
Tellus (2010), 62A, 123–133 C© 2009 The Authors
Journal compilation C© 2010 Blackwell Munksgaard

Printed in Singapore. All rights reserved

T E L L U S

Salinity-dominated thermohaline circulation in sill
basins: can two stable equilibria exist?
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A B S T R A C T
The dynamics of a salinity-dominated thermohaline circulation in a sill basin is examined using a two-layer model.
A prescribed freshwater supply acts to establish a stable stratification, working against a prescribed destabilizing
temperature difference. The upper-layer outflow is in geostrophic balance and the upwelling is driven by a fixed
energy supply to small-scale vertical mixing. The salinity-dominated flow may have two qualitatively different modes
of operation. First, a mixing-limited regime, where the upper layer is shallower than the sill and the flow strength
decreases with increasing density difference. Second, an overmixed regime, where the upper layer extends below the
sill and the flow strength increases with density difference. Possibly, mixing-limited and overmixed equilibria, with
widely different upper-layer depths, can exist for the same external parameters. In such cases, transitions between the
two regimes are associated with abrupt changes of the salinity, depth and flow strength. The present results may be of
relevance for ocean circulation in glacial climates and for interpretations of marine palaeo data, issues that are briefly
discussed in the context of the Arctic Ocean.

1. Introduction

Conceptual models of thermohaline flows play an important
role in the theory of the large-scale ocean circulation (see
e.g. Walin, 1985; Welander, 1986; Marotzke, 1996, 2000;
Longworth et al., 2005; Kuhlbrodt et al., 2007). For thermo-
haline flows where the thermal- and haline-density differences
counteract each other, multiple equilibrium solutions can arise if
the relaxation timescales for the temperature and the salinity are
different (Stommel, 1961; Welander, 1986; Walin, 1990; Thual
and McWilliams, 1992). The essential physics is highlighted
when the temperature difference is prescribed and the salinity
difference is forced by a prescribed freshwater flux (see e.g.
Marotzke, 2000). In this case there are two types of equilibria:
a swift thermally dominated flow and a slow salinity-dominated
flow.

A critical aspect of simplified thermohaline models is how the
flow strength is related to the density difference. In the classical
box model of Stommel (1961), the flow strength is assumed to be
linearly proportional the density difference. For oceanic appli-
cations, however, the flow is generally controlled by geostrophic
dynamics and a balance between vertical advection and diffusion
of buoyancy, which yields a flow strength that depends on the

∗Corresponding author.
e-mail: nilsson@misu.su.se
DOI: 10.1111/j.1600-0870.2009.00428.x

density difference as well as on the vertical turbulent diffusion
(Welander, 1971). A fundamental challenge is that the resulting
flow dynamics is sensitive to how the vertical small-scale mix-
ing depends on the density stratification (Lyle, 1997; Huang,
1999; Nilsson and Walin, 2001). If the energy supply to the
small-scale vertical mixing is fixed, then the vertical diffusivity
decreases with increasing stratification. As a consequence, the
circulation will slow down if the density difference is increased.
If the vertical diffusivity is taken to be fixed, on the other hand,
the flow becomes stronger when the density difference increases
(Welander, 1971; Bryan, 1987; Park, 1999; Zhang et al., 1999).
The somewhat counter-intuitive dynamics that arise from a
stability-dependent vertical diffusivity have been simulated with
ocean circulation models in idealized one- and two-hemisphere
basins (Huang, 1999; Nilsson et al., 2003; Mohammad and
Nilsson, 2006; Marchal et al., 2007). However, the degree to
which the nature of the vertical mixing controls the dynamics of
the global thermohaline circulation remains essentially an open
question (see e.g. Kuhlbrodt et al., 2007). Here, a main issue is
the wind-driven upwelling in the Southern Ocean, which acts to
reduce the importance of the low-latitude upwelling associated
with vertical mixing, and furthermore, suggests a more compli-
cated relation between the strength of the circulation and the
density difference (see e.g. Gnanadesikan, 1999; Marshall and
Radko, 2006).

It is important to note that the nature of the feedback between
flow- and salinity-perturbations, identified by Stommel (1961),
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124 J. NILSSON AND G. WALIN

depends on the relation between the flow and the density differ-
ence. In the standard Stommel model, where the flow increases
with the density difference, this feedback acts to destabilize
the swift thermally dominated regime but to stabilize the slow
salinity-dominated regime (Stommel, 1961; Welander, 1986;
Marotzke, 1996). The physics becomes radically different if the
flow decreases with increasing density difference. Remarkably,
the feedback between flow- and salinity-perturbations reverses
signs for such a flow. As a result, the feedback now acts to
stabilize the thermally dominated regime but to destabilize the
salinity-dominated regime (Nilsson and Walin, 2001; Guan and
Huang, 2008).

This paper examines the dynamics of a salinity-dominated
thermohaline circulation in a semi-enclosed basin such as the
Arctic Ocean. The basin receives a net freshwater input, creat-
ing a stable salinity stratification, and exchanges water across
a sill with the open ocean, which is characterized by higher
salinities and temperatures; see Fig. 1. The exchange flow is
assumed to be driven by wind and tidal mixing, which deepens
the low-salinity surface layer. A critical assumption is that the
energy supply to the small-scale vertical mixing in the basin is
fixed. The flow is analysed using a slightly modified version
of the conceptual two-layer model due to Nilsson and Walin
(2001). In the sill-basin model, the salinity-dominated flow has
two dynamical regimes: One ‘mixing-limited’ regime, where
the upper layer is shallower than the sill; and one ‘overmixed’
regime, where the upper layer extends below the sill. A central
issue in this study is the dynamics that arises from the influence

Fig. 1. A sketch of the two-layer model in a semi-enclosed basin,
which has a sill depth D. The upper-layer depth H is assumed to be
essentially uniform outside narrow boundary currents along the rim of
the basin. Here, MG denotes the horizontal geostrophic exchange flow
over the sill, MD the diapycnal upwelling flow, F the freshwater
supply, assumed to be small compared to MG and MD . S1 and T 1 are
the upper-layer salinity and temperature, respectively. The lower layer
is taken to be a large reservoir with constant salinity and temperature
S2 and T 2. The mixing-limited regime, where H < D, is depicted
here; see the text for details.

of the sill in the overmixed regime. Some aspects of the salinity-
dominated flow in a mixing-limited regime has been analysed
by Guan and Huang (2008) in a two-box model, which includes
effects of wind-forced circulation and thermal restoring. Some
of their findings will be reviewed and compared with the results
of the present model. The presentation is organized as follows.
In Section 2, the model is derived and presented. In Section 3, the
steady-state properties of the model are examined and limiting
cases are discussed. In the concluding section, the present results
are discussed in an oceanographic context with applications to
the circulation in the Arctic Ocean.

2. A model of salinity-dominated circulation
in a sill basin

2.1. Volume and salinity conservation

We consider the conservation of volume and salinity in a semi-
enclosed basin, where a surface layer of low-salinity water is
floating above a deep homogeneous lower layer, see Fig. 1. The
upper/lower layer has the temperature and salinity T 1/T 2 and
S1/S2, respectively. In the lower layer, the temperature and the
salinity are assumed to be given by the conditions in the open
ocean. Further, the temperature in the upper layer is assumed to
be set by air–sea heat exchange. The depth and the area of the
upper layer are denoted H and A, respectively, and its volume is
V = AH where A is taken to be constant. Note that the upper-
layer depth is assumed to be essentially uniform in the main part
of the basin, except for in narrow boundary current along the
basin perimeter. The freshwater supply to the upper layer is F,
and the geostrophic outflow and the upwelling are denoted MG

and MD, respectively. Conservation of volume and salinity are
given by

A
dH

dt
= −MG + MD + F, (1a)

A
d(HS1)

dt
= −S1MG + S2MD. (1b)

By combining these two equations, we obtain

AH
d�S

dt
= −�SMD + (S2 − �S)F,

where �S = S2 − S1. We assume here that the freshwater supply
is small in the sense that MG � F and MD � F , which implies
that S2 � �S. Using this, we arrive at the following approximate
conservation relations

A
dH

dt
= −MG + MD, (2a)

AH
d�S

dt
= −�SMD + S2F . (2b)

The density difference is given by

�ρ = ρ0β�S − �ρT, (3)
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where �ρT is the density difference associated with the imposed
thermal contrast, ρ0 a constant reference density, and β the
haline expansion coefficient. Note that we consider the salinity-
dominated regime, for which ρ0β�S > �ρT.

2.2. Description of the flow

We assume that the exchange flow between the semi-enclosed
basin and the open ocean is directly associated the density dif-
ference. Hence, we here neglect wind-driven flow components;
which effects are briefly discussed in Section 3.3. The classical
thermocline scaling (e.g. Welander, 1971; Welander, 1986; Park
and Bryan, 2000) is used to derive representations of the flows
MG and MD. A difference from the standard treatment, which
deals with a fixed vertical diffusivity, is that we here use an
energy argument due to Kato and Phillips (1969), which yields
a vertical diffusivity that decreases with increasing stratifica-
tion. Straightforward scaling considerations of the thermal wind
balance (governing MG) and the advective diffusive balance
(governing MD) yield (see Nilsson and Walin, 2001; Nilsson
et al., 2003, for details)

MG = g�ρH 2

2f ρ0
, (4)

MD = AE
g�ρH

. (5)

Here, g is the acceleration of gravity, f the Coriolis parameter
and E the rate of work per unit area against the buoyancy force
associated with the vertical mixing. Note that in order to have a
geostrophically controlled exchange flow, the strait connecting
the semi-enclosed basin with the open ocean should be wide
compared to the internal Rossby radius. For narrow straits, in
contrast, the exchange flows tend to be hydraulically controlled
(see e.g. Pratt and Spall, 2008).

Implicitly, the flow relations eqs (4) and (5) assume that the
upper-layer depth H can vary freely without any constraints
imposed by the basin geometry, as long as the upper layer does
not approach the bottom. We will now consider how the presence
of a sill affects the geostrophic exchange flow. We imagine that
the low-saline surface water exits over a sill into a large basin
(e.g. from the Arctic Mediterranean into the North Atlantic) as
illustrated in Fig. 2. We denote the depth from the sea surface
to the sill D. If the upper layer is shallower than the sill, we
assume that eq. (4) applies. However, if the upper layer in the
basin extends below the sill, the geostrophic outflow is set by the
sill depth and the density difference. Accordingly, we assume
that the geostrophic flow obeys

MG = g�ρH 2

2f ρ0
, H < D; MG = g�ρD2

2f ρ0
, H > D. (6)

Note that we assume that the diapycnal flow is given by eq. (5)
also when the upper layer extends below the sill. When the upper
layer is deeper than the sill depth, the situation is similar to that

Fig. 2. A cross section in the strait that connects the semi-enclosed
basin with the open ocean. The strait, which is assumed to be wide
compared to the internal Rossby radius, has a sill with the depth D. The
geostrophic outflow from the semi-enclosed basin (MG) is confined in
the upper layer, which has the maximum depth H. Note that H

characterize the upstream upper-layer depth, which is uniform over
most of the basin. When H < D the flow is in the mixing-limited
regime, and when H > D the flow is in the overmixed regime; see the
eqs (7a), (7b), (8a) and (8b).

of an overmixed estuary (see e.g. Stommel and Farmer, 1953),
as will be discussed later.

Before proceeding, we will discuss a few issues related to
the representation of the geostrophic exchange flow MG, which
entails some implicit assumptions. One central assumptions con-
cerns the contribution from barotropic flow components. If the
flow is in geostrophic balance, then the eq. (6) gives the outflow
(relative to zero flow at the bottom) in the wedge of the upper
layer that not touches the sloping bottom; see Fig. 2. However,
there may be a barotropic flow component on the depth contours
above the sill level that are within the upper layer (Spall, 2004;
Walin et al., 2004; Nilsson et al., 2005). In fact, in the absence
of friction an arbitrary barotrotropic flow can be prescribed on
closed depth contours (e.g. Greenspan, 1968, section 2.6).1 In
the presence of weak friction, this isobath-following barotropic
flow is controlled, in a global fashion, by the wind forcing and
the bottom density distribution on the closed depth contours
(Nilsson et al., 2005; Aaboe and Nøst, 2008). Here, we assume
the presence of a barotropic flow along the depth contours above
the sill in the semi-enclosed basin. The strength of the barotropic
flow is selected such that it accomplishes the inflow of dense
water (assumed to occur on the slope to the right in Fig. 2) and
yields zero outflow contribution on the depth contours within
the upper layer in the strait. This choice is consistent with the
constraint for flows on closed depth contours derived by Nilsson
et al. (2005).

Note also that we assume that the volume transport becomes
independent of the upper-layer depth when it extends below the
sill. Essentially, this follows from the assumption that the out-
flow on the sill is in geostrophic balance. Based on the thermal
wind relation, however, one anticipates that the velocity scale
in the semi-enclosed basin should remain proportional H. If the
basin velocity scale also characterizes the outflow on the sill, im-
plying departures from geostrophy or an additional barotropic

1 More generally this applies to closed contours on which the depth
divided by the Coriolis parameter are constant.
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flow contribution, one would obtain that MG ∝ HD when
H > D. However, simulations with ocean-circulation models
conducted by Walin et al. (2004) and Iovino et al. (2008) suggest
that when the upper layer extends below the sill, the exchange
flow increases roughly with the square of the sill depth if the
density difference remains constant. This motivates us to use the
simple relation MG ∝ D2 in this study. We note, however, that
the outflow dynamics in situations where the upper-layer depth
extends below the sill can be rather complex and frequently in-
volves volume exchange across the sill due to time-dependent
baroclinic eddies (Walin et al., 2004; Iovino et al., 2008).

2.3. Steady-state relations for the flow
and the upper-layer depth

By assuming that MG = MD and making use of eqs (5) and
(6), we obtain the steady-state dependence of the upper-layer
depth and flow strength on the density difference. Note that
to also determine the steady-state density difference, we need
to consider the salinity balance given by eq. (2b). We denote
steady-state quantities with an overbar, and depending on the
upper-layer depth there are two different cases.

(i) For H < D, denoted the mixing-limited regime, we have

H =
(

AE2ρ0f

g2�ρ
2

)1/3

∼ �ρ
−2/3

, (7a)

M =
(

A2E2

g2ρ0f �ρ

)1/3

∼ �ρ
−1/3

. (7b)

In this case, the sill is assumed to not affect the dynamics. Note
that the flow increases with the vertical mixing, represented by
E . Note furthermore that the flow decreases with the density
difference. The reason is that geostrophic flow also depends
on the upper-layer depth, which becomes greater if the density
difference is reduced. As a result, the steady-state flow enhances
when the density difference becomes weaker.

(ii) For H > D, denoted the overmixed regime, we have

H =
(

AE2ρ0f

g2�ρ
2
D2

)
∼ �ρ

−2
, (8a)

M = g�ρD2

2f ρ0
∼ �ρ. (8b)

In this case, the mixing is assumed to be sufficiently strong to
homogenize the upper layer down below the sill level. Note that
the steady-state flow strength, which increases with the density
difference, is independent of the vertical mixing energy E . As
pointed out by Stommel and Farmer (1953), also the steady-state
upper-layer salinity is independent of E in the overmixed case.
This follows from the steady-state salinity balance.

The fact that the steady-state flow in the mixing-limited
regime decreases with increasing density difference will prove

important for the properties of the model. It is thus relevant to
ask if this flow feature is sensitive to our dynamical assump-
tions. To begin with, we note that for a two-layer flow subjected
to hydraulic control, the upper-layer velocity is given by u =
(gH�ρ/ρ0)1/2 (e.g. Pratt and Spall, 2008). A straightforward
consideration based on a balance between a frictional stress
(proportional to the square of the velocity) and the pressure
gradient also yields an upper-layer velocity that is proportional
to (gH�ρ/ρ0)1/2. Thus for frictionally- and hydraulically con-
trolled flows, we anticipate that the exchange flow is proportional
to uH , that is, proportional to �ρ1/2H 3/2. By using this result
in combination with eq. (5), we obtain a steady-state flow that is
proportional to �ρ−2/5. Accordingly, the steady-state flow is ex-
pected to still decrease with increasing density difference under
these slightly different assumptions concerning MG. We stress,
however, that if the vertical diffusivity is taken to be constant, in-
dependent of the stratification, the classical thermocline scaling
predicts that the flow is proportional to �ρ1/3 (e.g. Welander,
1971; Nilsson and Walin, 2001).

3. Analysis of the model: regimes
and steady-state features

3.1. Steady-state solutions in the mixing-limited regime

We consider first the features of the flow in the mixing-limited
regime in a very deep basin where the influence of the sill can
be ignored. To analyse the steady-state solutions, we use the
following non-dimensional variables

(�S∗,H∗, M∗) = (ρ0β�S/�ρT, H/HT, M/MT), (9)

where H T and MT are the upper-layer depth and the flow, defined
by eqs (7a) and (7b), which result when �ρ = �ρT. The non-
dimensional density difference is given by

�ρ∗ = �S∗ − 1. (10)

For the salinity-dominated flows considered in this study
�ρ∗ ≥ 0 and �S∗ ≥ 1. In the absence of a salinity stratification,
�ρ∗ = −1, reflecting the unstable thermal stratification. In this
situation, a thermally dominated circulation would arise with
the surface flow directed into semi-enclosed basin. We do not
considered the thermally dominated regime here. However, the
thermal density difference �ρT is the most convenient quantity
to base density and salinity scales on.

Using the definitions introduced above, we obtain the follow-
ing non-dimensional steady-state relations

H∗ = (�S∗ − 1)−2/3, (11a)

M∗ = (�S∗ − 1)−1/3, (11b)

0 = −�S∗M∗ + R. (11c)
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Fig. 3. Equilibrium solutions for the
mixing-limited regime, described by
eqs (11a)–(11c), as a function of the
non-dimensional freshwater supply R; see
eq. (12). The solid and dashed lines
represent the stable and unstable branches,
respectively. Note that influences of the sill
are ignored here. The present graph of the
flow strength is similar to Fig. 2b in Guan
and Huang (2008), which shows the
steady-state flow strength as a function of the
mixing energy E in their two-box model;
note that R ∝ E−2/3 in our model.

Here, the last relation is the steady-state salinity balance and

R ≡ FβS2ρ0

MT�ρT
, (12)

the non-dimensional freshwater supply. Note that R decreases
with increasing mixing energy E , basin area A and thermal den-
sity difference �ρT.

Figure 3 shows the salinity difference, upper-layer depth, and
flow strength as a function of the freshwater supply. There is a
critical value of R, attained at �S∗ = 3/2, below which there are
no steady states in the mixing-limited regime. The reason is that
the steady-state flow strength increases with decreasing salin-
ity difference: For salinity differences smaller than 3/2 the flow
becomes so strong that the implied advective freshwater trans-
port exceeds the freshwater supply. This can be contrasted with
the Stommel model that allows for salinity-dominated equilib-
ria when the freshwater supply approaches zero (e.g. Marotzke,
2000; Longworth et al., 2005).

To analyse the stability of the steady-state flow, we consider
the time evolution of small perturbations resulting from eqs (2a)
and (2b)

A
dH ′

dt
= −M ′

G + M ′
D, (13a)

AH
d�S ′

dt
= −�S ′M − �SM ′

D, (13b)

where only the terms that are linear in the perturbed quantities,
denoted by primes, are retained. A formal stability analysis is
undertaken in the Appendix. It shows that at the minimum fresh-
water supply, one stable and one unstable branch of equilibria
merge. The stable branch has stronger density and salinity dif-

ferences as well as smaller flow rates and upper-layer depths
than the unstable branch.

Some qualitative features of the stability can be illuminated be
considering the effects of a positive salinity perturbation, which
implies an enhanced density difference. The eq. (13b) shows
that there are two feedbacks acting on the salinity perturbation:
The negative feedback due to the mean-flow advection of the
salinity perturbation; and the feedback due to the response of
the upwelling M

′
D to the salinity perturbation. With the present

formulation of MD, a positive salinity perturbation is associated
with a reduced upwelling. In isolation, this constitutes a positive
feedback, as weaker upwelling, that is, M

′
D < 0, acts to amplify

the salinity perturbation. However, the decrease of the upwelling
will via the continuity relation eq. (13a) act to reduce the upper-
layer depth. This represents a stabilizing feedback, which is re-
enforced by the response of M

′
G, since a reduction of the upper-

layer depth act to enhance the upwelling. The formal stability
analysis in the Appendix shows that the salinity-dominated flow
is stable only if the steady-state salinity difference exceeds a
critical value �SML given by

�SML = 3/2. (14)

As shown in the Appendix, the value of �SML depends on the
details of MD: For the present parametrization the haline density
difference must be 50% larger than the thermal density difference
for the flow to be stable. The corresponding critical freshwater
supply is obtained from eq. (11c)

RML = �SML(�SML − 1)−1/3 ≈ 1.8. (15)

For salinity differences lower than �SML, the positive feedback
is stronger than the negative ones due to the mean-flow ad-
vection and the adjustments of the upper-layer depth, resulting
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in a runaway state where the density contrast approaches zero
and the upper-layer depth and the flow strength grow without
bound. An interesting question is what type of flow that is es-
tablished when the mixing-limited flow becomes unstable. One
possibility is that a thermally dominated flow emerges after the
transients have vanished. In a sill basin, another possibility is
that an overmixed salinity-dominated flow is established once
the upper layer reaches below the sill. Whether an overmixed
flow can exits for low freshwater supplies in the range where no
mixing-limited solution exists will now be examined.

3.2. Steady-state solutions in presence of a sill

We now consider how the presence of a sill affects the steady-
state properties. By using the eqs (2b) and (8b), the salinity
balance for the overmixed flow can be written

�S∗(�S∗ − 1) = FβS2ρ0

�ρT

2f ρ0

g�ρTD2
. (16)

Here the term on the right-hand side defines another non-
dimensional measure of the freshwater supply; see eq. (10).
Two features should be emphasized concerning the steady-state
salinity balance. First, it is entirely independent of the nature of
the small-scale mixing and its associated diapycnal upwelling
MD (see also Stommel and Farmer, 1953). Second, as the steady-
state flow is linearly proportional to the density difference, that
is, �S∗ − 1, the salinity balance equation is mathematically
identical to that of Stommel’s two-box model with a prescribed
temperature difference (see e.g. Marotzke, 2000). Thus, unlike
in the mixing-limited regime, there are steady-state solutions
for arbitrary weak freshwater forcing in the overmixed regime.
However, there remain two important issues that need to be
addressed. First, we need to determine the range of salinity dif-
ference for which the upper-layer extends below the sill. Second,
the stability of the overmixed steady-state solutions must be ex-
amined. For these two issues, the nature of the diapycnal flow
will prove to be crucial.

The character of the flow in the sill basin depends primarily
on the depth ratio H T/D. This new non-dimensional parameter
and R govern the steady-state properties. By using the non-
dimensional variables defined in eq. (10), the equations gov-
erning the overmixed regime can after some algebra be written
as

H∗ = (�S∗ − 1)−2(HT/D)2, (17a)

M∗ = (�S∗ − 1)(HT/D)−2, (17b)

0 = −�S∗M∗ + R. (17c)

Note that the details of eq. (17a) depend on the nature of the
diapycnal flow MD, whereas eqs (17b) and (17c) apply for any
representation of MD; recall that H T is defined as the equilibrium
depth that results in the mixing-limited regime when the den-

sity difference equals �ρT. A closer inspection reveals that the
factor (H T/D)−2 always appears in eq. (17b), although different
representations of MD can yield different values of H T.

To analyse the system, it is convenient to introduce the non-
dimensional salinity difference for which the upper layer touches
the sill. To obtain this quantity we use eq. (7a) or (8a) to compute
the dimensional density for which H = D

�ρD ≡
(

AE2ρ0f

g2D3

)1/2

. (18)

Note that �ρD is independent of the freshwater supply. From
the definitions of �ρT and H T, it follows that

�ρD/�ρT = (HT/D)3/2. (19)

The non-dimensional salinity difference for which the upper
layer touches the crest of the sill can be written as

�SD ≡ �ρD/�ρT + 1. (20)

Thus, when �S∗ > �SD, the flow is in the mixing-limited
regime described by eqs (11a)–(11c). On the other hand, when
�S∗ < �SD, the flow is in the overmixed regime described by
eqs (17a)–(17c).

Let us now consider the stability of the equilibria in the over-
mixed regime to small perturbations. A somewhat remarkable
result is that the flow is stable only if the steady-state salinity
exceeds a critical value �SOM given by (see the Appendix)

�SOM = 2. (21)

Thus, there is a threshold freshwater forcing below which the
overmixed salinity-dominated equilibria are unstable

ROM = 2(D/HT)2. (22)

This behaviour can be contrasted with the salinity-dominated
equilibria in the Stommel model, which always are stable. We
recall that the present overmixed flow and the Stommel model
have the same equilibrium features. However, eq. (13b) shows
that the stability of the overmixed flow depends on the physics of
the diapycnal flow MD, which gives rise to a positive feedback
between salinity- and upwelling-perturbations. It is noteworthy
that the mixing-limited flow is more stable than the overmixed
flow, in the sense that the former remains stable for a smaller
steady-state salinity difference, that is, �SML < �SOM. The
reason is that in the mixing-limited regime the dependence of
the geostrophic outflow MG on the upper-layer depth provides a
negative feedback that is absent in the overmixed regime.

Depending on the value of �SD, the steady-state response to
varying freshwater forcing falls into three categories.

Case A: �SD < �SML = 1.5. The mixing-limited solution is
the only salinity-dominated equilibrium solution, which exists
in the salinity range �S∗ ≥ �SML. The maximum upper-layer
depth, attained for R = RML, is shallower than the sill and given
by H ∗ = 0.5−2/3 ≈ 1.6.
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Fig. 4. Equilibrium solutions in the presence
of a sill as a function of the non-dimensional
freshwater supply R for �SD = 3; see
eqs (12) and (20). The grey solid and dotted
lines represent the stable and unstable branch
of equilibria in the overmixed regime, for
which the upper-layer is deeper than the sill,
that is, H > D. The black solid line
represent the stable equilibrium branch in the
mixing-limited regime where H < D. The
square marks the position where H = D. At
this point, the non-dimensional salinity and
density are �SD and �SD − 1, respectively.

Case B: �SML < �SD < �SOM. As R is decreased, the mixing-
limited flow transits to an unstable overmixed flow when the
upper layer touches the crest of the sill. This occurs when
�S∗ = �SD. The maximum depth for the salinity-dominated
flow is the sill depth in this case and there are thus no overmixed
equilibrium solutions.

Case C: 2 =�SOM <�SD. In this case, the flow will transit from
the mixing-limited to the overmixed regime as the freshwater
forcing is decreased. The overmixed flow is now stable and will
remain so until �S∗ = �SOM. At this stage, the upper-layer
depth equals H ∗ = (H T/D)2, which is the maximum possible
depth for the salinity-dominated flow.

Figure 4 illustrates the latter case, where �SD is large enough
to admit stable overmixed equilibria for a range of freshwater
supplies. Accordingly, as the freshwater supply is reduced be-
low RD there is a continuous transition from the mixing-limited
to the overmixed regime. Note that the dependence of the flow
strength on the density difference is reversed in the transition.
The maximum flow strength, given by M∗ = (H T/D)−1/2, is
attained when the upper layer touches the crest of the sill. The
fact that the flow becomes weaker when the freshwater forcing
increases in the mixing-limited regime, explains why the sensi-
tivity of �S∗ to changes of R is higher in this regime than in the
overmixed one.

Note that there are values of the freshwater supply for which
the steady-state solutions of the present model either are unsta-
ble or do not exist. In this case, we anticipate that a thermally
dominated flow, characterized by a surface flow of buoyant wa-
ter into the semi-enclosed basin, will be established. However,
the resulting thermally dominated steady-state flows, for which
�S∗ < 1, are not considered in this study.

3.3. Multiple equilibrium states?

The present authors originally conjectured that the effects of
the sill should stabilize the salinity-dominated flow in the over-
mixed regime. As shown in the stability analysis, however, the
sill serves to destabilize the flow by eliminating the negative
feedback due to the dependence of the geostrophic outflow on
the upper-layer depth. It should be emphasized that we have as-
sumed that the features of MD are the same regardless whether
the upper layer is deeper or shallower than the sill. It is con-
ceivable that E , the rate of work against the buoyancy force
per unit area associated with the vertical mixing, does not re-
main constant when the upper layer extends deep below the sill.
Furthermore, we have for the sake of simplicity assumed that
the bottom area of the upper layer is a constant independent
of H, which amounts to having vertical side boundaries in the
basin. The real ocean has sloping side boundaries, and hence,
the bottom area of the upper layer A(H) should decrease when
the upper-layer depth increases. This causes MD, which is pro-
portional to A(H), to decrease more rapidly with H than when A
is taken to be fixed. This strengthens the negative feedback on
perturbations of the upper-layer depth and hence acts stabilizing.
A similar stabilizing effect results if E decreases with H. Thus,
it is fully possible that overmixed flows in semi-enclosed basins
can be more robust than suggested by the present simple model.

To illustrate an interesting dynamical possibility, we consider
a hypothetical sill basin where the overmixed salinity-dominated
flow remains stable for salinity differences lower than �SML,
the critical value below which there exist no mixing-limited
equilibria according to the present model. In this case, changes
of the boundary conditions can trigger abrupt transitions be-
tween mixing-limited and overmixed equilibria provided that the
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Fig. 5. Equilibrium solutions in the presence
of a sill for �SD = 1.1; see eqs (12) and
(20). Note that to illustrate the possibility of
multiple equilibria, the overmixed flow is
assumed to be stable for arbitrarily small
freshwater forcing. The grey solid line
represents the overmixed branch of
equilibria. The black solid and dashed lines
represent the stable and unstable equilibrium
branches in the mixing-limited regime for
which H ≤ D. The square marks the point
H = D, where the non-dimensional salinity
difference is �SD. Provided that �SD <

�SML = 3/2, there exist multiple
equilibrium solutions.

upper layer in the mixing-limited regime is shallower than the
sill, that is, �SD < �SML. Figure 5 shows a situation associated
with abrupt transitions, based on the eqs (17a)–(17c). Note that
for the purpose of illustration, we have simply ignored that the
overmixed flow is unstable for the present parametrization of
MD. In this hypothetical example, the mixing-limited flow will
make an abrupt transition to an overmixed equilibrium if the
freshwater supply is decreased below RML. The ensuing over-
mixed flow is characterized by a weaker salinity difference and
larger flow strength and upper-layer depth. By then increasing
R, the upper layer of the overmixed flow will gradually rise to-
wards the crest of the sill. When H = D, the equilibria in the
overmixed regime connect with the unstable branch of equilibria
in the mixing-limited regime. As the salinity difference exceeds
�SD, the upper layer becomes shallower than the sill depth and
the flow becomes a mixing-limited equilibrium, which is un-
stable. Accordingly, the flow will make an abrupt transition to
the stable equilibrium solution in the mixing-limited branch. In
the hypothetical example, there are multiple equilibrium solu-
tions and hysteresis effects for freshwater supply in the interval
RML < R < RD.

It is relevant to note that by including salt transport due to hor-
izontal diffusion or wind-forced flow, represented as a constant
linear damping of the salinity difference, the salinity-dominated
flow is generally stabilized. In the Stommel model as well as
for the present overmixed flow, however, a linear damping of
the salinity difference acts to remove the salinity-dominated
equilibria with very weak circulation and small density differ-
ence that arise when the freshwater forcing approaches zero (see
Longworth et al., 2005; Guan and Huang, 2008). The reason is
that with linear damping included, the salinity tendency does
no longer approach zero when the density-dependent flow rate

approach zero. Thus, the inclusion of an additional flow com-
ponent, which is independent of the density difference, should
serve to stabilize the present model of the overmixed flow, but
there would be a minimum freshwater supply below which no
steady-state solutions are found.

4. Discussion

We have examined the dynamics of a salinity-dominated ther-
mohaline circulation in a sill basin using a conceptual two-layer
model. A critical model assumption is that the energy supply
to the small-scale vertical mixing in the basin is fixed and that
the diapycnal upwelling has the same features both when the
upper layer is shallower and deeper than the sill. For the mixing-
limited regime, where the upper layer is shallower than the sill,
there is a critical freshwater forcing below which no steady
states exist. This feature is present also in the two-box model
of Guan and Huang (2008) and is hinted in numerical simula-
tions presented by Mohammad and Nilsson (2004). When the
mixing-limited regime becomes unstable at the critical fresh-
water forcing, the upper-layer depth of the model is predicted
to grow beyond bounds. A central question has been whether
the presence of a sill can give rise to a new salinity-dominated
steady state for which the upper layer extends below the sill.
We found that the dynamical effects due to the sill admit such
steady-state solutions for arbitrarily weak freshwater forcing.
However, the stability analysis revealed that the overmixed flow
becomes unstable below a critical freshwater forcing. Remark-
ably, the overmixed flow was found to be less robust than the
mixing-limited flow, which can remain stable for smaller salin-
ity differences. However, a qualitative examination suggests
that topographical effects due to sloping basin boundaries and
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modest alterations of the vertical mixing parametrization can
serve to stabilize the overmixed flow. Accordingly, it is possible
that the salinity-dominated flow in a sill basin may have two sta-
ble equilibrium solutions for the same boundary conditions: One
overmixed solution with a stronger flow; and one mixing-limited
solution with a weaker flow. In a certain parameter range, mod-
est changes of vertical mixing, thermal density difference, or
freshwater supply could then trigger abrupt transitions between
the two types of equilibria. We have not addressed the possibility
that the mixing-limited flow, when it becomes unstable in the
sill basin, is succeeded by a forward thermally dominted flow,
rather than by a salinity-dominated overmixed flow. We note,
however, that Stigebrandt (1985) have analysed some aspect of
the thermally dominated flow across the Greenland–Scotland
Ridge on the basis of a two-layer model.

We will now discuss some possible oceanographic implica-
tions of our model results in the context of the Arctic Ocean.
Evidently, our model neglects several important aspects of the
Arctic Ocean circulation such as its complex bathymetry, the ex-
change through the Bering Strait, wind-driven circulation, and
the role of the sea ice (see e.g. Stigebrandt, 1981; Rudels, 1995;
Nøst and Isachsen, 2003; Rudels et al., 2005). The limitations
of our idealized model should be kept in mind in the follow-
ing qualitative considerations. Based on the present-day con-
ditions, one finds that A ≈ 9 × 1012 m2, E ≈ 10−3 W m−2, F ≈
0.3 Sv and �ρT ≈ 0.2 kg m−3 (see e.g. Stigebrandt, 1981;
Jakobsson, 2002; Jakobsson et al., 2007; Nilsson et al., 2008).
Using these values, one obtains the following model quantities:
H T ≈ 800 m, MT ≈ 6 Sv and R ≈ 7. Further, if we assume that
the Greenland–Scotland Ridge, with an average depth of about
500 m, serves as the sill for the Arctic, then eq. (20) yields
�SD ≈ 3; recall that �SD is the non-dimensional salinity dif-
ference for which the upper layer is in level with the sill, which
occurs for R ≈ 2.3. The model features for �SD = 3 are illus-
trated in Fig. 4, indicating that the upper-layer depth may reach
about 2000 m before the overmixed flow becomes unstable. Un-
der glacial conditions, the freshwater supply is decreased by
the general decline of the hydrological cycle as well as by the
drying up of the Bering Strait. Accordingly, it seems possible
that the freshwater supply becomes weak enough to established
an overmixed flow, with a low-salinity upper layer extending
below the Greenland–Scotland Ridge. The fact that shelf ice
has extended several hundreds of meter below the surface in
the Arctic Ocean during glacial periods (Polyak et al., 2001;
Jakobsson et al., 2008) supports the notion of a deep cold halo-
cline. Presently, Atlantic Water with temperatures well above
freezing is encountered below the cold halocline in the depth
range from about 150 to 500 m. The presence of an Atlantic
Water layer of present-day characteristics during glacial times
would have rapidly melted any deep reaching shelf ice (M.
Jakobsson, personal communication 2009).

Another speculative application of the present model concerns
the paleo circulation in the Arctic some 20–15 million years ago,

a period during which the Fram Strait opened up and gradually
became deeper. Jakobsson et al. (2007) present palaeo data and
model analyses suggesting that this geological evolution lead
to the establishment of a present-day type of circulation in the
Arctic Ocean characterized by well-oxygenated deep water. Sed-
iment records from the Central Arctic indicate that in the earlier
stages of the Fram Strait opening, there were alternately peri-
ods with anoxic- and oxic-conditions in the deeper parts of the
basin. Jakobsson et al. (2007) suggest that this reflects changes,
forced by sea level variations, between a lake state, ventilated
by seasonal convection and a poorly ventilated estuarine circu-
lation reminiscent of the present-day Black Sea. An alternative
explanation could be that the oxygen alterations reflect changes
between a swift overmixed flow and a slow mixing-limted flow,
both being of the estuary type.

In conclusion, we deem that the dynamics of salinity-
dominated thermohaline circulations in sill basins such as the
Arctic Mediterranean have interesting geophysical and paleo
oceanographic applications. However, there remain fundamental
questions to be answered concerning the stability of the salinity-
dominated flow in the limit of weak freshwater forcing, where
the salinity stratification is anticipated to extend to great depths.
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6. Appendix

We here analyse the linear stability of the equilibrium solutions.
To allow for an analysis that encompasses other representations
of the diapycnal flow than the one given in eq. (5), we follow
Nilsson and Walin (2001) and write MD ∝ �ρ−ζ H−η; where
ζ ≥ 0 and η ≥ 0. The present model of MD correspond to
ζ = 1 and η = 1. We use the non-dimensional variables defined in
eq. (10) and the time scale AH T/MT, which yields the following
non-dimensional versions of eqs (13a) and (13b) (without the
asterisk notation)

dH ′

dt
= −M ′

G + M ′
D, (A1)

H
d�S ′

dt
= −�S ′M − �SM ′

D. (A2)

In the mixing limited regime, the flow is specified by

�ρ = (�S − 1), MG = �ρH 2, MD = �ρ−ζ H−η. (A3)
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In a steady-state MG = MD, which yield the following steady-
state relations

H = (�S − 1)(λ−1)/2, M = (�S − 1)λ, (A4)

where overbars denote equilibrium-state variables and

λ ≡ (η − 2ζ )/(η + 2). (A5)

Thus, the steady-state dependence of the upper-layer depth and
the flow strength on the density difference are determined by the
parameter λ. When MD is given by eq. (5), λ=−1/3; see Nilsson
and Walin (2001) for results concerning other representations of
MD. The linearized perturbations are given by

�ρ ′ = �S ′, M ′
G = [(�ρ ′/�ρ) + 2(H ′/H )]M,

MD = −[ζ (�ρ ′/�ρ) + η(H ′/H )]M. (A6)

The eqs (A1) and (A2) can be written on the form

d

dt

(
H ′�S ′

)
=

(
a b

c d

) (
H ′�S ′

)
, (A7)

where the coefficients in the stability matrix are given by

a ≡ −H (�S − 1)(2 + η), b ≡ −H
2
(1 + ζ ),

c ≡ η�S(�S − 1), d ≡ H [1 + �S(ζ − 1)].

We seek solutions on the form exp(σ t) and (A7) determines the
exponents

σ1/2 = a + d

2
±

[
(a + d)2

2
+ bc − ad

]1/2

. (A8)

An equilibrium solution is stable if a + d < 0 and bc − ad <

0. The condition a + d < 0 is satisfied if

�S > (3 + η)/(3 + η − ζ ). (A9)

By using the definition of λ, the second stability condition can be
expressed as [1 − �S(1 + λ)] < 0. When λ > 0, this condition
is always satisfied for the salinity-dominated flow since �S > 1.
When λ < 0. On the other hand, the condition is only satisfied if

�S > 1/(1 + λ) ≡ �SML. (A10)

In the present model, where ζ = 1 and η = 1, the stability is
determined by eq. (A10), which yields �SML = 3/2.

The difference in the overmixed regime is that the geostrophic
flow and its perturbation are given by

MG = �ρ(D/HT)2, M ′
G = �ρ ′(D/HT)2 = (�ρ ′/�ρ)M,

(A11)

where the steady-state flow is given by

M = �ρ(D/HT)2 = �ρ
−1

H
−1

, (A12)

where we have used the the eqs (17a) and (17b).

In the overmixed regime, straightforward calculations show
that the coefficients in the stability matrix are given by

a ≡ −η(�S − 1)/H, b ≡ −(1 + ζ ),

c ≡ η�S(�S − 1)/H
2
, d ≡ [1 + �S(ζ − 1)]/H.

Here, the condition that bc − ad < 0 yields the criteria

�S > 1/2, (A13)

which is always satisfied for salinity-dominated flows. The con-
dition that a + d < 0, yields the criteria

�S > (1 + η)/(1 + η − ζ ) ≡ �SOM. (A14)

This criteria determines the stability of the overmixed flow; it
shows that by increasing η the flow becomes more stable in
the sense that the critical salinity �SOM is lowered. Thus, if
MD decreases sharply with H, the flow becomes more stable.
In the present model, where ζ = 1 and η = 1, we find that
�SOM = 2.
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