagrams of (a) the MBD method and (b) the LETKF method.

ensemble mean of the assimilation results is re-centred around
the analysed fields obtained by the Meso 4D-Var system at 12
UTC in each EnKF forecast-analysis cycle. Then, 10 members
are selected by cluster analysis, and perturbations produced by
LETKF are extracted. Initial conditions of ensemble members
are produced by adding the perturbations of the selected 10
members to the analysed fields obtained by the Meso 4D-Var
system.

The following modifications were made to Miyoshi and
Aranami’s (2006) NHM-LETKF: (1) rigorous treatments of mo-
mentum and pressure (e.g. accurate treatment of air density);
(2) implementation of vertical hybrid coordinates; (3) satura-
tion adjustment of the initial field; (4) removal of local patches
and (5) implementation of the lateral boundary perturbation in
forecast-analysis cycles. Local patches that originated from the
local EnKF (Ott et al., 2004) were removed by the method
of Miyoshi et al. (2007), which was implemented for NHM-
LETKF by Fujita (2009). With the above modifications, the
ensemble spread was increased by about 5% and the analysis

fields became closer to the next day’s initial condition (Seko,
2010).

A cluster analysis procedure was also applied in the LETKF
in B08RDP to choose the 10 members from the 20-member
ensemble perturbations. The variation of normalized energy
in the lower atmosphere was obtained by the following
equation:

E =
∫ 1.46 km

20 m

∫ ∫ {
u2 + v2 − (u2 + v2)min

(u2 + v2)max − (u2 + v2)min

+ θ2 − θ 2
min

θ 2
max − θ 2

min

+ q2
v − q2

v min

q2
v max − q2

v min

}
dS dz, (4)

where u, v, θ and qv are horizontal wind components, potential
temperature, and the mixing ratio of water vapour, respectively.
()min and ()max are the maximum and minimum values among
all ensemble members. The integration was performed over the
whole horizontal domain and from 20 m to 1.46 km in the vertical
domain. Distances between each cluster and the ensemble mean
were evaluated in terms of the variation of normalized energy
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Fig. 3. Domain of mesoscale ensemble prediction. The fan-shaped area
over eastern China indicates the common verification area in B08RDP.

in the cluster analysis. Selection of ensemble members started
with the one in the largest group that was the farthest from the
ensemble mean.4

A detailed comparison of MBD and LET methods with and
without the lateral boundary perturbations has been given by
Saito et al (2009). Seko et al. (2011) described mesoscale and
cloud-resolving ensemble forecast experiments for a heavy rain-
fall event in western Japan using NHM-LETKF.

4. Design of experiments

Performances of the five initial perturbation methods (WEP,
GSV, MSV, MBD and LET) were compared by applying their
perturbations to the MRI/JMA’s mesoscale EPS in B08RDP.
The model domain (Fig. 3) is covered by 232 × 200 gridpoints
with a horizontal resolution of 15 km. The number of vertical
levels is 40, with the lowest level at 20 m above ground level,
and the depth of the layers stretches from 40 to 1180 m with
increasing height. The initial conditions and lateral boundary
conditions of the control run were prepared by using the Meso
4D-VAR analysis over the Beijing area (Kunii et al., 2010) and
the forecast of JMA’s high-resolution operational global model
(Japan Meteorological Agency, 2007), respectively.

A three-ice bulk cloud microphysics scheme that predicts
cloud water, rain, cloud ice, snow and graupel and a Kain-Fritsch
convective parametrization scheme were included as the moist
processes. The Mellor-Yamada-Nakanishi-Niino’s level 3 tur-
bulent closure model (MYNN3; Nakanishi and Niino, 2004) as

4 In fact, this clustering procedure was not decisive for the performance
of EPS using LETKF. The ensemble transform makes each ensemble
equal-likely in the model coordinates, though the distances between the
ensemble members are slightly modified in the energy norm space.

implemented by Hara (2010b) was used. Surface momentum,
heat, and moisture fluxes over the sea were computed using
Beljaars and Holtslag’s (1991) scheme. These physical pro-
cesses, including the atmospheric radiation scheme, are basically
the same as those in JMA’s operational mesoscale model (MSM;
Saito et al., 2006a, 2007; Japan Meteorological Agency, 2007).
Small perturbations in initial soil temperatures corresponding
to the lowest level atmospheric temperatures were applied to
the ensemble members, but they had almost no impact on the
ensemble spread (see section D-5 in Saito et al., 2010a).

A few points in the operational MSM were modified for the
extended forecast in B08RDP with a horizontal resolution of
15 km: first, the lower limit of soil humidity was modified to
attenuate the overestimation of the surface sensible heat on very
hot days; second, the parameters in the Kain-Fritch scheme such
as the autoconversion threshold from condensed water to rain
(kf_thresh) and convection life times (cu_lifetime_min and shal-
low_lifetime) were modified. Details of the modifications of
NHM in B08RDP are given by Saito and Hara (2010).

The 36-h extended ensemble forecast with 11 members was
assessed for two initial times, 12 UTC on 3 July and 12 UTC
on 4 July 2008, and RMSEs, ensemble spreads, and precipita-
tion were verified using average values of the two 36-h EPSs.
Although the period of the comparison (2.5 d, from 12 UTC on
3 July to 00 UTC on 6 July) was possibly not long enough for
full-scale validation of the initial perturbation period, given the
forecast range (36 h), this kind of comparison using five differ-
ent initial perturbation methods is expensive, and we therefore
could test only two cases. Specifications of the mesoscale EPS
of MRI/JMA are listed in Table 1, along with comparisons with
the operational mesoscale NWP at JMA.

During the period of the comparison, a synoptic low-pressure
system passed over eastern China. Figure 4 shows the forecast
of the control run of the extended EPS at initial time 12 UTC,
4 July 2008. The low-pressure system was located southwest
of Beijing at 15 UTC, 4 July (Fig. 4a; FT = 3), and moved
northeastward bringing rainfall to the area northeast of Beijing
on 5 July (Fig. 4b; FT = 24).

5. Comparison of the five methods

5.1. Ensemble spread and RMSE

Performances of the five initial perturbation methods (WEP,
GSV, MSV, MBD and LET) were verified by checking their
ensemble spreads and the RMSEs of the ensemble means against
the Meso 4D-VAR analysis at the valid time.

Figure 5 shows the time sequence of the ensemble spreads of
surface variables (Psea, sea level pressure; Vs, surface (10 m)
meridional wind; Ts, surface (2 m) temperature; RHs, surface
(2 m) relative humidity; and RR3H, 3-h accumulated rainfall
amount) averaged for two EPSs with initial times of 12 UTC,
3 July and 12 UTC, 4 July 2008. Spreads of surface variables
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Table 1. Specifications of the B08RDP MEP system of MRI/JMA

Forecast model Operational MSM at JMA B08RDP

Horizontal grid 721 × 577 (�x = 5 km) 232 × 200 (�x = 15 km)
Time step 24 s 60 s
Forecast time 33 h (03, 19, 15, 21 UTC) 36 h (12 UTC)

15 h (00, 06, 12, 18 UTC)
Vertical grid Generalized hybrid coordinates, 50 levels Generalized hybrid coordinates, 40 levels
Number of members Only deterministic run 11 members
Initial condition of the control run JMA non-hydrostatic 4DVAR analysis over Japan area Meso 4DVAR analysis for Beijing area
Lateral boundary condition of the

control run
JMA GSM forecast (TL959 L60), 1 hourly JMA GSM forecast (TL959 L60), 3 hourly

Fig. 4. Sea level pressure (contours) and accumulated 3-h precipitation (colour scale) predicted by the control run. Initial time is 12 UTC, 4 July
2008. The colour bar indicates precipitation intensity in mm. (a) FT = 3. (b) FT = 24.

except Psea and RR3H show distinct diurnal changes. Since the
initial time 12 UTC corresponds to 8 pm local standard time
in Beijing, spreads of surface wind, Ts, and RHs show daytime
peaks, from FT = 12 to FT = 24, whereas spreads of Psea
generally increase steadily with time.

WEP spreads have relatively large amplitudes at the initial
time (FT = 0) and increase slowly. Spreads of surface wind and
RHs decrease at FT = 3, after the initial spin-up. GSV spreads
are relatively smaller than those of WEP, MBD, or LET at the
initial time (FT = 0) and then grow steadily throughout the 36-h
FT. However, the increase in the spread of surface precipitation
is slow during the first 3 h. By FT = 18, GSV spreads are largest
among the five methods.

MSV spreads at FT = 0 are the smallest among the five
methods but grow rapidly after the spin-up. Surface precipi-
tation (RR3H) grows particularly rapidly during the first 6 h,
reaching 3.75 mm at FT = 6, the largest value among the five
methods. However, the spread of RR3H decreases subsequently
and becomes comparable to those obtained with the other meth-
ods after FT = 12. This behaviour of the precipitation spread

after the model spin-up in MSV may be partially come from
the adjustment process of the atmospheric unstableness in the
initial condition. Nevertheless, as shown in subsection 6.1, the
energy norm of the MSV method increases steadily and keeps
relatively large growth rate even after FT = 3. The tendencies
of the MBD and LET spreads are similar to each other: values
at FT = 0 are relatively large and grow slowly. These differ-
ences between SV and BGM perturbations are consistent with
Yamaguchi and Majumdar (2010), where the global ensemble
spreads by ECMWF SV and NCEP BGM were compared. Gen-
erally, growths of spreads in LET are slightly more sluggish than
those in MBD.

Figure 6 shows the evolution of the ensemble spreads of
the variables at 500 hPa (Z, geopotential height; V, meridional
wind; T, temperature; RH, relative humidity). No distinct diur-
nal changes are seen in these variables. The characteristics of
the spreads at 500 hPa obtained with the five initial perturbation
methods are similar to those at the surface (Fig. 5). WEP spreads
have relatively large amplitude at the initial time (FT = 0) and
increase slowly. Generally, initial spreads for SV methods (GSV
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Fig. 5. Ensemble spreads of surface variables for the five initial perturbation methods (WEP, GAV, MSV, MBD and LET) in the verification area
averaged over two EPSs with initial times of 12 UTC, 3 July and 12 UTC, 4 July 2008. The units on the left vertical axis are hPa for sea level
pressure (Psea), m s−1 for surface (10 m) meridional winds (Vs) and K for 2 m temperature (Ts). The units on the right vertical axis are % for
surface (2 m) relative humidity (RH) and mm for 3-h precipitation.

and MSV) are smaller than those for other methods but their am-
plitudes grow rapidly. GSV spreads grow steadily throughout the
36-h forecast range. The large differences at FT = 36 between
the GSV spreads and those of the other four methods probably
reflect differences in the lateral boundary perturbation methods;
lateral boundary perturbations in WEP, MSV, MBD and LET
were given by JMA’s 1-week EPS, whereas GSV lateral bound-
ary perturbations were given by the GSM forecast perturbed
by the targeted SV. In the second half of the simulation period
(after FT = 18), the effect of the lateral boundary perturbation
dominates that of the initial perturbation (Saito et al., 2009).

The MBD and LET methods show similar tendencies, but the
growth of the LET spreads is slightly more sluggish than that of
the MBD spreads.

Figure 7a shows RMSEs of the surface variables at FT = 24
against the initial conditions (4D-Var analysis) at the same valid
times for the 2 d of 3–4 July 2008. RMSEs of the control run and
those of the ensemble means obtained with the five methods are
shown. Error bars show standard deviations of improvements
by the ensemble means against the control runs. RMSEs of the
ensemble means are smaller than those of the control run for
all variables except surface pressure by WEP, which indicates
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Fig. 6. Ensemble spreads of the 500-hPa level variables for the five initial perturbation methods (WEP, GSV, MSV, MBD and LET) in the
verification area averaged over two EPSs with initial times of 12 UTC, 3 July and 12 UTC, 4 July 2008. Unit on vertical axis is m for height (Z),
m s−1 for meridional wind (V), K for temperature (T) and % for relative humidity (RH), respectively.

that the ensemble predictions by all initial perturbation methods
were conducted properly.5 WEP RMSEs are larger than those of
the other methods in the case of Psea, Vs and Ts. GSV RMSEs
are the smallest for all variables. MSV RMSEs are larger than
those of MBD and LET, but still smaller than those of WEP for
Psea, Vs and Ts. MBD and LET show similar tendencies; their
RMSEs are almost the same for Ts, but the RMSEs of LET are
marginally smaller than those of MBD for Psea and RHs.

Figure 7b shows the RMSEs for the variables at 500 hPa. WEP
does not show a clear advantage against the control run, but the

5 RMSE can be decomposed into the mean error (ME) and the standard
deviation error (SDE) (Murphy, 1988), and ME does not depend on the
initial perturbation method. Besides, in the B08RDP experiment, model
bias for the NHM surface condition was very small (Kunii et al., 2010b).

other four methods show an obvious advantage. The GSV RMSE
is smallest for V but largest for Z. MSV RMSEs are again slightly
larger than those of MBD and LET. MBD and LET RMSEs are
fairly comparable. LET RMSEs were minimum for T and RH,
but as shown in the error bars, the differences are marginal.
The automasking effect of initial perturbation amplitude in the
EnKF which reflects the accuracy of the analysis is regarded as
the relative advantage of the EnKF against BGM in EPS (Wang
and Bishop, 2003), but the advantage of LET against MBD is
not obvious in the RMSEs in this figure.

Figure 8 compares the RMSEs and ensemble spreads obtained
with the five methods for Psea (Fig. 8a) and Ts (Fig. 8b). In
this figure, error bars show their standard deviations. RMSEs
of the ensemble means are smaller than those of the control
runs except for Psea by the WEP method. Ensemble spreads are
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Fig. 7. (a) RMSEs of surface variables (Psea, Us, Vs, Ts and RHs) against the 4D-Var analysis in the verification area at FT = 24 averaged over two
EPSs with initial times of 12 UTC, 3 July and 12 UTC, 4 July 2008. From left to right, control run (Cntl), WEP, GSV, MSV, MBD and LET. Error
bars show standard deviations of improvements by the ensemble means against the control runs. (b) Same as (a) but for the variable at 500 hPa (Z,
U, V, T and RH).

smaller than the RMSEs for all ensembles. These results indicate
that the ensemble forecasts are still underdispersive compared
with the model errors. If we examine the ratio of the ensemble
spread of the ensemble mean to the RMSE, the GSV method
give the best results of 87 and 90% for surface pressure and
surface temperature, respectively. Underdispersion of ensemble
spreads in surface variables were commonly seen in the other
participants’ mesoscale EPSs as well, and the results obtained
by MRI/JMA’s EPS with the GSV method were relatively better
than the EPS results obtained by the other participants (Kunii
et al., 2011).

5.2. Performance of precipitation forecast

We examined the performances of the five initial perturbation
methods with regard to the ensemble forecast on precipita-
tion. Figure 9 shows the relative operating characteristics (ROC;
Mason, 1982) curves for the comparison period (2.5 d from 12
UTC, 3 July, to 00 UTC, 6 July 2008). For verification, forecast
results in the common domain were interpolated to verification
grids with a resolution of 0.15◦ and compared with CMA’s sur-
face rain gauge network data (400 synoptic observation stations

and 722 automated observation stations (fig. 1 of Kunii et al.,
2011).

The five methods exhibit interesting characteristics. For weak
to moderate rains, such as 1 mm/6 h and 5 mm/6 h (Figs 9a and b),
‘hit rates’ (probability of detection, i.e. the proportion of occur-
rences that were correctly forecasted; Jolliffe and Stephenson,
2003) of the global model-based methods (GSV and WEP) were
better (higher) than those of the mesoscale model-based methods
(MSV, MBD and LET), whereas ‘false alarm rates’ (probabil-
ity of false detection, that is, the proportion of non-occurrences
that were incorrectly forecasted) were slightly worse (larger) for
high probabilistic thresholds. Maximum detection values (hit
rates) by the GSV method were about 90% and 75% for 1 mm
and 5 mm per 6 h, respectively. On the other hand, maximum
detection values by the LET method were about 75% and 65%
for 1 mm and 5 mm per 6 h, respectively. This relatively poor
precipitation detection performance of LET was likely due to
underestimation of the ensemble spread. For moderate to in-
tense rains, such as 10 mm/6 h and 25 mm/6 h, the situation is
reversed. For moderate rains (Fig. 9c), MBD and LET showed
a maximum detection rate of 61% and WEP showed a rate of
60%. For intense rains (Fig. 9d), the MBD and MSV methods
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Fig. 8. (a) RMSEs of the control run and the ensemble mean against the 4D-Var analysis, and ensemble spreads of mean sea level pressure (Psea) in
the verification area at FT = 24 averaged over two EPSs with initial times of 12 UTC, 3 July and 12 UTC, 4 July 2008. Error bars show standard
deviations. From left to right, WEP, GSV, MSV, MBD and LET. (b) Same as (a), but for surface (2 m) temperature (Ts).

yielded maximum rates of 45% and 41%, respectively, whereas
WEP yielded the lowest value of 35%. These results indicate
that mesoscale model-based methods (MBD, MSV and LET)
tend to be more suitable for detecting intense rains than global
model-based initial perturbation methods (WEP and GSV).

This tendency is clearly confirmed by the ROC area skill
scores (ROCSSs). Figure 10 shows ROCSSs with thresholds of
0.1, 1, 3, 5, 10, 15, 20 and 25 mm per 6 h. GSV was best (highest)
for weak rains of less than 5 mm/6 h, whereas MBD and MSV
were more suitable for moderate or intense rain (>10 mm/6 h).
A likely reason for this result is that GSV (and WEP) tends to
perturb synoptic-scale disturbances, whereas MBD, LET, and
MSV tend to perturb mesoscale disturbances, which has more
effect on local intense rains.

Figure 11 shows time series of Brier skill scores (BSSs) for
precipitation of 1 mm/6 h by the five initial perturbation methods.
Averages of two EPSs with initial times of 12 UTC, 3 July and
12 UTC, 4 July 2008, are depicted. For this weak rainfall, the
global model-based methods, WEP and GSV, show relatively
better scores than the mesoscale model-based methods (MSV,
MBD and LET). WEP shows the best performance up to FT =
15, but its skill score decreases after FT = 18. GSV shows
relatively good scores from FT = 18 to 30. The three mesoscale-
based methods show similar score evolutions, peaking at FT =
12, then decreasing gradually, but showing second and third
peaks at FT = 18 and 33. Roughly speaking, MBD performance
among the three is better up to FT = 18, but it shows no clear

advantage after that. Since we compared only two cases, the
detailed structures of the time series are likely unimportant.

Figure 12 compares BSSs for precipitation thresholds of 0.1,
1, 3, 5, 10, 15, 20 and 25 mm per 6 h. These scores show the
same basic tendencies as the ROCSSs (Fig. 10). GSV was best
for weak rains of less than 3 mm/6 h, whereas MBD and MSV
were more suitable for moderate or intense rains of more than
5 mm/6 h. However, the performance of GSV was good for
intense rains of more than 20 mm/6 h, too. It is not clear why the
BSS of GSV is relatively better than the ROCSS for intense rains,
but its relatively smaller RMSEs than other initial perturbation
methods (Fig. 7) may allow rainfall areas to be predicted more
precisely through the dynamical balance. On the other hand,
WEP and LET loose their skills for intense rains of more than
20 mm/6 h.

Taking into account each method’s performance as indicated
by the ensemble spread and the RMSEs as well as the pre-
cipitation performance, MRI/JMA selected GSV as the initial
perturbation method for the 2008 B08RDP experiment.6

6 The results presented in this paper are based on the re-computation
for the MBD and LET methods after the near-real-time MEP intercom-
parisons of B08RDP. In the preliminary test conducted at MRI before
B08RDP in summer 2008, there was a bug in the initial perturbation
interpolation procedure in the MBD and LET methods, causing their
performances to be poor. The flaw was found after the B08RDP experi-
ment, and the two methods were recomputed (see section E-4–6 of MRI
technical report; Saito et al., 2010a).
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Fig. 9. Relative operating characteristics (ROC) curves for five initial perturbation methods (WEP, GSV, MSV, MBD and LET) averaged over two
36-h EPSs with initial times of 12 UTC, 3 July and 12 UTC, 4 July 2008. For (a) 1 mm/6 h; (b) 5 mm/6 h; (c) 10 mm/6 h and (d) 20 mm/6 h.

Fig. 10. ROC area skill scores (ROCSS) against different 6-h
precipitation intensity thresholds for the five initial perturbation
methods over two 36-h EPSs with initial times of 12 UTC, 3 July and
12 UTC, 4 July 2008.

Fig. 11. Time series of Brier skill scores (BSSs) for precipitation of
1 mm/6 h by the five initial perturbation methods. Averages of two
EPSs with initial times of 12 UTC, 3 July and 12 UTC, 4 July 2008.

5.3. Computational costs

Another important factor influencing the choice of the initial
perturbation method for a practical mesoscale EPS is the com-
putational cost of producing the perturbation. To obtain the initial
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Fig. 12. Same as Fig. 10 but Brier skill scores (BSSs).

perturbation, SV methods use the Lanczos method, which inte-
grates TLM and ADM iteratively, while the breeding method and
LETKF integrate the non-linear model in the breeding/EnKF cy-
cles. On the other hand, for perturbations given by downscaling
the operational global EPS, the computational cost is negligible.

Table 2 summarizes the characteristics and computational
costs of the five initial perturbation methods. To produce five
SVs with a horizontal scale of 200 km, the GSV method needed
45 min of elapsed time using 4-node (32-CPU) MPI parallel
computing on the NEC SX-6 supercomputer at MRI. The MSV
method required 120 min to perform 20 iterations to obtain five
SVs with a horizontal scale of 200 km. In the case of the MBD
(LET) method, each of the five (20) members in the breeding
(EnKF) cycles was integrated using a single CPU of the SX-6,
and the total CPU time was converted to the elapsed time if 4
nodes had been used. For four 6-h breeding cycles, the MBD
method needed 5 min, and the LETKF method required about
20 min.

These results indicate that SV methods are relatively expen-
sive in computational cost, especially methods based on the
mesoscale model (MSV). Note that if the number of ensem-
ble members in the extended EPS becomes larger, the relative

computational overhead of LETKF decreases from four times
the overhead of MBD to double the overhead, because it cre-
ates the same number of independent initial perturbations as
the number of ensemble members in the EnKF cycles. In our
experiment, only half of the 20 LET perturbations were used
for the 10-member EPS and the remaining perturbations were
discarded.

6. Discussion

6.1. Evolution of energy norm

In Section 5.1, we verified ensemble spreads of the model vari-
ables at surface and 500 hPa in the ensemble predictions from
the five initial perturbation methods. Ensemble spread is a basic
index to see the properness of perturbations in EPS, but its mag-
nitude depends on the way of perturbation scaling. As shown in
section 3, we employed different rescaling manners in the five
methods. To check the initial ensemble variance and the growth
of perturbations, vertical profiles of the energy norm and their
time evolution in the ensemble prediction were examined. The
energy norms by Barkmeijer et al. (2001) with wq = 0.2 in the
common verification area were computed for five vertical levels
(surface, 850, 700, 500 and 250 hPa) 3-hourly until FT = 24 for
the two cases with initial times of 12 UTC, 3 July and 12 UTC,
4 July 2008.

Figure 13a shows vertical profiles of the energy norms for the
five EPSs at the initial time. WEP had large amplitude through-
out the troposphere because it used the 24-h forecast of JMA’s
one-week global EPS. MBD and LET profiles showed similar
tendencies, but the MBD norm is relatively larger than that of
LET in lower levels, whereas the LET norm is larger at up-
per levels. Initial energy norms by GSV and MSV were small,
especially at surface and at 250 hPa.

At FT = 24, the energy norms at all levels increased for all
EPSs (Fig. 13b). The GSV norm became the largest for all levels,
showing a remarkable growth at upper levels. MBD and LET
profiles showed similar tendencies, but the MBD norm became
larger than that of LET for all levels except for 250 hPa. The MSV
norm is still the smallest among the five methods. Generally
speaking, perturbations in the mesoscale ensemble prediction

Table 2. Specification of the five perturbation methods and computational time

Optimization
Method Resolution Target area time Window Vector numbers Elapsed timea

WEP T63 (200 km) Northern Hemisphere (20–90◦N) 48 h/24 h 51 –
GSV T63 (200 km) SE of verification area 27–42◦N, 110–130◦E) 24 h 5 45 min
MSV 40 km Common verification area 30–45◦N, 105–125◦E) 18 h 5 120 min
MBD 40 km – 6 h 5 5 min
LET 40 km – 6 h 20 20 min

aNEC SX-6 4 nodes (32 CPU) MBD and LET are estimation from 1 CPU run.
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Fig. 13. Vertical profile of the energy norm for the five EPSs. (a) FT =
0. (b) FT = 24.

are influenced by the lateral boundary conditions, but at FT =
24, the influence of the lateral boundary perturbations seems
to be not so dominant; despite the fact that the four methods
(WEP, MBD, LET, and MSV) used the same lateral boundary
perturbations, large differences of norm magnitudes were seen
in Fig. 13b. Therefore, the large growth of the GSV energy
norm in upper levels is predominantly brought not by the lateral
boundary perturbations, but by the synoptic scale dynamical
growing mode.

Figure 14a shows evolution of the TE norms by the five meth-
ods. All methods showed steady growth of the TE norms, but
the GSV norm remarkably increased throughout this period.
Magnitudes of the initial norms of MBD and LET were almost
the same, but the MBD norm was larger than that of LET after
FT = 3.

Figure 14b depicts the time series of the norm growth rates.
The MSV TE norm showed the minimum magnitude among the
five methods (Fig. 14a), but its growth rate was the largest at
FT = 3, which means that the MSV method produces the per-

Fig. 14. (a) Time series of the total energy (TE) norms. Averages of
two EPSs with initial times of 12 UTC, 3 July and 12 UTC, 4 July
2008. (b) Time series of growth rates of TE norms.

turbations which grow rapidly. Although the very large growth
rate of the MSV norm at FT = 3 decreased soon, the MSV
norm growth rate was larger than those of other methods ex-
cept for GSV (WEP, MBD and LET) even after FT = 6. The
GSV norm kept its relatively large growth rate throughout the
period, supporting the large increase of the TE norm shown in
Fig. 14a. Growth rates of MBD and LET profiles showed similar
tendencies, but the MBD growth rate was relatively larger than
that of LET until FT = 6. This result suggests that the BGM
produces the mesoscale growing modes properly whereas the
auto-masking effect in the EnKF and the non-diagonal compo-
nents in the ensemble transform may reduce the growth rate
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Fig. 15. Initial ensemble spreads of temperature and horizontal wind at the height of 700 hPa at 12 UTC, 4 July 2008. (a) GSV, (b) MSV, (c) MBD
and (d) LET. Thick contours indicate the regions where 6-h rainfall exceeded 1 mm at 00 UTC, 5 July 2008.

of the initial perturbations. Although the magnitude of the TE
norm of WEP was the largest until FT = 15 (Fig. 14a), the WEP
growth rate was the smallest among the five methods throughout
the period of Fig. 14b.

6.2. Characteristics of the initial perturbation

In this subsection, we examine the characteristics of the ini-
tial perturbations obtained by four initial perturbation methods
(GSV, MSV, MBD and LET) for the case of initial time 12 UTC,
4 July 2008. As shown in Fig. 4, there was a low-pressure system
near Beijing, and a rainfall band extended from the low-pressure
system southwestward. Southwesterly airflow prevailed on the
southern side of the rain band, supplying warm, humid air. A
relatively cold northerly flow on the north side converged with
the southwesterly flow along the rain band.

Figure 15 shows the distributions of the initial ensemble
spreads of temperature at the height of 700 hPa. The four meth-
ods can be divided into two groups: an SV group (GSV and
MSV) and a breeding group (LET and MBD). In GSV and
MSV, the regions of large spread are near the low-pressure sys-

tem around Beijing, whereas in MBD and LET the large-spread
areas are over southwestern China. These differences between
the two groups may be inferred by the difference in the con-
cepts of the methods. In the SV methods, perturbations that
achieve maximum growth in the evaluation period are obtained
by referring to the analysis field at the initial time. On the other
hand, perturbations of the MBD and LET methods are given by
time integration of the non-linear model in the 6-hourly breed-
ing (EnKF) cycles before the initial time; the perturbations by
the breeding group may tend to be produced on the more up-
wind (i.e. past) side than those by the SV group. The horizontal
pattern of GSV perturbation is much broader than that of MSV,
reflecting the difference in horizontal resolution between the two
methods. The horizontal pattern of LET perturbation is similar
to that of MBD but the amplitude of the spread is smaller over
Japan and around Beijing, reflecting the auto-masking effect in
LETKF corresponding to the observation density.

To examine the characteristics of the initial perturbations, we
selected the member that showed the maximum rainfall amount
for each initial perturbation method. Table 3 shows the maximum
6-h rainfall amounts obtained with the four methods by the
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Table 3. Maximum 6-h rainfall and their horizontal position (I_max,
J_max) and number of the member

All Rain_max I_max J_max Member

CNTL 121.29 58 75 –
GSV 140.85 58 75 5
MSV 134.79 58 75 5
MBD 155.22 57 76 1
LET 142.22 58 74 5

selected members. Because the rainfall amounts obtained by
the chosen members were larger than the control run rainfall
(CNTL), the characteristic features of the perturbations of each
chosen member are those that explain the rainfall enhancement.

Figure 16 shows the horizontal distributions for 1000 hPa tem-
perature perturbation by the members that predicted the max-
imum rainfalls. As mentioned before, the horizontal extension
of the perturbation in MSV was smaller than that of the other
methods. Black circles indicate the positions of the maximum
6-h rainfall amount in each of the four methods; all were in the

rainfall band in southwestern China, though the low-pressure
system was around Beijing. These maximum rainfall locations
coincide with the positive perturbation regions of temperature
in GSV, MBD and LET. Positive low-level temperature pertur-
bations favour the intensification of precipitation, because they
cause the atmosphere to become unstable. In LET and MBD,
contrasting perturbations are seen along the rain band. For ex-
ample, in LET the perturbation on the southern side of the rainfall
band is positive and that on the northern side is negative. The
horizontal pattern of perturbation in MBD is similar to that of
LET. A similar tendency was also seen in the equivalent potential
temperature (figure not shown).

Figure 17 displays vertical cross sections of the ensemble
spreads of the equivalent potential temperature (θe) in the
north–south (y)-direction through the point of the maximum
6-h rainfall. In GSV (Fig. 17a), the regions of large perturba-
tion spread are below the height of 300 hPa. In the case of the
maximum rainfall member, the positive perturbation of θe in the
lower atmosphere is overlaid by negative perturbation layers,
causing atmospheric conditions to become unstable (Fig. 18a).
In MSV (Fig. 17b), perturbations are more localized near the

Fig. 16. Horizontal distributions of the 1000-hPa temperature perturbation at 12 UTC, 4 July 2008. Thick contours indicate the regions where 6-h
rainfall exceeded 1 mm at 00 UTC, 5 July 2008. (a) GSV, (b) MSV, (c) MBD and (d) LET.
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Fig. 17. Vertical cross sections of ensemble spreads of equivalent potential temperature (θe) at 12 UTC, 4 July 2008. (a) GSV, (b) MSV, (c) MBD,
(d) LET. The sections are along the north–south direction thought the points of maximum 6-h rainfall at 00 UTC 5 July 2008. Black circles at the
surface indicate the maximum rainfall locations.

rainfall band. Regions of large negative perturbations of θe are
on the northern side of the positive perturbations, favouring in-
tensification of the rainfall. In LET and MBD, the perturbation
spreads extend to levels above 300 hPa (Figs 17c and d). In the
maximum rainfall member, positive and negative perturbations
are seen at lower levels on the southern and northern sides of
the rainfall band, respectively, and a warmer, more humid air
mass on the southern side of the rainfall band enhanced con-
vection (Figs 18a and d). As for airflow, in MSV areas of large
perturbations correspond to the updraft and rear inflow regions
(Fig. 18b), but the low-level airflow was not modified. On the
other hand, in the breeding group methods, the low-level inflow
is modified (figures not shown). This difference between MSV
and the breeding group methods probably affects the steadiness
of the growth rate of the ensemble spread of the surface precip-
itation after the spin-up period.

7. Summary and concluding remarks

Comparison of different initial perturbation methods for
mesoscale ensemble prediction was performed as part of MRI’s
intercomparison studies of the mesoscale EPSs of B08RDP. Five

initial perturbation methods (WEP, GSV, MSV, MBD and LET)
were developed and applied in preliminary experiments for the
B08RDP Tier-1 mesoscale ensemble prediction with a horizontal
resolution of 15 km. The same horizontal resolution (40 km) was
employed for the three mesoscale model-based initial perturba-
tion methods (MSV, MBD and LET) to make the comparison
easier and so that the same lateral boundary perturbations could
be applied in the breeding/EnKF cycles.

The evolution of ensemble spreads was compared. WEP
spreads had relatively large amplitude at the initial time and
increased slowly. GSV spreads were smaller than those of WEP,
MBD and LET at the initial time, but grew steadily throughout
the 36-h forecast period. After FT = 18, GSV spreads were the
largest among the five methods. MSV spreads at the initial time
were the smallest among the five methods but grew rapidly after
the spin-up. In MSV, the surface precipitation spread increased
particularly rapidly in the first 6 h. However, it decreased af-
ter that and became comparable to those of the other methods
after FT = 12. MBD and LET spreads showed similar ten-
dencies: relatively large values at FT = 0 and slow growth.
Growths of spreads in LET were slightly slower than those
in MBD.
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Fig. 18. Same as Fig. 17 except for perturbations of θe by the members that predicted the maximum rainfalls.

We examined RMSEs of the variables at FT = 24 against the
initial condition at the same valid time. RMSEs of the ensemble
means were smaller than those of the control run in almost all
cases, suggesting the properness as the mesoscale ensemble fore-
cast. WEP RMSEs were larger than those of the other methods
for several variables, whereas RMSEs of GSV were the smallest
among the methods for most surface variables. RMSEs of MSV
were larger than those of MBD and LET, but still smaller than
the WEP RMSEs for several variables. MBD and LET showed
similar RMSE values. Comparison of the RMSEs and ensemble
spreads of the five methods indicated that the ensemble fore-
casts were underdispersive compared with the model errors; the
GSV method showed the best ratio of the ensemble spread to
the RMSE.

Performances of the precipitation forecasts using the five
methods were examined. For weak to moderate rains, the hit
rates (detection rate) by the global model-based methods (GSV
and WEP) were higher than those by the mesoscale model-based
methods (MSV, MBD and LET). On the other hand, for moderate
to intense rains, MSV, MBD and LET showed better detection
rates than GSV or WEP. GSV had the best ROCSS for weak
rains, whereas MBD and MSV had better scores for moderate or
intense rain. A likely reason for this result is that GSV (and WEP)
tends to perturb synoptic-scale disturbances whereas MBD, LET

and MSV tend to perturb mesoscale disturbances, thus affecting
local intense rains more. A similar tendency was confirmed by
examining the probabilistic forecasts by BSS. GSV was best for
weak rains of less than 3 mm/6 h, whereas MBD and MSV had
better scores for moderate or intense rain larger than 5 mm/6
h. However, the BSS of GSV indicated good performance for
intense rains of more than 20 mm/6 h, too.

To check the initial ensemble variance and the growth of per-
turbations, vertical profiles of the energy norm and their time
evolution in the ensemble prediction were examined. All meth-
ods showed steady growth of the TE norms, but the GSV norm
remarkably increased throughout the forecast period. Magni-
tudes of the initial norms of MBD and LET were almost the
same, but the MBD norm became larger than that of LET after
the model spi-up, showing relatively larger growth rate than that
of LET. The MSV TE norm showed the minimum magnitude
among the five methods, but its growth rate was the largest at
the initial stage, demonstrating that the MSV method produces
the perturbations which grow rapidly.

Characteristics of the five initial perturbation methods were
also examined in the same case study. The regions of large
spread were near the low-pressure system in GSV and MSV,
whereas the large spread areas were over southwestern China,
the upstream region, in MBD and LET. The spread in MSV
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was concentrated near the mesoscale disturbance, and showed a
narrow vertical structure.

In this study, the GSV method showed relatively good per-
formance in terms of steady growth of the ensemble spread
and small RMSEs of the ensemble mean, and a good ROCSS
and BSS for weak to moderate rains. The GSV method out-
performed the WEP method, confirming the advantage of tar-
geting a domain of EPS to compute the SVs. However, for in-
tense rains, mesoscale model-based initial perturbation methods
(MSV, MBD and LET) performed better than GSV, which may
be more important for mesoscale EPSs used for disaster preven-
tion and risk assessment. Recently, Ono et al. (2010) developed
a hybrid method merging GSV and MSV perturbations that per-
forms well for both weak and intense rains. From the viewpoint
of computational cost, SV methods are more expensive than
MBD or LET.

The horizontal pattern of LET perturbations was similar to
that of MBD but the distribution of the initial perturbations
reflected the observation density by the automasking effect in
LETKF. However, by objective measures such as RMSE and
ROCSS, LET did not outperform MBD in our study, and its
relative advantage as an initial perturbation generator is unclear.
More detailed comparisons of MBD and LET with and without
lateral boundary perturbation are given in section E-5 of Saito
et al. (2010a), and will be reported in detail at a later date.

Several issues need further research for a full-scale validation
of initial perturbation methods. The relatively good performance
of the GSV method in our comparison may depend on the lateral
boundary perturbations, especially in the latter half of the simula-
tion period. We previously tested the impact of lateral boundary
perturbations on results obtained with the MBD and LET meth-
ods (Saito et al., 2009), but not on those obtained with GSV. The
spread of precipitation depends on the choice of the weight factor
wq in the TE norm of Barkmeijer et al. (2001), but the values are
not necessarily optimized. As for the LET method, several fac-
tors such as the number of ensemble members, the inflation fac-
tor, and localization affect its performance (e.g. Miyoshi, 2011),
and our LETKF has ample room for improvement. Model error
is a large source of forecast uncertainty even in a short-range
EPS (Eckel and Mass, 2005), and physical process perturba-
tions should be considered in the non-linear models in MBD
and LET. Since MBD and LET performances improve remark-
ably by implementation of lateral boundary perturbations (Saito
et al., 2010a), the introduction of model uncertainty should fur-
ther improve their performances. The period of the comparison
in this study (2.5 d by two 36-h EPSs) was not adequate for full-
scale verification of the initial perturbation period as suggested
by error bars in Figs 7 and 8. A validation exercise requires a
sample size much larger than only two cases, and it must cover a
range of different synoptic patterns. These topics are beyond the
scope of this paper, but they remain important subjects for future
studies.
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