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A B S T R A C T
In this paper, a POD-based ensemble four-dimensional variational data assimilation method (referred to as PO-
DEn4DVar) is proposed on the basis of the proper orthogonal decomposition (POD) and ensemble forecasting
techniques. The ensemble forecasts are conducted to obtain the model perturbations (MPs) and their correspond-
ing observation perturbations (OPs). Under the assumption of the linear relationship between the MPs and the OPs,
the POD transformation is applied to the OP space rather than the MP space directly, which substantially decreases the
computational costs. The optimal MP and its corresponding OPs is thus represented by the transformed MP ensemble
and their related OP orthogonal base vectors to fit the 4-D observation innovations in the assimilation window. Further,
the implementation of the forecast model ensemble update is successfully implemented by replacing the single 4-D
observation innovation with the ensemble of innovation vectors. The feasibility and effectiveness of the PODEn4DVar
are demonstrated in an idealized model with simulated observations. It is found that the PODEn4DVar is capable of
outperforming both 4DVar and the EnKF under both perfect and imperfect-model scenarios with lower computational
costs compared with EnKF.

1. Introduction

The four-dimensional variational data assimilation (4DVar)
method (e.g. Lewis and Derber, 1985; Courtier et al., 1994) has
been a very successful technique used in operational weather
prediction (NWP) at many operational numerical weather fore-
cast centres (e.g. Bormann and Thepaut, 2004; Park and Zou,
2004; Caya et al., 2005; Bauer et al., 2006; Rosmond and Xu,
2006; Gauthier et al., 2007), largely thanks to the increment
method (Courtier et al., 1994) and adjoint technique (e.g. Lewis
and Derber, 1985; Le Dimet and Talagrand, 1986; Courtier and
Talagrand, 1987). The 4DVar technique has two attractive fea-
tures: (1) the physical model can provide a temporal smoothness
constraint, and (2) it has the ability to simultaneously assimi-
late the observational data at multiple times in an assimilation
window. However, 4DVar still faces numerous challenges in cod-
ing, maintaining and updating the adjoint model of the forecast
model and it requires the linearization of the forecast model.

On the other hand, the ensemble Kalman filter (EnKF;
e.g. Evensen, 1994, 2004; Houtekamer and Mitchell, 1998;
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Houtekamer and Mitchell, 2001) has become an increasingly
popular method because of its simple conceptual formulation
and relative ease of implementation. By forecasting the statisti-
cal characteristics, EnKF can provide flow-dependent error esti-
mates of the background errors using the Monte Carlo method,
but it lacks the temporal smoothness constraint as that in 4DVar
since it is naturally designed to incorporate sequential informa-
tion only.

Large efforts have been devoted to seek to advance the state-
of-the-science in data assimilation by coupling 4DVar with
EnKF (e.g. Lorenc, 2003; Tian et al., 2008; Zhang et al., 2009;
Cheng et al., 2010) aiming at maximally exploiting the strengths
of the two forms of data assimilation while simultaneously off-
setting their respective weaknesses. Lorenc (2003) reviewed
EnKF in comparison with 4DVar, and suggested that a hybrid
method may be attractive for mesoscale NWP systems. A hy-
brid EnKF-3DVar scheme was proposed by Hamill and Snyder
(2000), and a more sophisticated hybrid approach that com-
bines EnKF and 3DVar was elaborated by Zupanski (2005). On
the other hand, some practical attempts, extending EnKF from
fixed-in-time to four-dimensions, were suggested by Evensen
and van Leeuwen (2000), about which the asynchronous ob-
servations could be constructed as linear combinations based
on the ensemble perturbations (Hunt et al., 2004; Fertig et al.,
2007). Vermeulen and Heemink (2006) have attempted to
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combine 4DVar with EnKF, however, the tangent linear model
is still needed in their method. Recently, Zhang et al. (2009) also
examined the performance of coupling the deterministic 4DVar
with the EnKF to produce a superior hybrid approach for data
assimilation.

A hybrid method, referred to as POD4DVar, was proposed
by Tian et al. (2008) based on the Monte Carlo method and
the proper orthogonal decomposition (POD) technique. In the
POD4DVar, the POD technique is applied to an ensemble of grid-
ded 4-D MPs sampled from perturbed integrations of the forecast
model at observational time levels to construct the orthogonal
base vectors. After the analysis variables are represented by a
truncated expansion of the base vectors in the 4-D model space,
the control (state) variables in the cost function appear explicit
so that the adjoint model, which is used to derive the gradient
of the cost function with respect to the control variables in the
traditional 4DVar, is no longer needed. By using an ensemble of
historical samples to define a subspace, Wang et al. (2010) also
proposed an economical approach to implement 4DVar on the
basis of a dimensional-reduced projection (DRP) technique. In
Wang et al. (2010), suitable MPs are chosen to ensure the lin-
ear independence of the perturbation samples in the observation
space. Unfortunately, it should be noted that, unlike EnKF, only
one analysed field is obtained in each analysis procedure in both
Tian et al. (2008) and Wang et al. (2010), and the initial ensem-
ble should be produced randomly or updated by the historical
forecasts at the start time of the assimilation window in each
cycle repeatedly. It implies that only a partially flow-dependent
background error covariance is employed in these two methods.

The POD-based ensemble four-dimensional variational data
assimilation method (PODEn4DVar) method considered in this
study is similar to the POD4DVar method (Tian et al., 2008) but
the POD transformation is conducted in the OP space rather than
in the model perturbation (MP) space directly. Consequently, un-
der the assumption of tangent linear approximation between the
MPs and the OPs, the perturbation ensemble in the model space
is transformed in accordance with the POD transformation to
the ensemble OP subspace. It means that the transformed MPs
could guarantee the orthogonality (and thus independence) of
their corresponding OPs (i.e. the orthogonal base vectors). The
optimal MP and its corresponding OPs can be represented by
the transformed MP ensemble and their related OP orthogonal
base vectors respectively to fit the 4-D observation innovation in
the assimilation window. The application of this strategy signif-
icantly simplifies the data assimilation process and retains most
advantages of the traditional 4DVar method. It can moderately
increase the assimilation precision while reducing the computa-
tional costs substantially. The update of the analysis ensemble
is further realized by using the ensemble of innovation vectors
instead of the single 4-D observation innovation in the explicit
4DVar analysis equation. Therefore, the PODEn4DVar updates
its background error covariance by utilizing the evolving ensem-
ble forecasts, which can provide flow-dependent error estimates

of the background errors. Since the PODEn4DVar can be easily
degenerated to the 3-D case (referred to as PODEn3DVar), we
managed to couple the PODEn4DVar with its 3-D format. As a
result, the PODEn3DVar can adjust the model solution trajec-
tory gradually throughout the whole assimilation window, which
results in a superior performance.

Assimilation experiments by the Lorenz-96 model with sim-
ulated observations show that the PODEn4DVar method is ca-
pable of outperforming the POD4DVar, the standard 4DVar and
the EnKF in terms of lower root mean square (RMS) errors un-
der both perfect and imperfect-model scenarios. By carefully
choosing the relaxation coefficient and localization radius, the
PODEn4DVar method adjusted the assimilation results to ap-
proach the true solution trajectory quickly with sharply reduced
RMS errors. Further, owing to its robust performance, the RMS
errors of PODEn4DVar are constrained to a very low level with
slight fluctuations throughout the whole assimilation process.

2. The POD4DVar

The traditional 4DVar analysis of xa obtained through the min-
imization of a cost function J that measures the misfit between
the model trajectory Hk(xk) and the observations yk at a series
of tk , k = 1, . . . , S

J (x) = (x − xb)T B−1(x − xb)

+
S∑

k=1

{
Hk[Mt0→tk (x)] − yk

}T
R−1

k

{
Hk[Mt0→tk (x)] − yk

}
,

(1)

with the forecast model Mt0→tk (x) imposed as strong constraints,
defined by

xk = Mt0→tk (x), (2)

where the superscript T stands for a transpose, b is the back-
ground value, index k denotes the observation time, Hk is the
observation operator, and matrices B and Rk are the background
and observational error covariances, respectively.

The POD4DVar (Tian et al., 2008) starts from an initial
field ensemble x0,n (n = 1, . . . , N ) produced by using the
Monte Carlo method or sampling from the historical fore-
casts (Wang et al., 2010). Subsequently, the forecast model
xk,n = Mt0→tk (x0,n) with the initial fields x0,n is integrated
throughout the assimilation window to obtain the state series
xk,n (k = 1, . . . , S) and then construct the 4-D fields Xn =
(x0,n, . . . , xS,n)T . The analysis xk,a over the same assimilation
window can be stored into the following vector

Xa = (x0,a, . . . , xS,a)T . (3)

We form the ensemble perturbation matrix, denoted by
A(M × N ) = (δX1, . . . , δXN ). It is composed of N column
vectors, where M = Mg × Mv × (S + 1), and Mg , Mv are the
number of the model spatial grid points and the number of the
model variables, respectively. Each column vector in A is the
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following 4-D perturbation field (with respect to the ensemble
mean field) as follows:

δXn = Xn − X, n = 1, . . . N, (4)

where

X = 1

N

N∑
n=1

Xn. (5)

Note AT A is a N × N matrix and N ≤ M for practical appli-
cations, so the eigenvector decomposition of AT A = V �2V T is
used to obtain � and V , then the POD mode matrix is given by
� = AV . The truncated reconstruction of analysis variable Xa

is given by

Xa = X +
r∑

n=1

βnφn, (6)

where r(≤ N ) is the number of the POD modes (see Tian et al.,
2008 for more details). Form the POD mode matrix

� = (φ1, . . . , φr ), (7)

where φn = [φn(t0), . . . , φn(tS)]T , n = 1, . . . , r . Transform (7)
into the following format

� = (�0, . . . , �S)T , (8)

where �k = [φ1(tk), . . . , φr (tk)].
Substituting (5–8) into (1), the control variable becomes β =

(β1, . . . , βr )T instead of x0, so the control variable is expressed
explicitly in the cost function

J (β) = (�0β)T B−1(�0β)

+
S∑

k=1

[yk − Hk(xk + �kβ)]T R−1
k [yk − Hk(xk + �kβ)],

(9)

and

J (β) = (�0β)T B−1(�0β)

+
S∑

k=1

[
H′

k�kβ − y ′
k

]T
R−1

k

[
H′

k�kβ − y ′
k

]
, (10)

where

H′
kφk = Hk(xk + φk) − Hk(xk) and y ′

k = yk − Hk(xk).

One can solve the optimization problem (10) as follows:

∇J (β) = 0, (11)

[
(r − 1)Ir×r +

S∑
k=1

(
H′

k�k

)T
R−1

k

(
H′

k�k

)]
β

=
S∑

k=1

(
H′

k�k

)T
R−1

k y ′
k, (12)

and

β =
[

(r − 1)Ir×r +
S∑

k=1

(
H′

k�k

)T
R−1

k

(
H′

k�k

)]−1

×
S∑

k=1

(
H′

k�k

)T
R−1

k y ′
k. (13)

Substituting (13) into (5), one can easily obtain the final anal-
ysis results.

3. The PODEn4DVar

3.1. Formulation of PODEn4DVar

By minimizing the following incremental format of the 4DVar
cost function (1), one can obtain an optimal increment of initial
condition (IC), x ′

a , at the initial time

J (x ′) = 1

2
(x ′)B−1(x ′) + 1

2

[
y ′(x ′) − y ′

obs

]T
R−1

[
y ′(x ′) − y ′

obs

]
,

(14)

where x ′ = x − xb is the perturbation of the background field xb

at t0,

y ′
obs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y ′
obs,1

y ′
obs,2

...

y ′
obs,S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

y ′ = y ′(x ′) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(y1)′

(y2)′

...

(yS)′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

(yk)′ = yk(xb + x ′) − yk(xb), (17)

y ′
obs,k = yobs,k − yk(xb), (18)

yk = Hk[Mt0→tk (x)], (19)

and

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R1 0 . . . 0

0 R2 . . . 0

...
...

. . .
...

0 0 . . . RS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

We usually assume that the relationship between (yk)′ and x ′

is approximately linear according to (17)

(yk)′ = Lkx
′, (21)
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where Lk = H ′
kM

′
t0→tk

, H ′
k is the tangent linear operator of Hk ,

and M ′
t0→tk

is the tangent linear model of Mt0→tk
. Here, we

assume

y ′ = Lx ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L1 0 . . . 0

0 L2 . . . 0

...
...

. . .
...

0 0 . . . LS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x ′

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1(xb + x ′) − y1(xb)

y2(xb + x ′) − y2(xb)

...

yS(xb + x ′) − yS(xb)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Lxb
x ′. (22)

Suppose N samples of observation perturbation (OP) y ′ :
y ′

1, y
′
2, . . . , y

′
N are generated by using the observation oper-

ator Hk , the forecast model Mt0→tk
and the IC samples x ′ :

x ′
1, x

′
2, . . . , x

′
N . The OP samples y ′ and the MP samples x ′ are

related by

y ′
k ≈ Lxb

x ′
k. (23)

As illustrated by Wang et al. (2010), if the observation of y ′
obs

is available, a weighted mean of the multiple simulations y ′ can
be used to approach the observation and determine all the weight
coefficients. In this way, the same weight coefficients can be used
to obtain the weighted mean of multiple MPs of IC according
to the linear relationship between y ′ and x ′ in (23), which may
provide a better IC for the forecast of y ′. Following this strategy,
suitable MPs, x ′

1, x
′
2, . . . , x

′
N , should be chosen to guarantee the

linear independence of the OP samples, y ′
1, y

′
2, . . . , y

′
N , as much

as possible. To accomplish this task, we first apply the POD
transformation to the OP matrix y ′ = (y ′

1, . . . , y
′
N ) as follows:

y ′Ty ′ = V �2V T, (24)

and

�y = y ′V . (25)

As a result, the POD transformed OP samples �y =
(y ′

1, . . . , y
′
N ) are orthogonal and thus independent. Since y ′ and

x ′ is approximately linear according to (23), we can obtain

�y = y ′V = L(x ′)V = L(x ′V ) ≈ Lxb
(x ′V ) = Lxb

(�x). (26)

Consequently, through the simple calculations (24–26), the
perturbation ensemble x ′ in the model space is transformed
to �x in accordance with the POD transformation to the en-
semble OP subspace. Apparently, the transformed MPs �x =
x ′V = (x ′

1, . . . , x
′
N ) could ensure the orthogonality (and thus in-

dependence) of their corresponding OPs (i.e. the orthogonal base
vectors �y = y ′V ). Let’s mark �y,r = (y ′

1, . . . , y
′
r ) and �x,r =

(x ′
1, . . . , x

′
r ) (r ≤ N is also the number of the POD modes). A

weighted mean of these MP samples �x,r = (x ′
1, . . . , x

′
r ) is used

to provide an optimal solution x ′ as follows:

x ′
a = �x,rβ, (27)

where β = (β1, . . . , βr )T . Its corresponding optimal OPs are
determined by

y ′
a = L(x ′

a) = L(�x,rβ) = L(�x,r )β ≈ Lxb
(�x,r )β = �y,rβ.

(28)

Substituting (27–28) into (14), the control variable becomes
β instead of x ′, so the control variable is expressed explicitly in
the cost function

J (β) = 1

2
(�x,rβ)T B−1(�x,rβ)

+1

2

(
�y,rβ − y ′

obs

)T
R−1

(
�y,rβ − y ′

obs

)
. (29)

Similar to the EnKF (Evenson, 2004), the background error
covariance can be constructed by the MPs as follows:

B = �x,r�
T
x,r

r − 1
. (30)

Substituting (30) into (29), we can obtain

J (β) = 1

2
(r − 1) · βT �T

x,r

(
�T

x,r

)−1
(�x,r )−1�x,rβ

+1

2
(�y,rβ − y ′

obs)
T R−1(�y,rβ − y ′

obs), (31)

and

J (β) = 1

2
(r − 1)βT β + 1

2
(�y,rβ − y ′

obs)
T R−1(�y,rβ − y ′

obs),
(32)

where the inverse of �T
x,r (�x,r ) should be defined as the

Moore–Penrose pseudoinverse. Because R is usually symmetri-
cal, the gradient of the cost function is thus obtained

∇J (β) = [
(r − 1)Ir×r + �T

y,rR
−1�y,r

]
β − �T

y,rR
−1y ′

obs. (33)

One can solve the optimization problem (33) without an iter-
ative procedure

β = [
(r − 1)Ir×r + �T

y,rR
−1�y,r

]−1
�T

y,rR
−1y ′

obs. (34)

Finally, the formula to calculate the increment of analysis is
simplified into the following form

x ′
a = �x,r

[
(r − 1)Ir×r + �T

y,rR
−1�y,r

]−1
�T

y,rR
−1y ′

obs. (35)

In general, the number of observational data is less than the
degrees of freedom of model variables. For this reason, we mark

�̃y,r = [
(r − 1)Ir×r + �T

y,rR
−1�y,r

]−1
�T

y,rR
−1, (36)

and rewrite (35) as follows:

x ′
a = �x,r �̃y,ry

′
obs. (37)

Therefore, the final 4DVar analysis xa can be calculated as
follows:

xa = xb + �x,r �̃y,ry
′
obs, (38)
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and

xa = xb + Kx,yy
′
obs, (39)

where Kx,y = �x,r �̃y,r . Notably, eq. (39) shares some similarity
with the EnKF formulation in terms of the matrix Kx,y acting as
a proxy of the Kalman gain matrix as that in the EnKF analysis
equation. Inspired by the similarity, we replace the single 4-
D observation innovation y ′

obs by the ensemble of innovation
vectors

D′ = D − H�x, (40)

where

D = (d, . . . , d), (41)

d = (y1, . . . .yS)T , (42)

and

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H1 0 · · · 0

0 H2 · · · 0

...
...

. . .
...

0 0 · · · HS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

In consequence, the update of the analysis ensemble is suc-
cessfully implemented as follows:

Aa = Ab + Kx,yD
′, (44)

where Aa = (xb, . . . , xb). Remarkably, the MP ensemble x ′ of
IC can be replaced by the MP ensemble

(xk)′ = Mt0→tk (xb + x ′) − Mt0→tk (xb), (45)

at any time level tk in the assimilation window. That means
we can obtain the final analysis results at any time level in the
assimilation window, which accordingly facilitates the imple-
mentation of data assimilation. In addition, the PODEn4DVar
can be easily degenerated to the 3-D case if we set S = 1.

Both the PODEn4DVar and the POD4DVar are proposed
based on the POD technique, ensemble forecasts and linear as-
sumption between the MPs and the OPs. Whereas, they differ
from each other significantly in the following two aspects:

(1) In the PODEn4DVar, the POD transformation is first ap-
plied to the OP space and then this transformation is transferred
to the MP space in terms of the linear assumption between the
MPs and the OPs. Accordingly, the weighted mean of the OP
orthogonal base vectors can fit the 4-D innovation data in the ob-
servation space directly, which has the potential to improve the
analysis accuracy. On the contrary, in the original POD4DVar,
the POD transformation is conducted directly in the MP en-
semble space rather than in the OP space. Since the OP space
dimension is usually much smaller than that of the MP space, the
strategy adopted in the PODEn4DVar reduces the computational
costs substantially with decaying memory.

(2) Only one analysed field is obtained in each analysis pro-
cedure in the original POD4DVar and the initial ensemble has to
be produced randomly or updated by the historical forecasts at
the start time of the assimilation window in each cycle repeat-
edly. Contrarily, the analysis ensemble update is successfully
implemented in the proposed PODEn4DVar method and the
initial condition is perturbed only once throughout the whole as-
similation. It implies that this method could suffer from sample
preparation little.

3.2. Localization and covariance inflation

The PODEn4DVar approach obtains an optimal solution in
(38–39) and updates the analysis ensemble in (44). As an en-
semble approach, its ensemble is usually composed of far fewer
members than both the number of observational data and the
degrees of freedom of model variables, which would lead to
many spurious correlations between observation locations and
model grids. A practical way to address this issue is through
localization technique, which ameliorates the spurious long-
range correlations (Houtekamer and Mitchell, 2001). Similar
to Wang et al. (2010), the Schur product is applied to the ma-
trix Kxy(Lx × (

∑S
k=1 Ly,k)) = �x,r �̃y (where Lx = Mg × Mv

is the length of vector x0, Ly,k is the length of vector yk and
Ly = ∑S

k=1 Ly,k) to filter out the remote correlation between the
observation locations and model grids more continuously, and
the final increment of analysis is calculated using the formula:

x ′
a = ρ ◦ Kxyy

′
obs, (46)

where the Schur product of two matrices having the same dimen-
sion is denoted by A = B ◦ C and consists of the element-wise
product such that ai,j = bi,j · ci,j . For providing the formula of
the filtering matrix, ρ, suppose the Kx,i (i = 1, . . . , Lx) and Ky,j

(j = 1, . . . , Ly) are the model states and the observational vari-
ables, respectively. Making the horizontal and vertical distances
between the spatial locations of Kx,i and Ky,j as dh,i,j and dv,i,j ,
respectively, then the elements of the matrix ρ can be calculated
according to

ρi,j = C0(dh,i,j /dh,0) · C0(dv,i,j /dv,0), (47)

where the filtering function C0 is defined as

C0(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
4 r5 + 1

2 r4 + 5
8 r3 − 5

3 r2 + 1,

0 ≤ r ≤ 1
1
12 r5 − 1

2 r4 + 5
8 r3 + 5

3 r2 − 5r + 4 − 2
3 r−1,

1 < r ≤ 2

0, 2 < r

(48)

and dh,0 and dv,0 are the horizontal and vertical covariance lo-
calization Schur radii, respectively. The matrix ρ filters out the

Tellus 63A (2011), 4



810 X. TIAN ET AL.

small (and noisy) correlations associated with remote observa-
tions through the Schur product, which is the localization strat-
egy (Wang et al., 2010). In addition, since ρi,j is smooth and
monotonically decreasing, the Schur product tends to reduce the
effect of those observations smoothly at intermediate distances.

Covariance inflation for the PODEn4DVar ensemble is
achieved through the covariance relaxation method of Zhang
et al. (2004)

(x ′
i)new = αx ′

f ,i + (1 − α)x ′
a,i , (49)

where α (0 < α < 1) is the relaxation coefficient and (x ′
i)new is

the final perturbation of the analysis ensemble used for the next
forecast cycle.

3.3. The fully coupling between the PODEn4DVar
and PODEn3DVar

The coupled approach aims to link the distributed in time, max-
imum likelihood approach of PODEn4DVar and its sequential
3D case (PODEn3DVar). An illustration of their coupling pro-
posed in this paper is depicted in the schematic flowchart of
Fig. 1: the whole assimilation implementation is based on a
framework of ensemble forecasts. In each assimilation window,
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Fig. 1. Schematic diagram of the PODEn4DVar coupling with
PODEn3DVar.

the PODEn3DVar is implemented to conduct its assimilation
procedures with the observational data being incorporated se-
quentially. The PODEn3DVar implementation is to adjust the
model solution trajectory gradually. The 4-D ensemble sam-
ples for the PODEn4DVar can be constructed as soon as the
PODEn3DVar accomplishes its assimilation procedures in the
assimilation window. Consequently, the PODEn4DVar imple-
mentation is carried out over the same assimilation window to
obtain the 4-D balanced analysis and take place the ensemble
mean for next assimilation cycle.

4. Evaluations within the Lorenz-96 model

4.1. Experimental design

In this section, the PODEn4DVar approach is evaluated within
the model of Lorenz (1996)

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + F, i = 1, . . . n, (50)

with cyclic boundary conditions. Although not derived from any
known fluid equations, the dynamics of (50) are ‘atmosphere-
like’ in that they consist of non-linear advection-like terms, a
damping term, and an external forcing; they can be thought of
as some atmospheric quantity distributed on a latitude circle.
One can choose any dimension, n, greater than 4 and obtain
chaotic behaviour for suitable values of F . In this configuration,
we take n = 40 and F = 8. For computational stability, a time
step of 0.05 units (or 6 h in equivalent Lorenz, 1996) is adopted
and a fourth-order Runge–Kutta scheme is used for temporal
integration in this study.

The performance of the PODEn4DVar approach is examined
in comparison to the POD4DVar, the standard 4DVar (Zhang
et al., 2009) and the EnSRF-version (Evensen, 2004) of the
EnKF. In this study, we employ a limited-memory quasi-Newton
method (L-BFGS) (Liu and Nocedal, 1989) for the minimiza-
tion in the standard 4DVar approach. The L-BFGS method is
found to have superb performance in nonlinear minimization
problems and has a relatively low computational costs and low
storage requirement. The standard 4DVar uses a diagonal back-
ground error covariance B, whose values (all equal to 0.01)
were determined through long-term statistics of EnKF spread
and related to the attractor of the Lorenz-96 model (Zhang et al.,
2009). To provide a fair comparison, we also implemented the
analysis ensemble update in the POD4DVar same as that in the
PODEn4DVar. The default number of observations is m = 20
(equally spaced at every observation time). Observations were
taken every two steps (or 12 h), which were generated by adding
random error perturbations of 0.03 to the time series of the
true state. We considered the assimilation window length of 4
(standard 24-h daily assimilation cycle). All experiments were
carried out over 365 d. The default parameter setups are the re-
laxation coefficient α = 0.9, the ensemble size N = 80, and the
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covariance localization Schur radius r0 = dh,0(dv,0) = 8 (only
one direction in the Lorez-96 model).

4.2. Experimental results

Figure 2a compares the performance of the PODEn4DVar with
the original POD4DVar method, the standard 4DVar and the
EnKF under the perfect-model assumption (F = 8 for all truth,
forecast and assimilation runs). It shows that all the four methods
behave considerably satisfactory in terms of overall low RMS

errors. The PODEn4DVar performs slightly better than the other
methods especially during the first ten assimilated days. These
days are followed by their almost identical performance until
the end of the whole assimilation process, which is apparently
attributed to the perfect model assumption. The same conclusion
can be drawn from Table 1 that the 365 simulated-days mean of
the daily averaged RMS errors for the PODEn4DVar is smallest
(only 0.018). The POD4DVar shows almost the same perfor-
mance as the EnKF (0.026 vs. 0.029). Presumably, only a static
background error covariance adopted in the standard 4DVar

Fig. 2. Time series of the daily averaged root mean square (RMS) error for the four data assimilation techniques (PODEn4DVar, POD4DVar, 4DVar
and EnKF) using default parameter setups with the Lorenz-96 model (a) without model error (F = 8), (b) with moderate model error (F = 8.5) and
(c) with severe model error (F = 9), respectively.

Tellus 63A (2011), 4
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Table 1. The 365 simulated-days mean of the daily averaged root
mean square (RMS) error for the four methods

F = 8.0 F = 8.5 F = 9.0

PODEn4DVar 0.018 0.16 0.27
POD4DVar 0.026 0.18 0.29
4DVar 0.036 0.24 0.39
EnKF 0.029 0.26 0.44

leads to its inferior performance to the other three ensemble-
based approaches under the perfect-model assumption. In this
case, the forecast error comes only from the noise of the initial
field.

Another group experiments with moderate model error are
also conducted using a different (incorrectly specified) forc-
ing coefficient (F = 8.5) from that used in the truth simulation
(F = 8). The truth run is used for verification and for gener-
ating observations. Figure 2b compares the performance of the
four approaches with the imperfect forecast model (F = 8.5).
The experiment configurations are exactly the same as those for
the perfect model case. Notably, in the presence of moderate
model error, the PODEn4DVar performs moderately better than
the other three methods and the advantage of the PODEn4DVar
over the other three methods becomes quite obvious especially
on Day 50 and Day 290 or so. Of course, the POD4DVar can also
give a fair good performance if the ensemble size N is increased
to a certain degree (≥140, not shown). The experiments with
severe model error (F = 9, Fig. 2c) produce very similar results
with those in the case of F = 8.5. The PODEn4DVar approach
shows robust performance and works almost same as (slightly
worse than) it does under the moderate model error scenario.
Different with the above perfect-model scenario, the temporal
smoothness constraint in the standard 4DVar results in its gen-
eral superior performance compared with the EnKF method (Ta-
ble 1) in the case of imperfect-model assumption (F = 8.5 and
F = 9.0).

For the three groups of experiments, the ratio of the compu-
tational costs for the four methods (PODEn4DVar, POD4DVar,
4DVar and EnKF) varies around 1.05:1.0:1.1:1.5. The high com-
putational cost in the EnKF method is mainly due to the fact the
analysis process consists of huge matrix and the computation
has to be conducted repeatedly when there are observations in
the assimilation time window, while in POD4DVar the compu-
tation is performed only once in each cycle. As discussed in
Tian et al. (2008), the application of the POD technique in the
POD4DVar method (also in the PODEn4DVar) greatly lowers
their computational costs (especially compared with the EnKF).
In the PODEn4DVar, The POD transformation is applied to the
OP space rather than the MP space directly, which can also al-
leviate the computational costs since the dimension of the OP
space is usually much lower than the original MP space. Of

course, this conclusion is not absolute and case-dependent be-
cause the scale of the minimization of cost functional and the
iteration times during each assimilation cycle vary greatly within
different numerical models.

To examine the sensitivity of the PODEn4DVar assimilation
to the variations of the relaxation coefficient α, we designed an-
other group of experiments with different relaxation coefficients.
Figure 3a shows that the variations of the relaxation coefficient
have slight impacts on the PODEn4DVar performance under the
perfect-model assumption. The RMS errors are almost lower
than 0.3 with the relaxation coefficients ranging from 0.6 to 1.0
(only partially shown in Fig. 3a). However, under imperfect-
model scenarios (F = 8.5 and F = 9.0), the PODEn4DVar per-
formance is significantly sensitive to the choice of the relaxation
coefficient and only those larger than 0.85 or so can result in
converged results (Figs. 3b–c).

Further, to explore the sensitivity of the PODEn4DVar assim-
ilation to the variations of the covariance localization radius,
we also compared the PODEn4DVar performance with different
covariance localization radii. Under the perfect-model assump-
tion, the choice of the covariance localization radius does not
seem very critical to the PODEn4DVar performance as long as
the ensemble size N is not very small (≥80; Fig. 4a). However,
with the imperfect forecast model, only some relatively appro-
priate covariance localization radii can generate a satisfactory
performance (Figs. 4b–c). It shows the choice of an appropriate
or inappropriate covariance localization radius is of importance
to determine whether the PODEn4DVar could be successfully
implemented or not.

Finally, to investigate how much the coupling between the
PODEn4DVar and the PODEn3DVar affects the final analysis
results, we also designed another group of experiments using
the PODEn4DVar with and without coupling the PODEn3DVar
respectively. When the assimilation window is 1 d, the cou-
pling performs moderately better that the non-coupling, whose
gap is further magnified with the model error becoming severe
more and more (Fig. 5). In the case that the assimilation win-
dow is 2 d, the coupling superior performance beyond the non-
coupling one appears more noticeable (Fig. 5). In the coupling
case, the model trajectory ensemble is gradually corrected by
the PODEn3DVar incorporating the observational information
sequentially during the model ensemble integrations throughout
the assimilation window, which contributes substantially to the
improvements of the final analysis results. Figures 5a–c show
that their RMS error curves for the coupling case almost over-
lap with the assimilation window being changed from 1 to 2 d.
Conversely, the performance of PODEn4DVar without coupling
PODEn3DVar becomes significantly poor when the assimilation
window is changed from 1 to 2 d (Figures 5b–c). Especially un-
der the sever model error case, even no converged results can be
obtained (Fig. 5c). Since the model error would develop without
any correction in the non-coupling case during the assimila-
tion window, the assumption of tangent linear approximation
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Fig. 3. Time series of the daily averaged root mean square (RMS) error for PODEn4DVar using different relaxation coefficients with the Lorenz-96
model (a) without model error (F = 8), (b) with moderate model error (F = 8.5) and (c) with severe model error (F = 9), respectively.

could likely be destroyed by the non-linearity evolution of the
forecast model and the operation operator. Once a longer as-
similation window is used, the spread of the ensemble forecasts
could collapse rapidly and lead to an inferior performance of the
non-coupling case.

5. Summary and concluding remarks

In this paper, a new scheme is developed to improve an ensemble-
based explicit POD4DVar proposed by Tian et al. (2008). In this

scheme, the POD technique is first applied to the perturbation
ensemble in the observation space to construct its orthogonal
base vectors. Consequently, under the assumption of tangent
linear approximation between the model (state) perturbations
and the OPs, the perturbation ensemble in the model space is
transformed in accordance with the POD transformation to the
ensemble OP subspace. The optimal MP and its corresponding
OPs can be represented by the transformed MP ensemble and
their related OP orthogonal base vectors respectively to fit the
4-D observation innovations in the assimilation window, which
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Fig. 4. Time series of the daily averaged root mean square (RMS) error for PODEn4DVar using different covariance localization radii with the
Lorenz-96 model (a) without model error (F = 8), (b) with moderate model error (F = 8.5) and (c) with severe model error (F = 9), respectively.

is essentially consistent with the basic function of the 4DVar
to optimize the final optimal analysis by making full use of
observation information. The application of this strategy can
moderately increase the assimilation precision while reducing
the computational costs. Further, inspired by the similarity be-
tween this scheme and the EnKF, the update of the analysis en-
semble is realized by using the ensemble of innovation vectors
instead of the single 4-D observation innovation in the explicit
4DVar analysis equation, which finally forms the PODEn4DVar
method.

Several numerical experiments performed with the Lorenz-96
model show that the proposed PODEn4DVar method performs
better than the original POD4DVar, the standard 4DVar and the
EnKF with assimilation errors being reduced to moderately less
than those of the latter ones with lower computational costs
compared with EnKF, especially under the imperfect model sce-
narios. The assimilation experiments also indicate that the cou-
pling between the PODEn4DVar and PODEn3DVar can, indeed,
help ameliorate the final analysis results significantly, especially
when the assimilation window is not short enough. Since the
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Fig. 5. Time series of the daily averaged root mean square (RMS) error for PODEn4DVar with and without coupling PODEn3DVar using two
different assimilation windows (1 and 2 d) with the Lorenz-96 model (a) without model error (F = 8), (b) with moderate model error (F = 8.5) and
(c) with severe model error (F = 9), respectively. (C-1 and C-2 denote the two coupling cases with the assimilation windows being 1 and 2 d,
respectively; NC-1 and NC-2 stand for the two non-coupling cases with the assimilation windows being 1 and 2 d, respectively).

dynamics of Lorenz-96 equations is “atmosphere-like” and can
be thought of as some atmospheric quantity distributed on a
latitude circle, which could act as a good proxy of the real atmo-
spheric model. Thus, the pretty good performance of ss shown
in the assimilation experiments conducted with the Lorenz-96
implies its potential applications in real numerical weather or
climate models. However, several issues, such as how to choose
the appropriate localization radius and the relaxation coefficient,
still need to be addressed.
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