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A B S T R A C T
Understanding and forecasting the evolution of geophysical fluids is a major scientific and societal challenge. Forecasting
algorithms should take into account all the available information on the considered dynamic system. The variational
data assimilation (VDA) technique combines all these informations in an optimality system (O.S.) in a consistent way
to reconstruct the model inputs. VDA is currently used by the major meteorological centres. During the last two decades
about 30 satellites were launched to improve the knowledge of the atmosphere and of the oceans. They continuously
provide a huge amount of data that are still underused by numerical forecast systems. In particular, the dynamic
evolution of certain meteorological or oceanic features (such as eddies, fronts, etc.) that the human vision may easily
detect is not optimally taken into account in realistic applications of VDA. Image Assimilation in VDA framework can
be performed using ‘pseudo-observation’ techniques: they provide apparent velocity fields, which are assimilated as
classical observations. These measurements are obtained by certain external procedures, which are decoupled with the
considered dynamic system. In this paper, we suggest a more consistent approach, which directly incorporates image
sequences into the O.S.

1. Introduction: images and assimilation

Understanding and forecasting the evolution of geophysical flu-
ids (ocean, atmosphere, continental water) is a major scientific
and societal challenge with important applications (prediction
of extreme meteorological events, estimation of climate change,
droughts and floods forecast, etc.). This problematic is currently
the subject of an intensive research effort by the international
scientific community. In order to achieve this goal, scientists
need to take into account all the available information on the
studied dynamic system. These informations can take several
forms:

(i) Numerical models: They attempt to simulate the system
dynamics on a wide range of time and space scales. Based
on the Navier–Stokes equations, they are complicated because
they must deal with the irregular shape of the domain, with the
parametrization of unresolved processes, and with highly non-
linear processes at the mesoscale and below. Numerical mod-
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els represent mathematical and physical informations under the
form of coupled sets of non-linear partial differential equations
(PDE).

(ii) Observations: By essence, models simulate simplified
real physical processes with a limited number of variables. More-
over, despite their regular improvement, certain model param-
eters are poorly known (e.g. initial and boundary conditions).
This is why it is important to observe the system as well. Due to
both satellite and in situ observing systems, observations have
become increasingly numerous. Yet, their accuracy is not always
satisfactory, and the processing of such a large quantity of het-
erogeneous data is difficult. Observations only provide a partial
view of reality, localized in time and space. Therefore, some of
them are indirectly related to model variables.

(iii) Statistical informations: On the one hand, the two
sources of information described previously contain errors that
can be characterized. Some physical processes are simplified or
even neglected and errors are introduced through numerical pro-
cessing (discretization, rounded errors, etc.). Most of the time
there are known deficiencies of the model and therefore informa-
tion about the structure of the needed correction is available. On
the other hand, observation errors are mainly due to so-called
representativity errors. Indeed, observation can represent phe-
nomena that are not simulated by the model (subgrid processes).
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Most of the time, the statistics of the representativity error can be
estimated. All these informations are of importance and should
be taken into account.

(iv) Qualitative informations: Forecasters use their knowl-
edge on the system and additional materials such as satellite
images to interpret the output of numerical prediction systems
and provide corrected forecasts.

Taken separately models and observations do not permit for
a deterministic reconstruction of real geophysical flows. There-
fore, it is necessary to use these heterogeneous but complemen-
tary sources of information simultaneously through so-called
data assimilation methods. These are inverse modelling tech-
niques based on the mathematical theory of statistical estimation.
Their aim is to combine observations and prior model estimates,
taking into account their respective statistical accuracies, in such
a way that the combined estimate is more accurate than either
source of information taken individually. In the early 1980s Le
Dimet and Talagrand (1986) proposed to use optimal control
techniques to perform this task. This method, commonly re-
ferred to as variational data assimilation (VDA), has now been
adopted by most of the main meteorological operational centres
(European Centre for Medium Range Weather Forecast, Japan
Meteorological Agency, Météo France, etc.). In VDA, the ‘anal-
ysis problem’ is defined by the minimization of a cost function
that measures the statistically weighted squared differences be-
tween the observational information and their model counterpart.
The cost function is minimized with respect to the control vari-
ables and this is done iteratively using a gradient-type descent
method.

Models are based on fluid dynamics equations and on ther-
modynamic laws. After discretization in space (finite difference
and spectral methods), the model is represented by a system
of PDE with about 500 millions variables, and this number will
keep increasing in the future. Data come from numerous sources
(in situ, radiosondes, aircrafts, geostationary and polar orbiting
satellites, etc.) and they are heterogeneous in density, quality
and nature.

During the last two decades, many satellites have been
launched to improve our knowledge of the atmosphere and of
the oceans by observing the Earth. They provide photographic
images of the Earth system among other data. Image-type data
could be used in a classical data assimilation scheme, using
the grey levels as observations of radiances emitted or reflected
by the system. Yet connecting model variables with this kind
of measurement is often complex, and consequently pixel lev-
els are not assimilated in practice. However, satellites provide
sequences of images that show the dynamic evolution of me-
teorological or oceanic ‘objects’ such as fronts, clouds, eddies,
vortices, etc. The dynamics that the human vision can easily de-
tect in this kind of image sequence clearly has a strong predictive
potential. Unfortunately, this information is not optimally used
in conjunction with numerical models for the moment. Fur-

thermore, in other applications images are the only source of
observation.

The purpose of this paper is to present a brief introduction to
image sequences assimilation in a geophysical context. It also
defines a methodology based on the theoretical background of
VDA that combines the information coming from image se-
quences and the one coming from the numerical model, a priori
knowledge and classical observations in a consistent way. Two
classes of image assimilation techniques are currently consid-
ered:

(i) Pseudo-observation: An apparent velocity field is esti-
mated from an image sequence using certain image processing
techniques. This estimated field can then be used as indirect
observations in a classical assimilation scheme. This has been
done in a meteorological context in Schmetz et al. (1993).

(ii) Direct image sequences assimilation (DISA): Image se-
quences are assimilated through an appropriate observation oper-
ator directly into the optimality system (O.S.). This idea follows
a general trend to avoid pre-processing of observations before its
assimilation. A mathematical modelling of the image sequence
is necessary to perform this task. Some recent work used the
pixel basis (Papadakis and Mémin, 2008a; Corpetti et al., 2009)
but we suggest that more sophisticated image representations
should be used for geophysical applications.

Variational assimilation has also been used in a computer vi-
sion context (Papadakis and Mémin, 2008b). Since it deals with
image evolution models this study cannot be truly considered
as direct image assimilation in the sense we defined previously.
Nevertheless, such developments are of interest and should be
taken into account in a geophysical context.

Using image sequences together with numerical models may
present several difficulties:

(i) The state variables of the numerical models (e.g. wind,
temperature, pressure, humidity in atmosphere modelling and
current velocities, temperature, surface elevation, salinity in
ocean modelling) are not directly measured by satellites. What
is observed is more or less linked to those variables by diagnos-
tic equations, which will have to be included in the assimilation
procedure.

(ii) The physical processes that are observed are not always
taken into account in the model (e.g. local convection in at-
mospheric modelling, ocean colour in ocean modelling). This
situation may happen for other kinds of observation as well but
it is likely to be systematic in the case of image sequences.

(iii) Images are bi-dimensional informations whereas physi-
cal processes of geophysical fluids are three dimensional. From
this point of view, a major difference between the ocean and
the atmosphere comes from their radiative properties. In the first
case images give informations about the ocean surface whereas
in the second case images integrate all the radiative profile of the
observed atmosphere column. Besides, certain meteorological
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structures (e.g. some kind of clouds) are located in specific lay-
ers. Assimilating informations about the dynamic evolution of
these structures needs additional informations about the altitude
of the observed processes (using temperature profile measure-
ments for instance). When the radiative properties of the ocean
make the images give information about the ocean surface only
(likely about a few centimetres), the corresponding observed
processes may not be well depicted by the model.

(iv) As for human vision, we can presume that the perti-
nent informations coming from an image are mainly brought by
its discontinuities or high gradients. Unfortunately, numerical
models have a tendency to smooth these discontinuities out.

Finally, there is an important difference between meteorolog-
ical and oceanographical images: in the first case, we can expect
the model to more or less simulates the evolution of the observed
features in an image sequence (e.g. fronts and vortex motion)
but the altitude where such evolution takes place is not usually
well known. In the second case, there is no ambiguity about
the localization (i.e. at the surface) of the observed features be-
cause devices are not able to get information deeper than a few
centimetres.

The paper is organized as follows. Basic principles of
VDA techniques are described in Section 2. Section 3 briefly
presents some mathematical considerations about images. Sec-
tion 4 browses the different techniques currently available to
assimilate—in a regular assimilation scheme—velocity fields
derived from image sequences (pseudo-observations). A method
for direct variational image sequences assimilation using a
higher level of interpretation than the pixel level is described
in Section 5: this forms the original part of this paper. Prelimi-
nary results are presented in Section 6.

2. Variational data assimilation

2.1. Principle of VDA

Let us briefly present the basic principle of VDA. The state of
the system is described by a ‘state variable’ x depending on time
and space. It belongs to the variable space state X : we have
x(t) ∈ X . It represents the variables of the model (e.g. velocity,
temperature, elevation of the free surface, salinity, concentration
of biological or chemical species, etc.). The evolution of x is
governed by the differential system⎧⎨
⎩

dx
dt

= M(x, U ), t ∈ [0, T ],

x(0) = V ,

(1)

where U ∈ P is an unknown set of parameters of the model:
boundary conditions, model errors, parametrization of subgrid
effects, etc. U may depend on space and time. The initial con-
dition V ∈ X is unknown and depends on space. Let us assume
that U and V being given, the problem (1) has a unique solution

x(U , V , t), t ∈ [0, T ]. y(t) ∈ O are given observations of the sys-
tem available between 0 and T . The space O is called the space
of observations. To make the description simpler, we suppose
the continuity in time of the observations and that U only de-
pends on space. The discrepancy between the observations and
the state variable intervenes in the following ‘cost function’:

J (U, V ) = 1

2

∫ T

0
‖ y(t) − H[x(U,V , t)] ‖2

O dt

+ 1

2
‖ U − U0 ‖2

P + 1

2
‖ V − V0 ‖2

X ,
(2)

where H is the so-called ‘observation operator’. It is a mapping
from the space of the state variable towards the space of obser-
vations O where the comparison is carried out (for more details
see Section 2.2). The second and the third terms are regular-
ization terms in Tikhonov’s sense (Tikhonov, 1963). They also
allow to introduce a priori informations. It is important to point
out that J involves three different norms that define the topolog-
ical structure of the functional spaces X ,P and O; in practice,
norms come from an inner product and can take into account
the statistical information by introducing the error covariance
matrices. For instance, a version discretized in space of the cost
function (2) may involve

‖ V − V0 ‖2
X := (V − V0)∗B−1(V − V0), (3)

where B is the background error covariance matrix. The super-
script ∗ symbolizes the adjoint operation.

The problem of VDA can be considered as the determination
of the analysed state (Ua, V a) minimizing J, that is verifying

(Ua, V a) = argmin J (U, V ). (4)

A necessary condition for (Ua , V a) to be a solution of (4) is that

∇J (Ua, V a) = 0 (5)

which becomes a sufficient condition if J is convex. As a first
approximation, we have to solve a problem of unconstrained
optimization despite the fact that, for instance, certain quantities
are known to be non-negative (such as humidity, salinity or
concentration). From a practical and numerical point of view,
(Ua , V a) is estimated by a descent-type algorithm, that is, by
finding the limit of the sequence(

Uk+1

Vk+1

)
=

(
Uk

Vk

)
+ λkDk, (6)

where λk is the step size realizing the minimum of J along the
direction of descent Dk deduced from the gradient of J. For
computing the gradient ∇J with respect to the control variables
(U , V ), we introduce the ‘adjoint variable’ p as the solution of
the adjoint model⎧⎪⎨
⎪⎩

dp
dt

+
[

∂M
∂x

]∗
· p =

[
∂H
∂x

]∗
· [H(x) − y], t ∈ [T , 0],

p(T ) = 0.

(7)
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After a backward integration of the adjoint model, the gradient
of J is given by

∇J =
(

∇UJ

∇V J

)
=

⎡
⎢⎣ −

∫ T

0

(
∂M
∂U

)∗
· pdt

−p(0)

⎤
⎥⎦ . (8)

The derivation of the system (7) can be found in Le Dimet and
Talagrand (1986). The model (1) plus the adjoint model (7) along
with the cost function (2) form the O.S. The adjoint variable has
the same dimension as the state variable of the direct model.

2.2. The observation space and operator

Measures are partial—in space and time—estimations of contin-
uous physical quantities. Moreover, observations that are actu-
ally used in data assimilation schemes are in general a sampling
of filtered measures. The space of observations O is a subset of
R

p where p is the number of observations. Observations y and
state variables x are linked through the ‘observation operator’

H : X → O

x(t) �→ y(t) = H[x(t)], (9)

which maps the state variable spaceX onto the observation space
O. The observation space is equipped with an inner product
whose definition takes into account some uncertainties about
the measurements and some representativity errors. We have

‖H(x) − y‖2
O = (H(x) − y)∗R−1(H(x) − y), (10)

where R is the observation error covariance matrix.
We talk about direct observations when the observed quanti-

ties belong to the set of model state variables, and about indirect
observations otherwise. In the first case, H may define a pro-
jection or an interpolation from X onto O. In the second case,
evaluating H(x) may be difficult from both computational and
mathematical point of views because y and x may be connected
through complex physical laws. The observation operator should
be regular enough to ensure that the partial derivative ∂H

∂x , in-
volved in the adjoint model, (7) exists. In the case of direct
observations, this property is generally satisfied whereas, in the
case of indirect observations, this could be far less true. For in-
stance, let us take the case of an ocean model with state variables
velocity current, surface elevation, temperature and salinity. Di-
rect observations could be in situ measures of temperature and
salinity in certain specific locations of the studied domain. Indi-
rect observations could be measures of surface salinity inverted
from microwave radiances coming from remote sensing cap-
tors. In that case, H should represent the relation between these
microwave radiances and surface salinity.

3. Interpretation levels and mathematical
definitions of an image

Our goal is to define a methodology based on the theoretical
background of VDA (see Section 2) in order to combine the in-
formations coming from image sequences and the ones coming
from the numerical model, a priori knowledge and classical ob-
servations in a consistent way. A first step is to identify a suitable
level of interpretation of the image and a suitable mathematical
framework to process it: this problematic is often called ‘image
modelling’.

3.1. Numerical raw images

The acquisition device converts the radiations coming from the
observed scene into an electric signal, which is digitalized to
form the ‘raw image’. The device contains a sensor that is com-
posed of an array of photo-sites where photons are accumulated.
A numerical raw image is an array of pixels whose values rep-
resent the quantity of photons the corresponding photo-site re-
ceived during the acquisition procedure. Raw images pixels can
then be considered as radiance measurements. Black and white
images pixels are described by one single channel called ‘grey
level’ whereas coloured images pixels are described by three
channels (Red, Green, Blue). The intensity of a pixel is usually
described by a number between 0 (black) and 1 (white). This
number is stored in a binary format with a string of digits (bits)
whose length, the ‘pixel depth’, depends on the acquisition de-
vice and the digitization procedure. For instance, METEOSAT
images have a 8 bits pixel depth (256 grey levels) as it is the case
for common grey-scale images. Other remote sensing devices
can produce 10 or 12 bits pixel depth images [e.g. Moderate-
Resolution Imaging Spectroradiometer (MODIS)]. Note that
computers usually store single precision floating point num-
bers with 32 bits (64 bits in double precision). If we consider
that a pixel intensity is a measurement, then it is represented less
precisely than single precision floating point numbers. Finally,
the ‘spatial resolution’ of a satellite image refers to the quantity
of Earth’s surface a single pixel covers.

However, from a ‘mathematical’ point of view, an image is
commonly considered as a real valued function of two continu-
ous real variables. This allows the use of powerful mathematical
tools developed by the image processing scientific community.
A ‘numerical image’ is the discrete version of a mathematical
one that is finally manipulated by computers.

3.2. Levels of interpretation

At the ‘pixel level’, an image of a fluid in motion is a digital
instantaneous expression of the state of the fluid through the
radiation that it reflects (visible light) or emits (infrared light).
It is then a snapshot of an ‘apparent state’ which may involve
other physical quantities than the model simulates, like tracers
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Fig. 1. MODIS-Aqua images collected on 4 August 2005 showing a couple of large Gulf Stream eddies in visible (left-hand panel) and infrared
(right-hand panel) channels. In both image, we detect easily the same structures even though they are not linked to the same physical tracer
radiance: chlorophyll concentration (left-hand panel) and surface temperature (right-hand panel). (Courtesy: NASA/
http://oceancolor.gsfc.nasa.gov).

(e.g. Cloud cover and aerosols in the atmosphere, chlorophyll in
the ocean). The radiances are generally not part of the studied
system and the dependence between this radiation and the state
variables is not often trivial. For instance, ‘cloud cover’ is an
intricate function of the state variable of meteorological mod-
els: clouds reflectance and intrinsic infrared emission depend
both on thermodynamics (temperature and humidity) and on the
microphysical processes that occur inside the clouds (involving
water, ice, snow and the size of the particles). Satellite images
that come from infrared sensors (see Fig. 1 right-hand panel)
give indirect informations about the temperature of the observed
system. At this level, information contained in images are not
structured enough and represents a huge amount of data: typical
satellite images are about 5000 × 5000 size, that is 25 mil-
lions of pixels. This number should be multiplied by the number
of frames in the observed sequence. For this reason, this level
will probably not be efficient in realistic image sequences as-
similation. Note that low level vision problematics (denoising,
deblurring, inpainting, segmentation, etc.) are usually performed
at the pixel level.

At the ‘analysis level’, an image is symbolically described by
its contents, typically by the objects and their characterization
(geometry, layout, etc.) that appear in the observed scene. This
kind of interpretation is used for high-level vision problematics
as motion estimation, edge detection, pattern recognition, etc.
The advantage of this level is that it may less depend on the
effective radiance emission as suggests Fig. 1. In these images,
the visible channel (left-hand panel) corresponds to a chloro-

phyll concentration map whereas the infrared channel (right-
hand panel) corresponds to a surface temperature map. But in
both of them, we may detect the same structures such as eddies
and filaments. Currently, going from pixel level to analysis level
in fluid flow image processing is a tough and still challenging
task but this is beyond the topic of this paper. From now on we
will use ‘structure’ as a generic word for the different features
that may compose a geophysical image at the analysis level of
interpretation.

3.3. Mathematical definition

There exist several mathematical definitions for images and it
is not the aim of this section to describe them all. They essen-
tially depend on the way the image needs to be processed. We
can cite the multiscale decomposition approach, which comes
from the signal processing theory [wavelet (Mallat, 1998) and
the more recent curvelet (Candès and Donoho, 2004) trans-
forms]. Another approach uses the PDE framework (Aubert and
Kornprobst, 2006), where the image is considered as a func-
tion of two variables verifying a PDE equation that depends
on the considered image processing problem. Certain applica-
tions use a stochastic approach as well to define images (Ge-
man and Geman, 1984). For a good review of image analy-
sis and the underlying mathematical definition, see Chan and
Shen, 2005. In Section 6, we present an example where the
anisotropic multiscale decomposition by curvelet transform is
used.
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Fig. 2. Sequence of cloud coverage images above Europe from METEOSAT from 28 April 2008 to 29 April 2008. (Courtesy Météo-France).

In the VDA framework, the level of interpretation to-
gether with the mathematical definition of the image may be
represented by the image-type observation space and its corre-
sponding observation operator (see Section 5).

3.4. Sequence of images

With a static image, we only have access to Eulerian infor-
mations. Sequences of images provide dynamic informations,
which can be interpreted as Lagrangian observations. The use
of this type of information in VDA schemes was recently stud-
ied for ocean and hydrology problems (Nodet, 2005; Honnorat,
2007). Figure 2 is an image sequence taken over the Atlantic
Ocean. In this example, we can see the evolution of a front over
Western Europe associated with a cyclonic flow pattern over
the ocean. This illustrates the ability of the human vision to
estimate the evolution of the atmosphere through the features
that it is able to detect and track. Because it takes into account
all the observations in the assimilation window at once, the
VDA framework seems well adapted to consistently process the
dynamic information the image sequences provide. Processing

and analysing image sequences may be done by extending the
concepts listed above for static images using two different ap-
proaches: first, the sequence may be assimilated as a set of single
two dimensional images (i.e. the frames) which are processed
and analysed individually. Another approach is to consider the
sequence as a three dimensional data: two spatial dimensions
and time. The use of extensions of image processing techniques
to the 3-D case may reinforce the temporal consistency of the
DISA.

4. Images as source of pseudo-observation
for data assimilation

Sequence of images are widely available in meteorology,
oceanography, hydrology, astrophysics and even medicine. His-
torically, they have been mainly used for a ‘by eye’ analysis
from experts in these fields. Yet, since the mid-1980s, research
has been carried out to derive velocity fields from the sequences,
with applications for fluid dynamics mainly (and very recently
for movie compression and medical applications). We can use
the velocity field derived from the image processing techniques
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as pseudo-observation of the studied system, for instance in a
regular VDA scheme (Herlin et al., 2004).

There are several ways to extract a velocity field from a se-
quence of images. They can be divided into two categories:
the frame-to-frame motion estimators and the so-called image
model technique (see Section 4.2).

4.1. Frame-to-frame motion estimator

The first class of motion estimator, directly based on image
processing techniques, aims at estimating the velocity field that
would ‘transport’ one frame to another.

Among them we can cite the statistical methods (mostly based
on correlations between two images). They are mainly used for
particle image velocities (PIV) and particle tracking velocities
(PTV) experiments, that is, for lab experiments in fluid mechan-
ics where particles are added to the fluid in order to follow the
flow (Adrian, 1991). They are easy to implement, but they can
be quite expensive when the number of particles increases. Ap-
plications of such methods are not really in the scope of what
we are studying here.

Variational methods are more adapted to image sequences in
geophysics. The most common one is usually called ‘optical
flow’. This classical approach in computer vision is based on the
conservation of the global luminance between two images (Horn
and Schunck, 1981): let I : � × R → R be the luminance of the
pixel, the optical flow is the vector v(x,y) verifying

dI

dt
= ∂I

∂t
+ ∇I · v = 0. (11)

This is not the only law of conservation, which could be consid-
ered according to the nature of the image: with an image of the
colour of the ocean, an equation of conservation of chlorophyll
(with source and sink terms) could be considered; with an image
of sea surface temperature (SST), the Boussinesq approximation
could be used.

Problem (11) is an ill-posed problem. Therefore, we need to
add a regularization constraint. The choice of the regularization
term depends on the application field [Vigan et al. (2000) for
oceanography, Amodei and Benbourhim (1991) for wind field].
This problem can be summarized by finding v� that minimizes
F defined by

F (v) = 1

2

∫
�

∥∥∥∥∂I

∂t
+ ∇I · v

∥∥∥∥2

dx dy + 1

2
λ‖S(v)‖2, (12)

where S : R
2 → R

2 is a spatial regularization function (see
Auroux and Fehrenbach, 2008) and λ ∈ R is the regulariza-
tion factor. The minimization problem (12) is treated either by
optimal control or by vector spline (Amodei, 1993; Suter, 1994;
Isambert et al., 2007).

4.2. Image Model

Recently, Herlin et al. (2006), Huot et al. (2006) and Korotaev
et al. (2007) proposed an extension of the optical flow methods
called ‘Image Model’. This is a more advanced motion estimator
using techniques based on VDA which allows the use of several
successive frames at once by adding a governing equation for v
to the O.S. generating the pseudo-observations.

The aim is to retrieve a ‘continuous’ in time motion vector
field from a sequence of images I obs(t), t ∈ [0, T ]. As in Sec-
tion 4.1, it assumes the conservation of light and the image pixels
are transported from one image to the other by the velocity field
to be estimated. In order to improve the temporal consistency of
the estimated velocities, this method requires a simple temporal
evolution model N . Along with the transport equation of the
pixels (11), it forms the so-called Image Model:⎧⎪⎪⎨
⎪⎪⎩

∂I

∂t
+ ∇I · v = 0,

∂v
∂t

= N (v), I (0) = I0, v(0) = v0.

(13)

The pixel values of the images I obs are then assimilated in the
previous model using VDA (see Section 2.1) where the control
variable is the initial condition v0 of N .

F (v0) = 1

2

∫ T

0
‖I − Iobs‖2dt + λ

2
‖S(v0)‖2. (14)

The advantage of this method compared to the one described
in Section 4.1 is that it takes into account all the images of the
sequence at once and therefore can cope with missing data on
some of the frames.

4.3. Limitations of the pseudo-observation technique

The velocity field produced by the motion estimation methods
proposed in the two previous sections could be used as pseudo-
observation in a classical VDA scheme such as presented in Sec-
tion 2 (Herlin et al., 2004). However, despite their relative sim-
plicity for implementation and their rapidity, pseudo-observation
techniques based on motion estimation may suffer from some
limitations. First, a frame to frame motion estimator does not
take into account a sequence of more than two images. Due to
the lack of consistency in time, it cannot capture the dynamic
evolution of the image during the entire assimilation window.
One of the consequences is that it cannot deal with missing data,
which can be quite frequent in some of the applications targeted
here. Missing data can be due to a glitch in the observing system
or an obstacle (e.g. clouds).

The Image Model technique gives an answer to these two
problems. Yet, the model N of the temporal evolution of the ve-
locity only depends on v and therefore is likely to be a somewhat
poor representation of the real behaviour of the velocity.

Neither of these two techniques takes into account physical
informations about the underlying processes observed in the
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images. Furthermore, some assumptions like the conservation
of the luminance are clearly not valid for fluid flow images
showing broken up structures. Finally, velocity fields obtained
through the pseudo-observation approach are apparent velocities
that can be quite different from the actual velocities. For instance,
the absence of a tracer in a subset of an image sequence will lead
to null apparent velocities in that area. Such techniques then need
to provide error maps to account for this kind of error in the
interpretation of the observation. Therefore, the definition of the
observation operators and the specification of the corresponding
observation error matrices (as for eq. 10) are likely to be a very
difficult task. Finally, pseudo-observations that are taken into
account in current operational centres are usually monitored
by hand and the associated error is assumed to be large (Jean
Pailleux, personal communication, 2008).

5. Direct image sequences assimilation

5.1. General framework

In the pseudo-observation approach, the information content is
extracted from the images externally from the O.S. eqs (1), (2)
and (7). Another way to proceed is a direct assimilation of the
image sequence in the O.S. This approach is more consistent
with the VDA philosophy, in particular the information content
of the images is extracted consistently with the physics of the
model. This technique intrinsically avoids the problem of the
observation interpretation error mentioned above in the absence
of tracers. In addition, for two decades, the trend is to avoid the
inversion of the remote sensing data (i.e. radiances) before as-
similation by including the direct radiative transfer model within
the global assimilation scheme through observation operators
(Talagrand, 1997). This leads to more suitable algorithms for
error quantification.

The principle is to add a term directly linked to the images and
their dynamics to the cost function. Let us denote by Mt (U, V )
the state variable x(t) when the initial condition is x(0) = V and
the model parameters are U. Then J would take the form:

J (U, V ) =
∫ T

0
‖y − H[Mt (U, V )]‖2

Odt︸ ︷︷ ︸
Classical term Jo

+
∫ T

0
‖f (t) − HX→F [Mt (U,V )]︸ ︷︷ ︸

Model to
Image
Operator

‖2
Fdt . (15)

In this expression f (t) ∈ F is a frame of an image sequence of
the observed dynamic system at time t. It belongs to the space
of images F equipped with a norm ‖ · ‖F . The operator HX→F
is a mapping from the space of the state variable towards the
space of images. It generates an image of the dynamic system
at time t from the values of its state variable at this date: in the
following HX→F is called ‘synthetic image operator’. Note that

for the sake of simplicity, we omit in (15) the regularization term
which appears in the expression (2) of the classical VDA cost
function.

The synthetic image operator works at the pixel level in-
terpretation of the image (see Section 3). Papadakis and Mémin
(2008a) showed that assimilating pixel levels directly gives a bet-
ter result than using an optical flow-based pseudo-observation
approach. Also in Corpetti et al. (2009) such formalism is used
to assimilate images of pressure differences into a three-layer
simplified atmospheric model. Nevertheless, we could point out
two possible limitations of the use of pixel level for realistic
applications in geophysics:

(i) A raw image sequence represents a huge amount of data.
The size of a single satellite image is 5000 × 5000 pixels for
MOP/MTP1 visible channel. Consequently, a sequence of ten
MOT/MTP images represents 2.5 × 108 data. This is therefore
one or two order of magnitude greater than the 106– 107 current
number of observations assimilated daily in operational NWP
VDA system. Furthermore, the size of satellite images increases
rapidly (for instance MSG-HRV2 Channel images are currently
about 6000 × 12 000 pixels) and several channels may be taken
into account.

(ii) Image resolution is often higher than the resolution of
models. Visible channel MSG-HRV images have got a resolu-
tion of about 1 km (3 km for the infrared channels) whereas the
horizontal resolution of the French ARPEGE global meteoro-
logical model varies between 15 and 90 km. MODIS satellite
provides images with spatial resolution varying between 250 and
1000 m, depending on the considered spectral band. The global
operational oceanographic system MERCATOR-PSY3V23 uses
a model configuration with a horizontal resolution of 1/4◦

(6–26 km). The use of the pixel level may then lead to some
increase in the representativity error. Note that small-scale struc-
tures may be the consequence of mesoscale dynamic processes.
This is particularly true for mixing tracer processes where spi-
rals and filaments may come from the variability of mesoscale
velocity field as it is clearly shown in Lehahn et al. (2007). In a
pixel basis, those filaments are not represented as coherent struc-
tures while another mathematical modelling could avoid this
problem.

Finally, the use of higher level of interpretation may also help to
filter out certain unwanted signals (e.g. unrepresented processes
or noise) from the data.

At the analysis level (see Section 3), an image is character-
ized by coherent structures (eddies, fronts, etc.). If we suppose
that these structures can be approximated in a functional space
S equipped with a suitable norm ‖ · ‖S , then the comparison

1 Meteosat Operational/Transitional Program
2 Meteosat Second Generation - High Resolution Visible
3 http://www.mercator-ocean.fr/html/mercator/index en.

html
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between image-type observation and model output can be done
in that space and the cost function becomes:

J (U, V ) =
∫ T

0
‖y − H[Mt (U,V )]‖2

Odt

+
∫ T

0
‖ HF→S [f ]︸ ︷︷ ︸

Image to
Structure
Operator

− HX→S [Mt (U,V )]︸ ︷︷ ︸
Structures
Observation
Operator

‖2
Sdt,

(16)

where HF→S ‘extracts’ structures from images (see next sub-
section): it represents the analysis level of the image. The op-
erator HX→S observes the same type of structures from model
state variables (model outputs). The norm ‖ · ‖S depends on the
mathematical definition of the image at the level S. By choos-
ing S = F and HF→S [f ] = f , eq. (16) becomes equivalent to
formulation (15).

With the usual variational approach described in Section 2, a
term in the form[

∂HX→S

∂x

]∗
. (HX→S [x] − HF→S [f ]) (17)

is added in the right-hand side of the adjoint model (7). In
practical applications, we will then prefer working with differ-
entiable structures observation operators. The differentiability
of the observation operator depends on the observed quantity
and this problem remains true for other kind of observation
(not image) when they are too indirectly connected to model
variables. Note finally that we may consider assimilating sev-
eral image sequences (and possibly at different levels of in-
terpretation) by adding corresponding terms in the DISA cost
function (16).

5.2. Image to structure operator HF→S

As we previously said, the image to structure operator represents
the level of analysis at which we consider to manipulate images.
It could represent transformations we apply to the image. The
image space (in the mathematical sense) of this transformation
is a space of another data type. The constraint which is imposed
for choosing S is that it should have a structure of normed space
to use simple rules for the differentiation of J. Moreover, its
dimensionality must remain reasonable to store the extracted
data.

Many different approaches for defining the space S exist. For
instance, we can consider

(i) Frequency characteristics: in that case, S is the image
space of a multiscale transformation such as wavelet and curvelet
transforms. This approach is interesting for its well-known effi-
ciency in data compression, denoising and edge extraction.

(ii) Geometric characteristics: certain image analysis tech-
niques can detect certain geometrical features in the image (e.g.
by means of active contours). This feature may take the form of

a parametrized curve in R
2 which could be assimilated as La-

grangian observation. This approach will necessitate high-level
image analysis.

(iii) Qualitative characteristics: in geophysics, there are sev-
eral recognizable structures connected to physical phenomena
(e.g. cyclone, front, etc.). We could define S as a dictionary of
such couples observable structure/physical phenomenon. More
specifically in meteorology, clouds may give information about
the flow or the physical processes where they are located. For
instance, the particular shape of the stratus clouds is due to
a stratified flow whereas cumulonimbus are known to involve
strong convective processes.

5.3. Structures observation operator HX→S

Features in geophysical images such as eddies or filaments may
correspond to tracers in the observed system. A tracer can be
defined as any quantity that is transported by the fluid flow. For
instance, potential vorticity, temperature, salinity can be consid-
ered as atmospheric and ocean tracers. Modelling and simulating
their evolution from the model state variables may help to de-
fine the structures observation operator. Indeed, we may use
their description maps (e.g. concentration maps) as a ‘synthetic
image sequence’ from which structures can be extracted using
the image to structure operator. More precise correspondence
between the description of the tracer and measured radiances
(i.e. pixel intensity) may also be considered by modelling the
acquisition procedure. For instance, this may properly connect
the three dimensional information of the physical model with
the two dimensional information of an image. Yet, as Fig. 1 sug-
gests, we may think that such precise modelling is not always
useful. Using a tracer evolution modelling leads to a structures
observation operator of the form

HX→S = HF→S ◦ HX→F , (18)

where HX→F is the synthetic image sequence operator. Note
that if tracers are included in the model, the synthetic image
operator is just some kind of projection (to be composed with
an image acquisition model if necessary).

Yet certain features of interest in geophysical fluid images do
not correspond to any tracers (such as waves or dry intrusions
in atmosphere images). In that case, other techniques should
be developed to extract structures from model outputs without
synthetic image sequence production.

More specifically in the meteorological context, relevant
structures may be located in specific layers of the atmosphere.
Assimilating informations from the dynamic evolution of these
structures requires complementary informations about the al-
titude of the observed processes. In the oceanographical con-
text, filaments of phytoplankton that appear in ocean colour
images are not only the result of the topological structure of
the current field: they may also depend on vertical processes.
Any pseudo-observation technique would require an a priori
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knowledge of the altitude corresponding to the observed pro-
cesses. Anyway it is unable to deal with patterns that cannot read-
ily be attributed to a single vertical level. DISA is better suited
to tackle this problem. Indeed the underlying 3-D physical pro-
cesses are part of the O.S. through the model and the observation
operator.

6. Numerical example

6.1. Experimental framework

Laboratory experimentation can be a good testbed for the new
technique suggested in Section 5. Indeed, it offers the com-
plexity of true physical processes while keeping it manageable.
More importantly, it opens the way to realistic applications with
images.

We use the same experimental framework as the study of
the drift of a vortex on a turntable. The evolution of a vortex
in the atmosphere is simulated at the CORIOLIS experimental
turntable (Grenoble, France), which recreates the effect of the
Coriolis force on a thin layer of water. A complete rotation of
the tank takes 60 s, which corresponds to one Earth rotation. The
vortex is created by stirring the water and it is made visible thanks
to the addition of a passive tracer (fluorescein). Photographs of
the vortex are taken from above the turntable and constitute the
observed image sequence. For more details on the statements
and the original motivations of this experiment, see Flór and
Eames, 2002.

In this configuration, the evolution of the fluid can be modelled
by the state variable x = (u, v, h) whose components verify the
shallow-water equations

⎧⎪⎪⎨
⎪⎪⎩

∂tu − (f + ζ )v + ∂xB = −ru + ν�u,

∂tv + (f + ζ )u + ∂yB = −rv + ν�v,

∂th + ∂x(hu) + ∂y(hv) = 0.

(19)

Unknowns are the zonal component u(t , x, y) and meridional
component v(t , x, y) of the current velocity and the surface
elevation h(t , x, y). They depend on time t and the two horizontal
directions x and y. We define the relative vorticity ζ = ∂xv −
∂yu and the Bernoulli’s potential B = gh + 1

2 (u2 + v2), where
g is the gravity. The Coriolis parameter on the β-plane is given
by f = f 0 + βy, ν is the diffusion coefficient and r the bottom
friction coefficient. In this paper, the following numerical values
are used for the parameters: r = 0.9 × 10−7 s−1, ν = 0 m2 s−1,
f 0 = 0.25 s−1, g = 9.81 m s −2 and β = 0.0406 m−1 . s−1. The
simulation is performed on a rectangular domain � = ]0, L[ ×
]0, H [ representing a subdomain of the turntable with L = H =
2.525 m. The domain is discretized on a N × N = 128 × 128
uniform Arakawa C-type square grid. A finite difference scheme
is used for space discretization. Time integration is performed
using a fourth order Runge–Kutta scheme. The time step is set

to 0.01 s of the turntable experiment, which may correspond to
14.4 s in the atmosphere.

6.2. Assimilation procedure

In our test, we consider the problem of recovering the ‘initial
state’ of the fluid V (x, y) = x0(x, y) = (u, v, h)(0, x, y) which
constitutes our control variable. The observations are images and
we do not assimilate any measurements of any components of
the state variable. We use an image to structure operator of the
type ‘frequency characteristics’ by means of a multiscale and
multi-orientation transformation of the images: the only source
of information we assimilate is a subset of the decomposition
coefficients (see below for more details). We consider assimi-
lation windows of 30 s (3000 time steps) and 3.5 s (750 time
steps) for twin experiments and real experiments, respectively.
These window lengths are equivalent to 12 and 3 h in the atmo-
sphere, respectively. Images are captured every 1.25 s (125 time
steps) [resp. 0.25 s (25 time steps)]: this acquisition simulates a
real capture frequency of one image per 30 min (resp. 6 min).
Observations therefore consist of a set of 24 (resp. 30) images of
128 × 128 resolution, no observation being assimilated at initial
time.

The application of VDA to the above test case using the for-
malism of Section 5 relies on the minimization of the following
cost function:

J (x0) = αo

∫ T

0
‖HF→S [f ] − HX→S [Mt (x0)]‖2

Sdt︸ ︷︷ ︸
Jo

+αb ‖x0 − xb‖2
X︸ ︷︷ ︸

Jb

, (20)

where observation and regularization terms Jo and Jb are bal-
anced with two adjustable coefficients whose ratio αb/αo may
represent the confidence in the background xb. The following
subsections are devoted to a detailed description of these terms,
for this experiment.

6.2.1. Observation term Jo.
6.2.1.1. Generation of synthetic images. As mentioned in

Section 5.3, one way to define the structures observation op-
erator HX→S is to first create an image from the model outputs
using a synthetic image operator HX→F and then apply the im-
age to structure operator HF→S . In the current experimental
framework, HX→F is obtained by simulating the advection of
the monochromatic passive tracer into the fluid. To that purpose,
we define

HX→F [u, v, h] = q, (21)

where q = q (t , x, y) is the passive tracer concentration verifying
the following conservation equation posed in � and for t ≥ 0

∂tq + u∂xq + v∂yq = 0, (22)
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where (u, v) is given by (19). We obtain the synthetic image at
a given date t using the concentration map (x, y) �→ q(t , x, y)
as grey levels.

6.2.1.2. Image to structure operator: curvelet transform and
thresholding. As mentioned in Section 5.2, one way to extract
relevant structures from the images is to work in the frequency
domain by applying a multiscale transformation. In this paper,
we use a curvelet transform (Candès and Donoho, 2004): an
image f can be decomposed as

f =
∑
j,k,l

〈ϕj,k,l , f 〉ϕj,k,l , (23)

where (ϕj,k,l)j,k,l are the elements of the curvelet frame. The inner
product 〈 ., .〉 is the usual L2(R2) one. The curvelet transform is
a linear isometry and then its adjoint, needed in (7), is given by
the inverse transformation (reconstruction). This is a convenient
feature for practical use in the VDA framework. The use of
curvelet transform is not the core of this method. Refer to Candès
et al. (2006) and Ma and Plonka (2007) for more details on this
subject and particularly for its discrete version.

In order to extract the structures from the images, we need
to apply a threshold on the curvelet coefficients 〈 ϕj,k,l, f 〉. We
therefore define the image to structure operator by the threshold
of certain coefficients of the curvelet transform of the image f

HF→S [f ] = T [DCT(f )], (24)

whereT denotes a threshold operator. It is applied on the curvelet
coefficients computed by the discrete curvelet transform (DCT)
algorithm (taken from www.curvelet.org). In order to sim-
plify the experiment, we use the following hard threshold func-
tion:

τ (x) =
{

x if |x| ≥ σ,

0 if |x| < σ,
(25)

where x represents a coefficient in the curvelet series (23) and
σ > 0 is a given threshold value. The space S is then the image
space of the curvelet transform. We assimilate a fixed subset
of the curvelet coefficients of the image decomposition. In our
experiments, we keep only 10% of these coefficients. Using
hard thresholding is more or less equivalent to assimilating im-
ages at the pixel level with the difference that it uses the efficient
compression ability of this transformation (Candès and Donoho,
2004): this feature is critical for future realistic applications. A
large choice of threshold functions is available depending on the
application. Some classical threshold functions are listed in An-
toniadis (2007). More sophisticated thresholding using a rule of
total variation (TV) minimization can reduce the pseudo-Gibbs
and element-like artefacts which appear with classical threshold
functions (Durand and Froment, 2003). It may be used in this
framework. DISA may give a starting point to very interesting
investigations in the area of the application of curvelet and other
multiresolution transformations (Ma et al., 2008).

6.2.1.3. Structures observation operator. The structures ob-
servation operator is the composition of the previous operator
(24) with the synthetic image operator (21)

HX→S = HF→S ◦ HX→F = T ◦ DCT. (26)

6.2.2. Regularization term Jb. The regularization term

Jb(x0) = ‖x0 − xb‖2
X (27)

involves the background state xb and a non-dimensionalization
of the equations through the definition of the norm ‖ · ‖X . This
norm is also used to define a pre-conditioning of the minimiza-
tion problem.

6.2.2.1. Background term. In our experiments, the back-
ground is set to the constant value xb = (ub, vb, hb) = (0, 0, hm)
where hm is the mean surface elevation in the tank. It approxi-
mately corresponds to a fluid at rest when the turntable speed is
stationary. We then set the ratio αb/αo to a small value (about
10−6). Note that in practical applications the first guess usually
comes from a previous forecast of the system state. Initializing
the assimilation process could also be possible with a velocity
field deduced from an optical flow technique applied to the two
first images of the sequence (initial surface elevation could be
estimated from geostrophic balance). But we are not sure that
these choices are relevant: results may indeed be too sensitive
to them and what we want to point out is the feasibility of the
method.

6.2.2.2. Preconditioning. The control state variable space X
is equipped with the following norm:

‖x‖X = xT B−1x, (28)

where B is the so-called background error covariance matrix.
Its diagonal coefficients represent the standard error deviations
of each variable with respect to itself: they are estimated from
model outputs a priori. The velocity field is regularized using a
method based on the Gradient Vector Flow technique (Souopgui
et al., 2009). The off-diagonal blocks are the cross-covariances
between variables. They come from balance relations between
the observed variables and the others: this is a classical tech-
nique in VDA. Our observation operator connects images with
the velocity field: this is why we have chosen to balance the
surface elevation h with respect to (u, v) by ‘inverting’ the
geostrophic equilibrium relation u = − g

f

∂h

∂y
, v = g

f

∂h

∂x
. Finally,

we use the classical change of variable x′
0 = B−1/2x0 for precon-

ditioning. For more details about this strategy, see Vidard et al.,
2004.

6.2.3. Optimization. The cost function J is successively min-
imized on assimilation subwindows of increasing sizes using
the strategy described in Luong et al. (1998). This technique
avoids the stagnation of the optimization algorithm around
a local minimum. Such behaviour may otherwise occur be-
cause J is not convex. The minimization procedure is initialized
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with the background (i.e. system at rest). In each successive
minimization, we use the N1QN3 algorithm of the LIBOPT
library (Gilbert and Jonsson, 2007).

6.3. Numerical results

As a first step to study the numerical feasibility of this method,
we will focus on so called ‘twin-experiments’: observations do
not come from the real world but are generated by the numerical
model. The true state represents the evolution of a single isolated
vortex subject to the Coriolis force. Assimilation of real exper-
imental data coming from the CORIOLIS platform is shown in
Section 6.3.2: the same configuration of the shallow-water model
is used. Following the experimental set-up described above, the
goal is to reconstruct the true initial state by assimilating only
the image sequence and starting from a background at rest. From
now on, dates and times are expressed in terms of their equivalent
in the atmosphere.

6.3.1. Twin experiments. In this configuration, a ‘true’ state
is generated by the shallow-water model (19) with the initial

conditions of the experiment described in Flór and Eames (2002)
(referenced AB): an isolated vortex is initialized with a radial
velocity profile given by

v(r) = rvm

Rm

exp

[
−1

2

(
r

Rm

)2
]

, (29)

in polar coordinate. Rm and vm are the vortex radius and the
maximum azimuthal velocity, respectively. In our experiments
Rm = 0.129 m and vm = 0.02 m s−1. Initial surface elevation is
generated using the geostrophic equilibrium equation. The mean
surface elevation is set to h0 = 0.36 m. True image sequence
acquisition is simulated using synthetic images whose grey lev-
els correspond to the concentration of a passive tracer which is
advected by the velocity field (see Section 6.2.1). The bound-
ary conditions imposed in the assimilation procedure slightly
differ from the ones imposed during the synthetic observations
generation: this simulates a model error.

Figure 3 (top panel) shows the superimposition of a zoom
of the true velocity field and the corresponding true image at
initial time (left-hand panel), at 12 h (centre panel) and at 24 h
(right-hand panel). This period spans a 12 h assimilation and a

Fig. 3. Zoom of the true velocity fields over true images at initial time (0 h), at the end of the assimilation window (12 h) and at 24 h (top row).
Analysed velocity fields over the corresponding true images at initial time (0 h) and at the end of the assimilation window (12 h). Zoom of the
forecasted velocity field over the corresponding true image at 24 h (bottom row).
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Fig. 4. Zoom of the true image sequence (top panel) and the corresponding synthetic image sequence (bottom panel) at 0, 12 and 24 h.

subsequent 12 h forecast windows. By comparison, Fig. 3 (bot-
tom panel) shows the superimposition of the same zoom of the
analysed velocity field and corresponding true images at initial
time (left-hand panel) and at 12 h (centre panel). It also shows
the superimposition of the same zoom of the forecasted veloc-
ity field and the corresponding true image at 24 h (right-hand
panel). The background state is the system at rest (no current,
flat surface). Figure 4 shows a zoom of the true image sequence
at initial time (top left-hand panel), at 12 h (top centre panel)

and at 24 h (top right-hand panel) and the corresponding syn-
thetic image sequence reconstructed by the observation operator
(bottom line). The differences are really small. The direct image
sequence assimilation scheme therefore reconstructs a velocity
field that properly transports the passive tracer. Consequently
the assimilation scheme generates a synthetic image sequence
that is close to the observed one. Figure 5 shows the evolution
of the normalized root mean square errors of the velocity field
RMS(u,v) (left-hand panel) and of the surface elevation RMSh

Fig. 5. Normalized root mean square errors
for a 12 h assimilation and a subsequent 12 h
forecast windows of the velocity field
(left-hand panel) and of the surface elevation
(right-hand panel). The dashed line
represents the end of the assimilation
window.
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Fig. 6. Zoom of true and analysed state of
the control variables: initial true velocity
field (top left-hand panel), initial analysed
velocity field (top right-hand panel), initial
true surface elevation (bottom left-hand
panel) and initial analysed surface elevation
(bottom right-hand panel).

(right-hand panel) during the assimilation window (0–12 h) and
during a subsequent forecast (12–24 h)

RMS(u,v) =

⎡
⎣ N∑

i,j=1

δu2(i, j ) + δv2(i, j )

⎤
⎦1/2

⎡
⎣ N∑

i,j=1

u2
t (i, j ) + v2

t (i, j )

⎤
⎦1/2 , (30)

RMSh =

⎡
⎣ N∑

i,j=1

δh2(i, j )

⎤
⎦1/2

⎡
⎣ N∑

i,j=1

(ht (i, j ) − h0)2

⎤
⎦1/2 , (31)

where δu = ua − ut is the difference between the analysed state
ua and the true state ut. The dashed line delimits the end of the
assimilation window. The behaviour of the Normalized RMS
velocity error is expected: the U shape of the evolution of RMS
error of the observed variables—indirectly in that case—is a di-
agnostic sign of the presence of model error. By comparison, the
corresponding normalized RMS error of the surface elevation
is large at initial time because the reconstructed surface eleva-

tion may not be well balanced. However, the model adjusts the
surface elevation quickly. The surface elevation and the velocity
field become better balanced and the RMS error dramatically
decreases. This problem is a symptom of a weakness in the
definition of the B matrix rather than specifically linked to the
assimilation of image sequences. Figure 6 shows the true and
analysed states of the control variables, that is, the initial ve-
locity field and the initial surface elevation: the analysed states
are the result of the minimization process applied to the cost
function (20). Surface elevation seems to be underestimated but
it is located at the right place. Comparison of velocity fields
needs more quantitative tools. Figure 7 shows zooms of error
maps between true and analysed initial velocity fields: the su-
perimposition of the iso-contours of the Angular Error of Barron
AEBu between the true and analysed initial velocity fields and
corresponding true velocity norm (left-hand panel) and the map
of the relative error δ‖u‖ between the norms of the true and
analysed initial velocity fields (right-hand panel). The Angular
Error of Barron is defined by

AEBu(i, j ) = arccos

([
ua(i, j )

‖ua(i, j )‖
]∗ [

ut (i, j )

‖ut (i, j )‖
])

, (32)

as it is suggested in Barron et al. (1994) and where u = (u, v)
and ‖ · ‖ is the Euclidean norm in R

2. The relative error δ‖u‖ is
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Fig. 7. Zoom of error maps between true
and analysed initial velocity fields: iso-lines
of angular error between true and analysed
in initial velocity fields over the true velocity
field norm (left-hand panel), relative error
between the norm of true and analysed initial
velocity fields (right-hand panel).

defined by

δ‖u‖(i, j ) =
∣∣‖ua(i, j )‖ − ‖ut (i, j )‖∣∣

max
i,j

‖ut (i, j )‖ . (33)

Barron angular error is small in the area where the vortex is
located. Error increases where information is missing that is
at the boundary of the domain where the tracer is located (see
Fig. 4). Note that angular error takes aberrant values where the
velocity norm is insignificant and is not really relevant in those
area. The relative error of the velocity field norm is quite small
in general. It is not larger than 7%. The error map is structured
because the background state is the system at rest. The structure
shape may be explained by the irregular distribution of the tracer
concentration.

To conclude, the direct variational assimilation of image se-
quence is able to reconstruct the initial vortex in the quite right
position, magnitude and profile: this clearly shows the feasibility
of this method.

6.3.2. Experiments with real images. We apply the same di-
rect assimilation procedure as above to a real sequence of images
showing the drift of a vortex on the CORIOLIS platform. This
sequence comes from a similar experiment to the ones described
in Flór and Eames (2002). In order to model this experiment we
used the same shallow-water configuration as we used in the
previous subsection. Yet few badly known physical parameters
may be slightly different from the previous twin experiments.
The rotation velocity of the vortex in this sequence is quite larger
than the one we simulated previously. The image assimilation
frequency is set to one image per 0.25 s to avoid aliasing phe-
nomena. This frequency corresponds to the acquisition of one
image per 6 m in the atmosphere. Figure 8 shows the superimpo-
sition of the analysed velocity field and the corresponding real
image at initial time (left-hand panel), at 3 h which is the end
of the assimilation window (centre panel) and the forecasted ve-
locity field at 6 h. Figure 9 shows the analysed surface elevation
at the same dates. The direct variational assimilation of this real
experimental image sequence shows consistent results: it is able
to reconstruct the anticyclonic secondary vortex at the southeast

Fig. 8. Experiments with a real image sequence coming from the CORIOLIS platform. Superimposition of images and of a zooms of the analysed
velocity field at initial time, at the end of the assimilation window (3 h) and the forecasted velocity field at 6 h.
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Fig. 9. Experiments with real images coming from the CORIOLIS platform. Zoom of the analysed surface elevation at initial time, at the end of the
assimilation window (3 h) and the forecasted surface elevation at 6 h.

of the main one. The order of magnitude of both the velocity
field and the surface elevation is also satisfactory and consistent
with the experimental settings (J.B. Flór, personal communica-
tion, 2008). No other measures than images are available for
this experiment, which prevent us from doing a more quantita-
tive analysis of this result. This should be the goal of a further
work with other experimental data.

7. Conclusions

Predicting the evolution of geophysical dynamic systems re-
quires to link heterogeneous sources of information. There is a
strong social demand for the improvement of the geophysical
fluids prediction and VDA is a powerful tool to achieve this
goal. The observation of the Earth by satellites is very expensive
and, unfortunately, the dynamic information contained in image
sequences is still underused by numerical forecasting systems.
Image sequences represent a large amount of structured data. It
is then of great interest to suggest some ways to process them in
conjunction with numerical forecast systems.

Previous and present works could lead to the assimilation of
data coming from image sequences into a VDA scheme. First,
the so-called pseudo-observation technique assimilates velocity
fields that are produced by image sequence analysis. Although
efforts are made to improve the quality of these indirect ob-
servations, this technique intrinsically suffers from the lack of
physical consistency with the observed system. Therefore, it is
barely use in operational systems. Second, the DISA approach
aims at processing the image sequences within the O.S. of the
VDA scheme: it then combines image-type information consis-
tently with the underlying physical model. Depending on the
considered mathematical modelling, images may be processed
at different levels of interpretation. The pixel level offers the nat-

ural way to exploit this kind of data by directly linking state vari-
ables to pixel values. A higher level of interpretation may avoid
certain representativity error problem. A step further would be
to work on both sides (model and observation) at a higher inter-
pretation level, using model reduction techniques. For realistic
applications in meteorology there is still a long way to go, alter-
natively we could start with projecting the modelled part of the
observation operator only.

We presented a DISA method that is based on structure ex-
traction from both image sequences and model outputs. We may
use already existing processing and analysis image techniques to
perform the structure extraction. Features in geophysical images
usually correspond to the presence of tracers in the observed sys-
tem. A natural way to extract structures from the model output
is then to simulate the evolution of these tracers. This approach
builds a synthetic image sequence from which the structures are
extracted. Other techniques for extracting structures from model
outputs avoiding synthetic image sequence production should be
developed.

Our first results, both in a twin experiment and in a real data
configuration, show that direct image sequences assimilation
using structure extraction with anisotropic multiscale transfor-
mation of the images is achievable.

There is no doubt that investigating the way to optimally
integrate image sequences in the VDA framework will bring
up very interesting questions and will lead to improvements
in both VDA and image analysis. We can expect that satellite
image assimilation will improve the subgrid parametrization
problematic in VDA since the resolution of a satellite image
is often higher than the spatial resolution of numerical models.
DISA may also initiate new definitions of image interpretations
and improve specific feature tracking in geophysical fluid image
sequences.
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Antipolis. (in French).
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