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A B S T R A C T
Satellite ocean tracer images, of sea surface temperature (SST) and ocean colour images, for example, show patterns
like fronts and filaments that characterize the flow dynamics. These patterns can be described using Lagrangian tools
such as Finite-Time Lyapunov Exponents (FTLE) or Finite-Time Lyapunov Vectors (FTLV). In recent years, several
studies have investigated the possibility of directly assimilating structured data from satellite images into numerical
models. In this paper, we exploit specific properties of FTLE and FTLV to define observation operators that can be
used in a direct ocean tracer image assimilation scheme. In an idealized context, we show that high-resolution SST and
ocean colour images can be exploited to correct velocity fields using FTLE or FTLV.

1. Introduction

Data Assimilation techniques combine all the available informa-
tion to perform a ‘realistic’ simulation of a dynamic system. This
information comes from different sources: mathematical mod-
els based on physical laws, observations and a priori knowledge
(e.g. errors). The techniques are widely used to simulate geo-
physical fluid flows. They may be based on sequential filtering
(Carme et al., 2001; Brasseur and Verron, 2006) or variational
(Le Dimet and Talagrand, 1986; Luong et al., 1998) approaches.
Both involve an objective function that evaluates the discrepancy
between model outputs and observations using a least-squares
term. This term takes the following general form:

J (X) = ‖H(X) − y‖2
O, (1)

where X ∈ X and y ∈ O are, respectively, the state variable and
the observation vectors. Assimilation schemes are designed to
minimize the objective function with respect to the state (or
control) variable X.

The difference is evaluated in the observation space O using
the norm ‖ · ‖O: the so-called observation operator H maps the
state variable space X onto the observation space. The norm is
usually derived from an inner product that takes into account
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the observation error statistics (e.g. measurement and represen-
tativity errors). When observed variables correspond to certain
state variables, H may ‘simply’ represent a projection in space
and time. This is generally the case of in situ observations like
temperature or salinity profiles in the oceanographic context.
Remote observations from infrared or colour radiometers in-
stalled on satellites are radiances that are indirectly linked to
the state variables. The corresponding observation operator may
then contain complex radiative transfer laws. Another way of
assimilating this kind of data is to invert radiance measurements
into pseudo-observations of a state variable. Typical examples
are the infrared and microwaves radiances that are inverted, re-
spectively, into surface temperature and salinity measurements.
However, the link between radiance measurements and the con-
centration of bio-geochemical tracers (such as chlorophyll) is far
more complex. Assimilation of these radiances is still the sub-
ject of intensive research (see e.g. Carmillet et al., 2001; Gregg,
2008).

The improvement of remote sensing systems has resulted in
to satellite images of increasing resolution that show mesoscale
and submesoscale patterns such as filaments, fronts and eddies
(see Fig. 1). The location, shape and evolution of these struc-
tures are strongly linked to flow dynamics (Ottino, 1989). A
single ocean tracer image integrates the past temporal evolu-
tion of the velocity field that advected it (Lehahn et al., 2007);
also, as with passive tracer gradients in a turbulent flow, ocean
tracer gradients become aligned in certain specific orientations
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FTLE-V FOR DIRECT IMAGE ASSIMILATION IN OCEAN MODELS 1039

Fig. 1. Sea surface temperature (left panel) and ocean colour (right panel) images from the products of AQUA MODIS remote instrument showing
structured patterns such as fronts and filaments off the coast of Argentina. Convergence of the southward flowing Brazil and northward flowing
Malvinas currents, 2 May 2005. Courtesy: NASA.

(namely the orientation of backward Finite-Time Lyapunov Vec-
tors (FTLV), see Section 3) which in turn characterize the ve-
locity field (Lapeyre, 2002). However, structured information
contained in ocean tracer images are still underused by fore-
casting systems. Recent work has been conducted to develop
methodologies for assimilating such data into numerical mod-
els, and today two different approaches are under study. The
first (which is not examined in this paper) assimilates pseudo-
observations of velocity fields produced from image sequences
using the motion estimation technique (Horn and Schunck, 1981;
Herlin et al., 2004). This approach takes into account little physi-
cal information about the underlying processes that are observed
in the image. The second approach, referred to as Direct Image
Assimilation (DIA) in this paper, directly assimilates the image
data into the dynamic model: in Corpetti et al. (2009) the im-
age pixel is assimilated as a tracer concentration measurement;
in Titaud et al. (2010) the structured information extracted from
the image are assimilated using an adapted observation operator.
The latter does not use the pixel basis of the image but higher
levels of interpretation (e.g. a multiscale decomposition or a
description of contours). It requires observation operators that
link the structured information from the image with the model
output.

In this paper we adopt the second approach and show the
relevance of using Finite-Time Lyapunov Exponents (FTLE,
Pierrehumbert and Yang, 1993) in the DIA framework. FTLE is
a Lagrangian tool that was introduced to characterize coherent
structures in time-dependent flows. Together with Finite-Size
Lyapunov Exponents (FSLE, Artale et al., 1997; Aurell et al.,

1997) FTLEs are widely used in oceanography to link ocean
tracer distribution with mesoscale geostrophic currents in order
to study stirring and mixing processes (Abraham and Bowen,
2002; d’Ovidio et al., 2004; Lehahn et al., 2007). The main ob-
jective of our paper is to show, in an idealized, experimental,
but fairly realistic test case, that high-resolution ocean tracer
images may be exploited to correct larger scale velocity fields
using a DIA framework. We suggest using sophisticated obser-
vation operators based on the computation of FTLE and FTLV.
Their construction does not require the numerical advection of
a synthetic passive tracer, as was the case in Titaud et al. (2010).

The paper is organized as follows: in Section 2 we briefly
describe the test case used in our experiments. In Section 3 we
review the definitions of FTLE and FTLV (FTLE-V) associated
with a time-dependent flow, and point out the properties that are
relevant to this work. The use of this Lagrangian tool in a DIA
framework is described in Section 4. In Section 5 we detail the
methodology of our study and then present and discuss the main
results. The conclusions of the study are presented in Section 6.

2. Test case

Our study is based on a 1-yr simulation of an idealized bio-
physical model of a subregion of the North Atlantic Ocean. The
coupled model (Krémeur et al., 2009, described in) is applied
to a double-gyre configuration that mimics the North Atlantic
Ocean circulation and its western boundary current system. A
1/54◦ high-resolution version of this configuration (referred as
R54 in this paper) has been carried out by Lévy et al. (2009,
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2010). It is of interest here because it emphasizes in particular
the importance of submesoscale dynamics. The physical com-
ponent of the model is based on the NEMO-OPA code which is
quite a standard ocean global circulation model based on prim-
itive equations (Madec, 2008). The biogeochemical component
comes from the NEMO-TOP2 passive tracer engine based on the
rather simple six-compartment LOBSTER model (Lévy et al.,
2001). The vertical resolution of the model is non-uniform, with
5 m at the top and 250 m at the bottom. We are particularly in-
terested in the respective dynamical and biogeochemical tracers
such as temperature and phytoplankton. As we are concerned
with the application of satellite images, we focus on the surface
activity.

The ‘reference domain‘ � of our study is a 6◦ × 6◦ square
subdomain of the full double-gyre configuration. This domain
is located between longitudes −74.62◦E and −68.62◦E and lat-
itudes 22.36◦N and 28.36◦N:

� = [−74.62, −68.62] × [22.36, 28.36]. (2)

This region is located in the southeast recirculation branch of
the—idealized—Gulf Stream (see Fig. 2, left-hand panel: � is
marked by a dashed box). It is characterized by strong eddy
activity associated with fairly active submesoscale patterns. It
is typical of the strong turbulent activity associated with the
mid-latitude non-linear and unstable jets of the world ocean. We
arbitrarily choose day k0 = 99 to be the reference date which cor-
responds to 9 April. Sea surface temperature (SST) and Mixed
Layer Phytoplankton (MLP) fields show the main characteristic
patterns that can be found in ocean tracer fields (see Fig. 4): a
mesoscale eddy is located on the northeast side of the domain,
and a front on the east side; submesoscale filaments are also
observed. The results presented in this paper are independent of
the reference date and the subdomain �: other experiments with

other reference dates and subdomains have resulted in the same
conclusions (not shown). Note that MLP is closely linked with
ocean colour image products.

3. FTLE and FTLV

3.1. Definition

The transport of a tracer in a fluid is closely related to emergent
patterns that are commonly referred to as coherent structures.
For time-independent dynamic systems, they correspond to sta-
ble and unstable manifolds of hyperbolic trajectories (Wiggins,
1992). Coherent structures delimit regions of whirls, stretching
or contraction of tracer (Ottino, 1989): contraction is observed
along stable manifolds whereas unstable manifolds correspond
to divergent directions along which the tracer is stretched. Stable
and unstable manifolds are material curves that act as transport
barriers : they cannot be crossed by fluid particles. Generaliz-
ing these concepts to flows with general time dependence is
not straightforward and is still the subject of an intense re-
search. Studies that concern theoretical and practical aspects
of coherent structures deal with their rigorous definition and
their detection. When coherent structures are defined using fluid
trajectories they are often called Lagrangian Coherent Struc-
tures (LCS). Haller and Yuan (2000) define an LCS as a ma-
terial curve (more precisely a material surface in an extended
phase space) which exhibits locally the strongest attraction, re-
pulsion or shearing in the flow over a finite-time interval. A
rigorous mathematical theory that fits with this physical con-
cept was recently developed in Haller (2011) where quantitative
and robust criteria are given to identify hyperbolic (i.e. repelling
and attracting) LCSs. However, and despite some caveats de-
tailed in Haller (2011), LCSs are usually identified in a practical

Fig. 2. Left panel: SST (◦C) field of an idealized simulation of the North Atlantic Ocean using the 1/54◦ horizontal resolution model of Lévy et al.
(2009, 2010). Our study region is contained in the dashed box. Right panel: surface model mesoscale velocity field (m s−1) filtered from this
simulation in the domain and at the reference date of our study.
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manner as maximizing ridges of FTLE field (Haller, 2001a,b,
2002; Shadden et al., 2005; Mathur et al., 2007). FTLE are de-
fined as the largest eigenvalue of the Cauchy–Green strain tensor
of the flow map (see later for more details). The corresponding
eigenvector is called FTLV in this paper. FTLE and the orienta-
tion of FTLV constitute the key tools used in this work. FTLEs
are widely used to characterize transport processes in oceano-
graphic flows where the velocity field is only known as a finite
data set (Lekien et al., 2005; Beron-Vera et al., 2008; Olascoaga
et al., 2008; Beron-Vera and Olascoaga, 2009; Shadden et al.,
2009; Beron-Vera et al., 2010; Olascoaga, 2010). Even if not
used in this paper we also mention the FSLE (Aurell et al.,
1997; Artale et al., 1997), which is another Lagrangian tool that
is commonly used in oceanographic contexts for studying mix-
ing processes (d’Ovidio et al. 2004; Lehahn et al. 2007; d’Ovidio
et al. 2009a,b, and references therein). We refer to Peacock and
Dabiri (2010) who review the use of FTLE for detecting LCSs
in other contexts.

Here, we briefly review the definitions of FTLE and FTLV
before pointing out certain properties that we exploit in this
paper. FTLE is a scalar local notion that represents the rate of
separation of initially neighbouring particles over a finite-time
window [t0, t0 + T ], T �= 0. Let x(t) = x(t ; x0, t0) be the
position of a Lagrangian particle at time t, started at x0 at t =
t0 and advected by the time-dependent fluid flow u(x, t), x ∈ �,
t ∈ [t0, t0 + T ]. Thus we have⎧⎨
⎩

Dx(t)

Dt
= u(x(t), t),

x(t0) = x0.

(3)

An infinitesimal perturbation δx(t) started at t = t0 from δ0 =
δx(t0) around x0 then verifies, for all t ∈ [t0, t0 + T ],⎧⎨
⎩

Dδx(t)

Dt
= ∇u(x(t), t).δx(t),

δx(t0) = δ0, x(t0) = x0.

(4)

The Forward Finite-Time Lyapunov Exponent at a point x0 ∈ �

and for an advection time T is defined as the growth factor of
the norm of the perturbation δx0 started around x0 and advected
by the flow after the finite advection time T . Maximal stretching
occurs when δx0 is aligned with the eigenvector associated with
the maximum eigenvalue λmax of the Cauchy-Green strain tensor:

� =
[
∇φ

t0+T
t0

(x0)
]∗ [

∇φ
t0+T
t0

(x0)
]
. (5)

The flow map of the system (3) φt
t0

: x0 	→ x(t ; x0, t0) links
the location x0 of a Lagrangian particle at t = t0 to its position
x(t ; x0, t0) at time t �= t0. This eigenvector is referred to as the
forward FTLV and we denote it by ϕ

t0+T
t0

(x0). We thus have

max
δx0

‖δx(T )‖ =
√

λmax(�)‖δx0‖, (6)

where δx0 is aligned with ϕ
t0+T
t0

(x0). Finally, the forward FTLE
at the point x0 ∈ � and for an advection time T starting at t =

t0 is defined as

σ
t0+T
t0

(x0) = 1

|T | ln
√

λmax(�). (7)

We are particularly interested in backward FTLE field whose
ridges approximate attracting LCSs (Haller, 2011). Backward
FTLE-Vs are similarly defined, with the time direction being
inverted in (3). For more details on the practical computation
of FTLE-V, see for example, Shadden et al. (2005, 2009) and
Ott (1993) for any types of flows and d’Ovidio et al. (2004) for
oceanic flows.

As previously mentioned, FTLE (FTLV) is a scalar (vector)
that is computed at a given location x0. Seeding a domain with
particules initially located on a grid leads to the computation
of a discretized scalar (FTLE) and vector (FTLV) fields. Our
study focuses on the sensibility of the distribution of FLTE-V
over the test case domain � with respect to small perturba-
tions of the time-dependent flow u along a fixed time period [t0,
t0 + T ]. Consistently with this variational approach, we will
later consider the operators 	[u] : x ∈ � → σ

t0+T
t0

(x) ∈ R and

[u] : x ∈ � → ϕ

t0+T
t0

(x) ∈ R
2. These operators map the flow

u with the FTLE-V distribution over �. The dependence of this
map to the window [t0, t0 + T ] is not studied in this paper: it is
fixed in our experiments as it should be in an operational context
(see Section 5.1.1). We then chose not to mention this depen-
dence explicitly in order to simplify notations. Shadden et al.
(2005) discuss the dependence of FTLE to the time advection T
and its consequence on the properties of LCS marked by FTLE
ridges.

An example of backward FTLE and corresponding back-
ward FTLV orientation maps, computed from a mesoscale time-
dependent velocity field, is given in Fig. 3.

3.2. Connection between FTLE-V and tracers fields

In this paper we exploit two properties of backward FTLE-V to
construct adapted observation operators for direct ocean tracer
image assimilation (Titaud et al., 2010).

The first property concerns the contours of FTLE maps. Back-
ward FTLE fields show contours that correspond reasonably well
to the main structures such as filaments, fronts and spirals that
appear in geophysical and bio-geochemical tracer fields (Beron-
Vera et al., 2010; Shadden et al., 2009; Olascoaga et al., 2008,
2006). Figure 3 (left panel) shows a backward FTLE field (7)
in the reference domain and at the reference date of our study.
This field is computed from a sequence of mesoscale (1/4◦)
time-dependent velocity fields filtered from the R54 test case
simulation (see Section 5.1.1 for more details of the computation
settings for our experiments). The main geometrical patterns of
this field are clearly visible in the corresponding SST and MLP
fields of the R54 simulation (i.e. same reference domain and
date): see Fig. 4. In this study, we adopt the direct image as-
similation approach described in Titaud et al. (2010): first, we
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Fig. 3. Backward FTLE (day−1) (left) and corresponding backward FTLV orientations (angular degree) (right) computed in the reference domain
and at the reference date of our study. These fields are computed from a mesoscale (1/4◦) time-dependent velocity fields sequence filtered from the
R54 test case simulation.

Fig. 4. SST (◦C) (left) and MLP concentration (mmole-N m−3) (right) fields of the R54 test case simulation in the reference domain and at the
reference date of our study. These tracer fields show pronounced typical patterns such as an eddy (North East corner), a front (East side) and
filaments.

will consider FTLE field as it were a tracer field which in turn
can be considered as an image. This makes sense because of the
almost-Lagrangian nature of FTLE (Shadden et al., 2005):

dσ
t0+T
t0

(x0)/dt0 = O(1/|T |). (8)

Second, we are exclusively interested in the location and shape
of the structures that appear in the FTLE and tracer fields: we
do not exploit the value (pixel intensity) of the exponents or the
concentration.

The second property concerns the orientations of FTLVs.
Lapeyre (2002) shows that for a freely decaying 2D turbulence
flow, the orientation of the gradient of a passive tracer converges
to that of backward FTLVs. This dynamic behaviour of the tracer
concentration gradient ∇q is explained by the fact that k ×
∇q verifies the same eq. (4) as δx does (k being the unit verti-
cal vector). Such alignment properties have also been observed
for realistic oceanic flows and tracers (d’Ovidio et al., 2009b).

Figure 5 shows the dynamic alignment of SST and MLP gra-
dients with FLTV: the root mean square (RMS) angular error
between backward FTLV orientations computed at a given date
and tracer gradient field orientations decreases with time. Figure
3 (right panel) shows the orientations of the backward FTLV that
correspond to the aforementioned FTLE field (left panel). In our
idealized experiment, SST and MLP gradients also show similar
orientations: see Fig. 6.

These two properties (pattern matching between tracer and
FTLE scalar fields and tracer gradient orientation alignment
with FTLV orientation) are the first interesting properties that
can be exploited in a DIA framework. Furthermore, Beron-Vera
et al. (2010) and Beron-Vera (2010) showed, using real data, that
these properties remain valid with a mesoscale advection, that is,
when the resolution of the velocity field—from which FTLE-V
are computed—is much lower than the resolution of the observed
tracer field. This behaviour was also mentioned using another
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Fig. 5. Dynamic alignment of SST (left) and MLP (right) gradient orientations with FTLV orientations: in both cases, angular RMS between tracer
gradient and FTLV orientations computed at the reference date 99 decreases with time.

Fig. 6. Orientations (angular degree) of the gradients of the SST (left) and MLP (right) fields shown in Fig 4.

Lagrangian tool (FSLE) by Lehahn et al. (2007) and d’Ovidio
et al. (2009b). Our synthetic data exhibit the same behaviour:
FTLE field of Fig. 3 is computed from a mesoscale 1/4◦ velocity
field on the same high-resolution (1/54◦) grid as that used to
compute the SST and MLP fields of Fig. 4. This feature is
crucial from both a practical and physical point of view: first,
velocity fields obtained from ocean global circulation models
do not often provide more than mesoscale information, whereas
tracer images contain submesoscale information; second, FTLE-
V may be used to quantify and characterize the link between
scales.

4. Direct image assimilation using FTLE-V

4.1. General framework

From a practical point of view, an image is an array of numbers
known as pixels, but from a mathematical point of view it is
more convenient to model an image as a bounded real valued
function of two bounded continuous variables. This provides
a powerful and rigorous framework with which to process or
analyse them (Chan and Shen, 2005; Aubert and Kornprobst,
2006). In the following, in order to simplify our discussion, we
employ the same notation for the discretized and the continuous
version of the operators we respectively apply to the numerical

and modelled image. In particular, the gradient operator ∇ is
approximated by a first-order finite difference operator. In the
following, I� denotes the set of discrete real positive valued
functions defined on a rectangular grid � = [[1, n]] × [[1,m]] ⊂
N

2 (more simply, I� is the set of n × m numerical images). The
continuous version of I� is denoted by I.

As in the case of human vision, the relevant information con-
tained in an image is mainly provided by its discontinuities
(Marr, 1982). This is why image assimilation focuses on the
characterization of edges (or other structured information from
the image) instead of the pixel values of the image. In our con-
text, the pixel value of a satellite image (or more precisely a
satellite product given in an image form) may correspond to the
concentration of certain tracers. We emphasize that we are not
interested in the assimilation of such measurements as in the
classical cost function (1), but in the assimilation of the struc-
tured data that can be extracted from the image. With this in
mind Titaud et al. (2010) suggest adding an image term to the
classical cost function. This takes the general form

JS (X) = ‖HS (X) − ys‖2
S , (9)

where ys ∈ S represents the structures extracted from the ob-
served image c ∈ I, ‖ · ‖S is a measure of the discrepancy be-
tween the elements of S, and HS is the corresponding structure
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observation operator. It maps the state variable space X onto
the observation space S. JS is the DIA term associated with
the triplet (HS ,S, ‖ · ‖S ). In practice, ys is obtained using a
structure extraction operator S that acts on the actual observed
image c: ys = S(c). This operator is not part of the assimilation
procedure and may be defined using image analysis techniques.

In the following subsections, we define two DIA triplets
(HS ,S, ‖ · ‖S ) that rely, respectively, on the aforementioned
properties of FTLE and FTLV. In each case, we first define the
structure spaceS and an appropriate discrepancy measure ‖ · ‖S .
The structure extraction operator S is defined afterwards. We fin-
ish with the definition of the structure observation operator HS .
We show the relevance of these triplets in Section 5.

4.2. FTLE-based observation operator

We saw in Section 3.2 that FTLE fields exhibit similar contours
to those in the corresponding ocean tracer fields. These contours
mark the edges of the most relevant features in these images, such
as filaments, fronts and eddies. This property (pattern matching)
motivates the use of a space of contours E (which stands for
“Exponent”) to construct a DIA triplet (HE , E, ‖ · ‖E ). This space
is simply defined as the set of binarized images, that is, the
subspace of I� whose elements take one of only two values (0
or 1):

E = {f : � → {0, 1}}. (10)

The distance between two elements f and g of E is given by the
RMS norm

‖f − g‖E =
√√√√ 1

n × m

∑
(i,j )∈�

|f (i, j ) − g(i, j )|2. (11)

A basic technique for a rough extraction of edges from an image
is based on the binarization of its gradient norm using a hard
threshold. We define the structure extraction operator E applied
to an image c ∈ I� by: for all (i, j ) ∈ �

E(c)(i, j ) =
{

1 if ‖∇c(i, j )‖ > ε,

0 else,
(12)

where ε > 0 is a given threshold parameter. Structures extracted
from the observed tracer image involved in (9) are then yE =
E(c) in this case. Once we have defined the structure space and
its associated discrepancy measure between two elements, we
need to define the corresponding observation operator HE that
maps the state variable space X onto the observation space E .
In this case, we are interested in comparing the contours in the
tracer and the backward FTLE fields (7) at a reference date t0.
We then define the observation operator as the binarization of
the backward FTLE gradient norm field, computed from the
modelled time-dependent velocity field u, at the reference date
t0:

HE (X) = E(	[u]), (13)

where the backward FTLE is viewed as an image operator acting
on the flow field onto the image space I:

	[u] : � → R

x 	→ σ
t0+T
t0

(x).
(14)

Finally, the FTLE-based DIA cost function (9) associated with
the triplet (HE , E, ‖ · ‖E ) is written as

JE (u) = ‖Eε′
(
	[u]

) − Eε(c)‖2
E , (15)

in which we make the dependence of E on ε in (12) explicit,
because it does not necessarily take the same value for the tracers
and the FTLE fields.

Technical details on the computation of the FTLE fields and
the choice of the threshold parameter ε are given in Section
5.1.1 The edge extraction technique (12) together with distance
(11) can be used to obtain a rough comparison of the location of
fronts and patches on two images. Though more sophisticated
image contour extraction techniques exist (see review of Chan
and Shen, 2005), the results obtained with this basic method
are nevertheless promising. Figure 7 shows the corresponding
binarisation of the gradient of SST, MLP and backward FTLE
fields presented in Figs 4 and 3, respectively. We can clearly
see the relatively good match between the binarized FTLE and
tracer gradient fields.

4.3. FTLV-based observation operator

In Section 3.2 we noticed that the orientations of the gradients of
an ocean tracer image (or concentration field) are almost aligned
with the backward FTLV orientations of the corresponding flow
where the tracer is advected. This property motivates the use of
backward FTLV as a tool for building an observation operator
that links the velocity field of an ocean model to ocean tracer
images. We will construct the corresponding FTLV-based DIA
triplet in the same way as we constructed the FTLE-based DIA
triplet (HE , E, ‖ · ‖E ) in the previous section, starting with the
definition of the structure space: as we want to compare the ori-
entations of tracer image gradients with the FTLV orientations,
we define the structure space V (which stands for “Vector”) as
the space of functions on � with values in S2, the Euclidean unit
sphere of R

2:

V = {f : � → S2}. (16)

The discrepancy between two elements f and g of V is defined
by

‖f − g‖V =
√√√√ 1

n × m

∑
i,j∈�

sin2
[


(
f (i, j )

) − 
(
g(i, j )

)]
,

(17)

Tellus 63A (2011), 5



FTLE-V FOR DIRECT IMAGE ASSIMILATION IN OCEAN MODELS 1045

Fig. 7. Binarization of the SST (left), MLP (centre) and FTLE (right) gradient fields of Figs 4 and 3 using the threshold-based technique (12).

where (w) represents the orientation of an element of w =
(w1, w2) ∈ S2:

(w) = arctan(w2/w1) ∈
[
−π

2
,
π

2

]
. (18)

‖f − g‖V measures the angular discrepancy between the straight
lines whose normal directions are respectively f and g. We there-
fore emphasize that we are interested in comparing the orienta-
tions of two vectors, independently of their directions. We define
the observed structures in the tracer image c as its normalized
gradient field. We define for all (i, j ) ∈ �

yV (i, j ) = V(c)(i, j ) = ∇c(i, j )

‖∇c(i, j )‖ ∈ S2. (19)

As we want to compare the fields of tracer gradient orien-
tations with the backward FTLV orientations, we define the
observation operator as

HV (X) = 
[u], (20)

where the backward FTLV field is computed at the reference date
t0. It is considered as an operator acting on the time-dependent
flow field u onto V:


[u] : � → S2

x 	→ ϕ
t0+T
t0

(x).
(21)

Examples of FTLV orientation and tracer orientation fields are
shown in Figs 3 (right panel) and 6, respectively. Finally, the
FTLV-based DIA cost function (9) associated with the triplet
(HV ,V, ‖ · ‖V ) is written as

JV (u) = ‖
[u] − V(c)‖2
V . (22)

5. Sensitivity studies

In this section, we experimentally show that backward FTLE-V
can be used in a direct image assimilation framework to correct
a larger scale velocity field from a high-resolution ocean tracer
field showing submesoscale patterns.

5.1. Methodology

5.1.1. Computation settings. We want our framework to be
close as possible to that of direct assimilation of high-resolution
satellite images into eddy-resolving ocean models. In order to
construct a consistent sequence of mesoscale velocity fields from
the R54 simulation described in Section 2, we apply a space
Lanczos filter to the surface model velocity field. The filter
length is chosen so as to preserve mesoscale features. The result
is interpolated on a 1/4◦ horizontal resolution grid. We thus ob-
tain a velocity sequence that represents a mesoscale view of the
corresponding original submesoscale simulation. The mesoscale
velocity field obtained can also be viewed as a mesoscale simu-
lation with an ideally parametrized 1/54◦ submesoscale physics.
We should emphasize that the sequence of velocity fields u is
only known as a finite-time data set: it represents a finite se-
quence of discrete velocity fields (uk)k0

k=k0−T , k0 being the refer-
ence date and T the advection time.

FTLE-V of the above sequence of filtered mesoscale velocity
fields (uk)k0

k=k0−T are computed backward in time, from the refer-
ence date k0 = 99, on the same 1/54◦ horizontal resolution grid
as the tracers fields. The backward advection of the particles is
performed using a fourth-order Runge–Kutta scheme during a
time period T = 10 days which corresponds to an eddy turnover
time scale. The Cauchy–Green strain tensor (5) is approximated
using a finite difference scheme. The initial separation parameter
δ0 in eq. (4) is chosen so that it is equal to the mesh size of the
tracer grid, as suggested in d’Ovidio et al. (2004): δ0 = 1/54◦.

The threshold parameter ε involved in the definition of the
structure extraction operator E in (12) is implicitly chosen such
that a given percentage p of the values of the image gradient
norm are larger than ε. This is a classical technique that allows
p to be set regardless of the image c. In our experiments, we set
p = 0.8.

5.1.2. Velocity perturbations modelling. A pre-requisite for
a triplet (H,O, ‖ · ‖O) to be used to assimilate a data set y ∈ O
is that the corresponding cost function (1) has to be sensitive
to perturbations of the state variable X ∈ X . More specifically,
we expect that the cost function admits a minimum value at the
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non-perturbed state. In our experimental framework, we chose
to study the behaviour of the cost function (9) with respect to the
amplitude λ ∈ R of a perturbation δX. In other words, we are
interested in the variation of the following sensitivity function

λ ∈ R 	→ ‖HS (X + λδX) − yS‖. (23)

We expect it to be sufficiently smooth because standard descent-
type minimization algorithms need such conditions to be effi-
cient. Defining a set of perturbations is in general not a straight-
forward task and this is why we will consider a specific pertur-
bation model. As this study is a preliminary step towards data
assimilation, we construct a set of perturbations that is fairly
consistent with the errors dealt with by such methods. We focus
in particular on velocity errors because we want to show that
structured information from ocean tracer images can be used to
correct velocity fields.

Let (uk)k=1,m+1 be the sequence of the one-year simulation
mesoscale surface model velocity fields obtained from our test
case, as described in the previous subsection. In this experiment,
m = 209. We perform a principal components analysis using
Empirical Orthogonal Functions (EOF) to decompose the signal,
as used in Carme et al. (2001):

uk = u +
m∑

l=1

α
(l)
k u(l), (24)

where u is the time average velocity map. We define the clima-
tological covariance matrix as follows:

P = 1

m

m+1∑
k=1

(uk − u)(uk − u)∗. (25)

The EOFs u(l), l = 1, m, are equal to the normalized eigenvectors
of P times the square root of the corresponding eigenvalues. The
time amplitudes α(l) are normalized vectors. Figure 8 shows the
inertia of the signal: the first EOF accounts for 10% of the total
variance and 100 EOFs are required to account for 98% of total
variance. Let S be the column matrix of the first r = 100 EOFs;

Fig. 8. Percentage of resolved variance as a function of the number of
EOF.

SS∗ represents the reduced rank square root representation of
the covariance matrix P. We consider the normally distributed
velocity perturbations with zero mean and covariance SS∗ of the
sequence:

δu ∼ N (0, SS∗). δu =
r∑

l=1

u(l)δγl with δγl ∼ N (0, 1).

(26)

Assimilation schemes based on linear analysis (which are the
most widely used and studied at the moment) can be shown to
be optimal if the error sources (on the background state and
on the observations) are assumed to be Gaussian, with known
covariances. In the absence of more accurate information, the
background error covariance is often modelled using the covari-
ance of system variability (Pham et al., 1998). The Gaussian
velocity perturbations in (25) thus represent a reasonable model
of the errors that such a classical assimilation scheme can rec-
tify. Two examples of random velocity perturbations δu with the
above Probability Density Function (PDF) (26) are illustrated
in Fig. 9. In a sequential assimilation scheme, the state variable
is updated each time an observation is available. Let us con-
sider that an observation (an ocean tracer image in our case) is
available for our reference date k0 and that the state variable
has already been optimally evaluated. We may thus focus exclu-
sively on perturbations of the velocity field uk0 at this reference
date, that is, when this field needs to be corrected by the fil-
tering algorithm. As backward FTLE-V are computed from a
time-dependent velocity field, and in order to keep the notations
consistent with those used in (14) and (21), we define a perturbed
velocity field sequence uλ = (uλ

k )k0
k=k0−T by

uλ
k =

{
uk if k < k0,

uk0 + λδu else,
(27)

where δu is a random perturbation with PDF (26) and λ ∈ � ⊂
R is a bounded amplitude. A given realization of the random
variable (26) is amplified and then applied to the reference date
velocity field to form a realization of a random perturbed velocity
field sequence.

5.2. Results and discussion

In this section we present and discuss the variation of the sensitiv-
ity cost function (23) associated with each of the FTLE-V-based
DIA triplets

E� = (HE , E, ‖ · ‖E ), (28)

V� = (HV ,V, ‖ · ‖V ), (29)

whose elements are defined, respectively, in Sections 4.2 and 4.3.
The variation is studied with respect to a bounded amplitude
λ ∈ � ⊂ R of the perturbed state uλ given by (27). Data are
provided, respectively, by the corresponding image structure
operators (12) and (19) acting on the observed tracer image c at
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Fig. 9. Example of two random velocity perturbations with the PDF given by (26).

the reference date. We study the particular cases of SST and MLP
concentration fields, denoted, respectively, by cT and cP. This
leads to the definition of the following four sensitivity functions:

J̃ T
E (λ) = ‖HE [uλ] − E(cT )‖2

E , (30)

J̃ T
V (λ) = ‖HV [uλ] − V(cT )‖2

V , (31)

J̃ P
E (λ) = ‖HE [uλ] − E(cP )‖2

E , (32)

J̃ P
V (λ) = ‖HV [uλ] − V(cP )‖2

V , (33)

defined for a given realization of the perturbed state uλ.
Figure 10 shows the variation of the sensitivity functions (30)

and (31) corresponding, respectively, to the FTLE-based triplet
E� (28) and the FTLV-based triplet V� (29). Results for nine
realizations of the random perturbations (27) are plotted with

amplitudes in the range λ ∈ [ − 4, 4]. Data come from the cor-
responding structured observations E(cT ) and V(cT ) of the SST
fields shown in Fig. 4 (left panel). Figure 11 shows the corre-
sponding results when data come from the MLP concentration
field shown in Fig. 4 (right panel). We may first remark that each
of the sensitivity functions (30–33) admits a global minimum for
the nine random perturbations. Moreover, minima are generally
reached around λ = 0, which corresponds to the non-perturbed
state u0. These two basic aspects clearly show that FTLE-V-
based triplets are good candidates for use in ocean tracer image
assimilation schemes. More careful examination of these results
reveals some important points that merit discussion. First, we
may note that each realization of a given sensitivity function ex-
hibits a convex shape around the minimum, which is known to be
a good situation for minimization algorithms. From this point of
view, the FTLV-based triplet shows smoother variations than the
FTLE-based triplet. This is due to the regular behaviour of the

Fig. 10. Behaviour of sensitivity functions for SST. Left: Variation of the sensitivity function J̃ T
E (30) associated with the FTLE-based triplet E�

(28) with respect to the amplitude λ of nine random perturbations (27) applied to the reference velocity field uk0 . Right: Variation of the sensitivity
function J̃ T

V (31) associated with the FTLV-based triplet V� (29) with respect to the amplitude λ of nine random perturbations (27) applied to the
reference velocity field uk0 .
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Fig. 11. Behaviour of sensitivity functions for MLP. Left: Variation of the sensitivity function J̃ P
E (30) associated with the FTLE-based triplet E�

(28) with respect to the amplitude λ of nine random perturbations (27) applied to the reference velocity field uk0 . Right: Variation of the sensitivity
function J̃ P

V (33) associated with the FTLV-based triplet V� (29) with respect to the amplitude λ of nine random perturbations (27) applied to the
reference velocity field uk0 .

corresponding angular mismatch measure (17). It may thus offer
better conditions for the descent-type minimization algorithms
widely used in practical applications. One further advantage of
the FTLV-based triplet is that it does not depend on any additional
‘tuning’ parameter like the FTLE-based triplet with the thresh-
old involved in the structure extraction operator (12). Even if the
results associated with the FTLE-based triplet depend very little
on this parameter—if taken in a reasonable range—this feature
should make FTLV-based triplets more robust in practical appli-
cations. Secondly, we may observe that the minimum values are
not zero. This is not surprising because the Lagrangian tool is
known to provide only an incomplete representation of the SST
and MLP dynamics. Note, however, that for our application,
this is not unsatisfactory. Several reasons can be put forward
to explain why FTLE-V structures are not an exact match with

the corresponding ones in tracer images for the non-perturbed
state. The main reason is probably because ocean tracers such
as SST and MLP have their own dynamics that cannot be ob-
served by the Lagrangian tool. The high-resolution tracer gradi-
ents also depend on submesoscale dynamics; these dynamics are
not taken into account in the computation of FTLE-V because
they are computed from a mesoscale field. In addition, FTLE-Vs
have been computed at the ocean surface and we know that pat-
terns in ocean colour images (MLP field) are a surface signature
of a three-dimensional process. The underlying dynamics also
intervene in the formation of these patterns. These aspects, how-
ever, are beyond the scope of this paper. Nevertheless, we may
note that a zero global minimum value is effectively reached
if FTLE-Vs are observed in a precise manner. This is shown
in Fig. 12 where sensitivity functions (23) have been computed

Fig. 12. Variation of the sensitivity function (23) computed with exact model counterpart data yS = H(X). Variation are computed with respect to
the amplitude λ of nine random perturbations (27) applied to the reference velocity field uk0 . Left: FTLE-based triplet E� (28). Right: FTLV-based
triplet V� (29).
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with exact model counterpart data, respectively, yS = HE (u) and
yS = HV (u). Finally, we should point out that some realizations
of the sensitivity functions do not reach their minimum at zero
(i.e. at the non-perturbed state). This is particularly the case for
the FTLE-based triplet, the worse being with MLP data (see
Fig. 11, left panel). We also observe the same problem with this
tracer for the FTLV-based triplet, but it is less marked. Such
behaviour reveals that the data assimilation problem is not well
posed in the Hadamard sense, a situation quite common with
such inverse problems. To overcome this difficulty, assimilation
procedures take into account a priori information about the sys-
tem that regularize the problem. We should emphasize here that
we only studied the image part of the complete data assimilation
cost function. We can reasonably expect that the corresponding
full sensitivity cost-function (which will include a regularization
term) will exhibit more regular behaviour.

FTLE-Vs allow us to link mesoscale information from the
dynamic part of the model state variable with submesoscale in-
formation from the high-resolution tracer fields (images). Our
experiments show that, in an idealized case, FTLE-V may be
used to directly assimilate high-resolution ocean tracer images
into mesoscale eddy-resolving ocean models. An approximate
edge detection/location technique used together with the FTLE-
based observation operator is sufficient for the sensitivity func-
tion to exhibit a minimum value around the reference velocity
field, both for SST and MLP concentration images. Observations
of gradient orientation show more regular behaviour if used to-
gether with the FTLV-based observation operator. Minimization
algorithms should be more efficient in this situation.

6. Conclusions

In this paper we have shown that, in an idealized experimental
test case, ocean tracer images can be exploited to correct sur-
face model velocities. When viewed as images, SST and MLP
fields show relevant features such as eddies, fronts and fila-
ments. Such structured observations can be assimilated using a
DIA technique. For this purpose we constructed sophisticated
observation operators based on FTLE-V computation. These La-
grangian tools are well suited to link mesoscale flow dynamics
with the submesoscale information from ocean tracer images.
Lagrangian Coherent Structures represent an elegant alternative
to synthetic passive tracer advection in constructing image as-
similation observation operators. This kind of operator was used
in Titaud et al. (2010) as an example to show the feasibility of
direct image assimilation in numerical models. Nevertheless, nu-
merical advection is known to smooth the discontinuities. This
feature could be a drawback for image assimilation, but FTLE-V-
based operators clearly overcome this problem. The relevance
of FTLE-V in a data assimilation framework has been shown
using a sensitivity study. Specific objective functions exhibit
favourable behaviours for a set of velocity errors. Our perturba-

tion model based on one-year climatological statistics provides
a reasonable representation of the errors that common assimila-
tion schemes have to deal with. Even if the FTLE-V structures
cannot perfectly match the corresponding structures in the ocean
tracer fields under consideration, these results clearly indicate
that it is possible to assimilate high-resolution ocean tracer im-
ages into mesoscale models using FTLE-V-based observation
operators. A more careful examination of the results reveals
that FTLV-based observation operators seem more appropriate
than FTLE-based one for our application. Nevertheless, a more
complete comparison should be conducted to provide a more
precise answer to this question. For instance, we may exploit
the almost-Lagrangian nature of FLTE (8) to identify the FTLE
ridges better. Indeed, it has been shown by Haller (2011) that
FTLE gradient and FTLE-V are perpendicular near an FTLE
ridge that marks a hyperbolic LCS. Merging FTLE and FTLV
properties into a single observation operator may help to con-
strain the data assimilation system better. As expected in data
assimilation, our problem is not well posed (in a mathematical
sense), leading to certain defects in some of the realizations of
random errors, especially for the FTLE-based operator. This can
be overcome (at least partially) by regularizing the minimization
problem.

This study is based on synthetic data that were not altered
to test the robustness of the method with respect to observation
errors, because it is a first step towards the assimilation of ocean
tracer images using FTLE-V. Setting up exhaustive experiments
to check such robustness is not a straightforward task because
observation errors are of different types (measurement error,
representativeness errors). For that matter, direct image assimi-
lation is quite unusual with respect to this issue. Indeed, images
are spatially structured data (and temporally structured if image
sequences are considered), which makes correlations of obser-
vation errors hard to model. Furthermore, even though they are
crucial questions, they are beyond the scope of this paper and
should therefore be the subject of future research.

Finally, we found FTLE-V well suited to satellite image as-
similation and the results obtained were very promising. We be-
lieve the work presented here also enhances the value of satellite-
image products, which are becoming increasingly numerous,
with improvements in coverage, frequency and resolution.
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Koçak, H., and co-authors. 2008. Zonal jets as transport barri-
ers in planetary atmospheres. J. Atmos. Sci. 65(10), 3316–3326.
doi:10.1175/2008JAS2579.1.

Beron-Vera, F. J., Olascoaga, M. J. and Goni, G. J. 2010. Surface ocean
mixing inferred from different multisatellite altimetry measurements.
J. Phys. Oceanogr. 40(11), 2466–2480. doi:10.1175/2010JPO4458.1.

Brasseur, P. and Verron, J. 2006. The seek filter method for data assim-
ilation in oceanography: a synthesis. Ocean Dyn. 56(5-5), 650–661.
doi:10.1007/s10236-006-0080-3.

Carme, S., Pham, D.-T. and Verron, J. 2001. Improving the singu-
lar evolutive extended Kalman filter for strongly nonlinear models
for use in ocean data assimilation. Inverse Probl. 17(5), 1535–1559.
doi:10.1088/0266-5611/17/5/319.

Carmillet, V., Brankart, J.-M., Brasseur, P., Drange, H., Evensen, G.
and co-authors. 2001. A singular evolutive extended Kalman filter to
assimilate ocean color data in a coupled physical-biochemical model
of the north atlantic. Ocean Model. 3, 167–192.

Chan, T. F. and Shen, J. 2005. Image Processing and Analysis, (eds.
Chan, T. F. and Shen, J.). Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA.
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