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A B S T R A C T
In this paper, two data assimilation methods based on sequential Monte Carlo sampling are studied and compared: the
ensemble Kalman filter and the particle filter. Each of these techniques has its own advantages and drawbacks. In this
work, we try to get the best of each method by combining them. The proposed algorithm, called the weighted ensemble
Kalman filter, consists to rely on the Ensemble Kalman Filter updates of samples in order to define a proposal distribution
for the particle filter that depends on the history of measurement. The corresponding particle filter reveals to be efficient
with a small number of samples and does not rely anymore on the Gaussian approximations of the ensemble Kalman
filter. The efficiency of the new algorithm is demonstrated both in terms of accuracy and computational load. This latter
aspect is of the utmost importance in meteorology or in oceanography since in these domains, data assimilation pro-
cesses involve a huge number of state variables driven by highly non-linear dynamical models. Numerical experiments
have been performed on different dynamical scenarios. The performances of the proposed technique have been com-
pared to the ensemble Kalman filter procedure, which has demonstrated to provide meaningful results in geophysical
sciences.

1. Introduction

A major concern in earth sciences consists in predicting the
future state of a set of variables characterizing atmospheric or
oceanic flows. The accuracy of the forecast relies firstly on the
quality of the physical model that describes the evolution of the
state variables of the system but also on their initial state. The es-
timation of this initial state as a probabilistic inference problem,
can be formulated as the estimation of an a posteriori probability
distribution of the system state variables at a given time knowing
an history of measurement data until that time. Formulated in
this way, this estimation process referred as analysis in data as-
similation community defines a stochastic filtering problem. In
the following, the state variables at instant k will be represented
by a vector xk of dimension n. The sequence of measurements
also called observations from time 1 to k will be denoted by a set
of vectors of dimension m: yo

1:k = {yo
i , i ∈ N, 1 + i�k ≤ k},

where �k is the latency between two successive measurements.
Asynchrony between observation and analysis instants may arise
in geophysical applications. They are due to observations avail-
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ability or to specific applications requirements and have signifi-
cant implications both on the method design and on the results
(Fertig et al., 2007). Throughout this study, we will nevertheless
consider that analysis is performed at measurement instants. The
sought conditional distribution, called the filtering distribution,
will be thus denoted p(x0:k|yo

1:k) and the corresponding condi-
tional expectation will constitute the minimum variance estimate
between the state variables trajectories at instant k and an history
of observations until that time.

We will assume that the evolution of the state variables is
described through a dynamical model of the form

xt = M(xt−�t ) + ηt , (1)

where M is a deterministic function (which corresponds to the
discrete scheme associated to a given numerical implementation
of a physical conservation law with respect to a numerical in-
tegration time step �t) and ηt is a white Gaussian noise with
covariance Q�t . The time step depends usually on the discrete
scheme used for the state variables temporal derivative and is
much smaller than the latency between two measurements—or
two analysis instants—�k.

The relation, at time k, between the state variables and the
measurements will be assumed to be described by the following
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674 N. PAPADAKIS ET AL.

linear model

yo
k = Hxk + εk, (2)

where εk is a white Gaussian noise with covariance R.
When the dynamical model is linear, the corresponding fil-

tering distribution is Gaussian and completely defined from its
two first moments. The Kalman filter provides an optimal ana-
lytic iterative formulation of their expression. When the dynam-
ics is non-linear, extended formulations relying on lineariza-
tion around the current estimates can be settled. This scheme
thus has the inconvenience to rely on an approximate dynamics
which appears to be conceptually problematic when dealing with
geophysical models and forecasting applications. Furthermore,
when applied to strongly non-linear dynamics the lineariza-
tion generates instabilities that tend to make the filter diverge
(Gauthier et al., 1993). Alternatives exist to deal with this prob-
lem. These schemes can be interpreted as Kalman filters or
extended Kalman filters (although the strict equivalence is only
valid for linear models) in which the update of the Kalman filter
are simplified either considering constant error covariance and a
functional minimization formulation (3Dvar or 4Dvar schemes
Le Dimet & Talagrand, 1986; Courtier et al., 1998), or pro-
ceeding to windowing selection of observations (Optimal Inter-
polation Lorenc, 1981) or solving the assimilation problem in
the observation space (3D/4D-PSASS Bennet, 1992; Courtier,
1997).

For highly non-linear dynamics, Evensen (Evensen, 1994)
proposed a method based on a Monte Carlo sampling of the
filtering law: the ensemble Kalman filter (EnKF)(see also Burg-
ers et al., 1998; Houtekamer & Mitchell, 1998; Anderson &
Anderson, 1999; Bishop et al., 2001; Whitaker & Hamill, 2002;
Evensen, 2003, 2006; Ott et al., 2004). In this technique a set
of hypothetic states (the ensemble members) are propagated
through the dynamical model (prediction step) and corrected at
a given time through a discrepancy between the forecast state and
observations available at that time (correction step or analysis
stage).

In Ensemble Kalman filtering the correction step is obtained
through a Gaussian approximation of the predicted states dis-
tribution, so that classical formulas of Kalman filter may be
used, and applied to each member of the set. These updating
rules are obviously exact only when the filtering distribution re-
mains Gaussian that is to say when the dynamics can be well
approximated by a linear Gaussian model.

In parallel to these developments, Monte Carlo sequential
non-linear filtering procedures, so called particle filters, have
been proposed in signal processing for control and tracking prob-
lems (Gordon et al., 1993, 2001; Arulampalam et al., 2002). In
this family of methods, the filtering law is sampled by hypothetic
states (called particles) which are shifted in the prediction step
and weighted in the corrective step. The particles plays formally
the same role as the ensemble members used in the EnKF to
sample the assumed Gaussian filtering distribution. In the pre-

diction step, the particles are moved according to a sampling
distribution (called the proposal distribution). The weights ac-
count for the deviation between the proposal distribution and the
unknown true filtering distribution. These weights should not be
confused with the coefficients used in some EnKF implemen-
tations where the analysis is performed in a reduced space and
the state variable is expressed as a linear combination of the
ensemble members (Hunt et al., 2007).

The central idea developed in this paper (that is suggested
in Bertino et al., 2003) resides in the design of a proposal dis-
tribution defined from EnKF principles together with adapted
updating rules for the particles weights. The goal sought here
consists in defining a particle filter well suited to high dimen-
sional assimilation problems with linear measurement model
and that allows relaxing the Gaussian approximation assump-
tion of the ensemble members in the ensemble Kalman filters.
This idea is somehow reminiscent to the work done by (van der
Merwe et al., 2001) to enhance the ‘unscented Kalman’ filter
through the particle filtering theory (see also Julier & Uhlmann,
1997).

After some necessary recalls about the two filtering methods,
the EnKF and the particle filter, in Section 2, our adaptation of
the particle filter, called the weighted ensemble Kalman filter
(WEnKF), is presented in Section 3. In Section 4, some exper-
imental results on simple scalar scenarios (1-D state space) are
first presented. In Section 5, special attention is paid to a high
dimensional problem. The performances of EnKF and WEnKF
are analysed and compared on different scenarios.

2. Related data assimilation methods

In this section, the basic theory on ensemble Kalman filters and
particle filters are recalled, and both methods are compared.

2.1. Kalman filter

In order to properly define the EnKF, we first remind the Kalman
filter’s formulas (Kalman, 1960; Kalman & Bucy, 1961) for a
linear dynamics expressed by

xk = Mxk−1 + ηk, (3)

where M is a n × n matrix and ηk is a white Gaussian noise
with covariance Qk . The linear measurement expressed by eq.
(2) is still assumed. The initialization of the filter is given by
the distribution p(x0), described by a Gaussian of mean x0 and
covariance P0. The filter is updated at the successive instants k,
through the two following steps

(i) Prediction:

xf
k = Mxa

k−1, (4)

Pf
k = MPa

k−1MT + Qk. (5)
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(ii) Correction:

Kk = Pf
k HT

(
HPf

k HT + R
)−1

, (6)

xa
k = xf

k + Kk

(
yo

k − Hxf
k

)
, (7)

Pa
k = (I − KkH)Pf

k . (8)

The result of the correction step, also called analysis, provides
the vector xa

k

�= E(xk|yo
1:k) and the covariance Pa

k

�= E((xk −
xa

k )(xk − xa
k )T |yo

1:k) characterizing the Gaussian filtering distri-
bution at time k. These moments depend on the forecast mean xa

k

and covariance Pa
k . The matrix Kk , which takes place in the mean

and covariance analysis, defines the so-called Kalman gain.

2.2. Ensemble Kalman filter

We now briefly present the ensemble extension of the Kalman
filter for systems described by a non-linear dynamics (1) and
a linear measurement model (2). The Ensemble Kalman filter
aims at using the expressions provided by the Kalman filter for
the linear case, and requires a Gaussian approximation of the
predictive law. The method, related to Monte Carlo approaches,
relies on an ensemble of samples to describe the different prob-
ability distributions. The initial law is sampled by N members
(or particles) x(i)

0 , i = 1, . . . , N . The forecast distribution and
filtering distribution are respectively approximated through a
prediction step and a correction step of the ensemble members.

The prediction step consists in propagating the ensemble of
particles xa,(i)

k−1 through the non-linear dynamics (including the
model noise simulation) in order to obtain the predicted particles,
or forecast ensemble, denoted by

xf ,(i)
k =

k−�t∑
t=k−1

(
M

(
xf ,(i)

t

)
+ η

(i)
t+�t

)
, (9)

xf ,(i)
k−1 = xa,(i)

k−1 . (10)

This generally corresponds to the numerical integration of a
non-linear stochastic partial differential evolution law. The sec-
ond term of this sum corresponds to the simulation of a white
Gaussian noise with covariance Q�t that is assumed to be known.
Let us note that simpler dynamics defined only up to a random
initial condition can be considered. In that case the knowledge of
the model noise is not required. In this work, we will only stick
to the most general case and consider dynamics defined through
a stochastic differential equation. Let us note however that the
techniques proposed in this paper can be directly implemented
for simplified dynamics defined up to a random initialization.

For systems such as (9), the repartition of the predicted parti-
cles {xf ,(i)

k , i = 1, . . . , N} follows a Gaussian distribution only
if two assumptions are satisfied:

(i) The analysed set of particles {xa,(i)
k−1 , i = 1, . . . , N} corre-

sponds to a Gaussian repartition
(ii) The dynamics operator M is linear.

Generally, we can consider that the less linear the dynam-
ics, the less Gaussian the forecast particles distribution. Let us
remark that departure from this Gaussian assumption depends
obviously on the non-linearity of the operator involved and on
the noise covariance considered. It depends also on the duration
of the temporal integration. For short time horizon, the Gaus-
sian assumption may remain valid for some non-linear operator
which does not develop multimodalities on short time scale
whereas it breaks very quickly for chaotic dynamics (such as
the Lorentz models used as toy models to represent geophysical
dynamics). The EnKF assumes this Gaussian approximation be-
tween assimilation times, in order to apply Kalman’s formulas.
The empirical mean of the forecast ensemble is firstly defined
by

xf
k = 1

N

N∑
i=1

xf ,(i)
k . (11)

The empirical ensemble covariance matrix Pfe

k is then deduced
from the following expression:

Pfe

k = 1

N − 1

N∑
i=1

(
xf ,(i)

k − xf
k

) (
xf ,(i)

k − xf
k

)T

. (12)

This relation is the non-biased estimator of the variance for
data sets, taking into account that the mean is known up to its
own variance.

Similarly to the Gaussian case presented in the previous sec-
tion, an ensemble Kalman gain Ke

k can be computed from the
ensemble variance. We have

Ke
k = Pfe

k HT
(

HPfe

k HT + R
)−1

. (13)

Let us now present the corrective step, in which the forecast
ensemble members are moved toward the new observation. Two
families of methods have been devised. The first type relies on an
additional random noise variable that operates a perturbation on
the observations whereas the second kind of techniques avoids
the use of perturbed observations and introduces a deterministic
corrective updating rule.

2.2.1. Techniques with perturbed observations. In order to
realize the correction step and to treat the observations as ran-
dom measurements associated to each particle, (Evensen, 1994;
Burgers et al., 1998; Houtekamer & Mitchell, 1998; Evensen,
2003) introduced a measurement process in which the ob-
servation is perturbed by N realizations denoted by {ε(i)

k , i =
1, . . . , N} of the measurement noise probability density func-
tion. With such perturbed observations the empirical ensemble
covariance keeps the same form as the one corresponding to the
original Kalman updates (Burgers et al., 1998).
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Each particle, xf ,(i)
k , is then associated to the perturbed ob-

servation, yo
k + ε

(i)
k , and the corrective step of the Kalman filter

is applied in order to obtain the analysed ensemble {xa,(i)
k , i =

1, . . . , N}. We have

xa,(i)
k = xf ,(i)

k + Ke
k

(
yo

k + ε
(i)
k − Hxf ,(i)

k

)
. (14)

2.2.2. Methods without perturbed observations. The other
set of methods (Anderson, 2001; Whitaker & Hamill, 2002;
Tippett et al., 2003; Bishop et al., 2001; Hunt et al., 2004; Ott
et al., 2004), called square-root filters, confine the analysis to
a subspace of vector perturbations that represents the analysis
error covariance. These deterministic schemes avoid sampling
issues (caused by a small number of members) by generating an
ensemble with the desired sample mean and covariance. They
implement an updating rule that reads

xa,(i)
k =

N∑
j=1

(
xf ,(j )

k − xf
k

)
Wj,i + xf

k . (15)

The matrix W is symetric and depends on ensemble covari-
ance, the discrepancy between the forecast ensemble and the
observation (also called innovation), and the observation error
covariance.

2.2.3. Practical considerations for EnKF implementation.
In practice for both kinds of methods, the empirical ensem-
ble covariance matrices, which dimensions are n × n, are never
computed nor stored. This point is essential for geophysical ap-
plications, as n corresponds to the dimension of the discrete spa-
tial domain on which atmospheric states variables such as pres-
sure, temperature or flow velocity have to be computed. Noticing
that matrix vector product Pfe

k u requires N scalar products (as-
sociated to a given vector space definition), the products Pfe

k HT

and HPfe

k HT involved in the Kalman gain computation neces-
sitate N × m scalar products, where m is the observation space
dimension. The computation of the Kalman gain can be further
reduced by assimilating the observations serially (Houtekamer
& Mitchell, 2001; Whitaker & Hamill, 2002; Anderson, 2003)—
with the assumption that they are uncorrelated. In this case the
Kalman gain requires only scalar inverses. For non-diagonal ob-
servation covariance, a SVD factorization enables to operate a
change of coordinates allowing to come back to a serial assimi-
lation (Anderson, 2003). Alternatively, several authors have pro-
posed to define the analysis within reduced subspaces spanned
by ensemble members (Bishop et al., 2001; Hunt et al., 2004;
Ott et al., 2004).

Other important issues for practical implementations of EnKF
concern covariance inflation and localization techniques. Co-
variance inflation (Anderson & Anderson, 1999; Anderson,
2007) consists to augment artificially the variance of each state
vectors components. Inflation procedures allow to correct sys-
tematic underestimation of the ensemble error covariance ma-
trix. Such a deficiency yields an over confidence on the model
dynamics and hence leads to ignore in an extreme case the

observations. Inflation can be applied either on the ensemble
covariance or on the analysis covariance. Inflation is either mul-
tiplicative (a multiplicative factor is applied to the ensemble
covariance Anderson & Anderson, 1999; Anderson, 2007) or
additive (a small multiple of the identity is added to the ensem-
ble covariance or to the analysis covariance Ott et al., 2004). Let
us note that an appropriate tuning of the factor involved remains
a difficult issue.

Finally, as noted in the introduction, in some applications
the analysis time and the observation time may be different.
This particularity leads however to significant changes in the
method design, as the problem consists in a smoothing problem
in which past and future measurements are used, whereas filter-
ing refers only to the sequential assimilation of past and current
observations. Schemes relying on ensemble Kalman smoother
(Evensen & van Leeuwen, 2000), techniques introducing a linear
combination of ensemble trajectories that best fits asynchronous
observations (Hunt et al., 2004) or approaches combining varia-
tional assimilation and ensemble Kalman filtering may be used
to cope with this problem (Zupanski, 2005; Fertig et al., 2007;
Harlim & Hunt, 2007a,b).

2.3. Particle filter

In this subsection, we keep the same system composed of a linear
measurement relation and a non-linear dynamics, both of them
still including additive Gaussian noises. Even if particle filter-
ing can be applied to much general cases, involving non-linear
measurement models, non-additive and non-Gaussian noises, in
this study we stick to the kind of systems that are handled by
ensemble Kalman filter techniques.

2.3.1. General problem. To evaluate the general filtering
distribution of the whole state variables trajectories x0:k from the
observations yo

1:k , a recursive expression is established from the
Bayes’ law

p
(
x0:k|yo

1:k

) = p
(
yo

k |xk, yo
1:k−1

)
p

(
x0:k|yo

1:k−1

)
p(yo

k|yo
1:k−1)

= p
(
yo

k |xk

)
p

(
x0:k|yo

1:k−1

)
p

(
yo

k |yo
1:k−1

) . (16)

From the Bayes’ formula, the filtering law can be written as

p(x0:k|yo
1:k) = p

(
x0:k−1|yo

1:k−1

) p
(
yo

k |xk

)
p(xk|xk−1)

p
(
yo

k |yo
1:k−1

) . (17)

We then get a recursive expression of the filtering distribution of
the trajectories. For continuous dynamics, p(xk|xk−1) is obtained
through Monte Carlo sampling of the dynamical evolution law
between time k − 1 and time k in the same way as for the
ensemble Kalman filter. This distribution does not have to be
explicitly known. It is important to note that the observations yo

k

are conditionally independent of the past trajectory x0:k−1 and
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the past observations yo
0:k−1 given the state variable xk

p
(
yo

k |yo
0:k−1, x0:k

) = p
(
yo

k |xk

)
. (18)

Particle filtering techniques propose to implement an approx-
imation of the sought density p(x0:k|yo

1:k). This approximation
consists of a finite weighted sum of N Diracs centred on hy-
pothesized locations in the state space—called particles—of the
initial system x0. At each particle x(i)

k (i = 1, . . . , N ) is assigned
a weight w

(i)
k describing its relevance. This approximation can

be formulated with the following expression

p
(
x0:k|yo

1:k

)
≈

N∑
i=1

w
(i)
k δx(i)

0:k
(x0:k). (19)

As the samples cannot be simulated directly from this dis-
tribution, particles are simulated from a proposal distribution
π (x0:k|yo

1:k), (also called the importance distribution) that ap-
proximates the true filtering distribution. Each sample is then
weighted with the ratio between the two distributions at the sam-
ple point. The importance weights w

(i)
k account for the deviation

with respect to the unknown true distribution.
Due to the importance density sampling, the target distribution

will be thus fairly sampled by the particles x(i)
0:k weighted by

weights w
(i)
k , defined as

w
(i)
k =

p
(

x(i)
0:k|yo

1:k

)
π

(
x(i)

0:k|yo
1:k

) . (20)

The closer the approximation to the true distribution, the more
efficient the filter. However, any importance function can be
chosen, with the only restriction that its support contains the one
of the target density. Furthermore, so as to obtain a sequential
formulation of the samples, the importance law is chosen with
the following recursive form

π
(
x0:k|yo

1:k

) = π
(
x0:k−1|yo

1:k−1

)
π

(
xk|yo

1:k, x0:k−1

)
. (21)

By combining this relation with the recursive expression of the
objective law given by relation (17), we get a general recursive
evaluation for the weights as the new measurement yo

k becomes
available

w
(i)
k ∝ w

(i)
k−1

p
(

yo
k |x(i)

k

)
p

(
x(i)

k |x(i)
k−1

)
π

(
x(i)

k |x(i)
0:k−1, yo

1:k

) , (22)

with weights normalized to 1, and thus removing the factor
p(yo

k|yo
1:k−1) of relation (17), which is the same for all the parti-

cles. Marginals of the complete filtering density p(xk|yo
1:k) can

be then easily obtained from the normalized new weights and
(19)

p
(
xk|yo

1:k

)
≈

N∑
i=1

w
(i)
k δx(i)

k
(xk). (23)

Thus, by propagating the particles from time k − 1 through
the proposal density π (x(i)

k |x(i)
0:k−1, yo

1:k), and by weighting the

sampled states with w
(i)
k , we obtain a sampling of the filter-

ing law. Different choices are possible for this proposal density
(Doucet et al., 2000), provided the weights in the correction
step are computed accordingly and that its support includes the
support of the filtering distribution. The most common ones are
discussed in the following. The adaptation of the particle filter
we propose in this paper, and that is described in details in the
next section, relies on a particular formulation of this proposal
density.

Asymptotically, for a number of particles tending to infinity,
convergence toward the Bayesian filtering distribution of var-
ious classes of particle filters have been demonstrated (Crisan
& Doucet, 2002; Del Moral, 2004) with a rate of 1/

√
N . The

same convergence result applies for the ensemble Kalman filter.
However for non-linear systems, EnKF does not converge to-
ward the optimal limiting filtering distribution (Le Gland et al.,
2010). In practical implementations the number of particles is
difficult to fix. The number of required particles to ensure the
filter convergence depends on the state space dimension but also
on the ability we have to draw samples in meaningful areas of
the state space.

Several versions of particle filters have been devised in the
statistical community or in the geophysical community. In a
recent review, Van Leeuwen provides a complete description
of the different variants proposed so far and gives some new
research directions that would be interesting to follow in order
to improve the global performances of particle filters (in term of
accuracy or in term of filter degeneracy) (van Leeuwen, 2009).
Among all the routes of possible improvements, in this study we
focus on the definition of a sound proposal distribution and on an
adaptation of the resampling scheme. In the following sections,
we describe briefly both procedures.

2.3.2. Resampling. Limiting ourselves to the prediction and
correction steps for updating the particles induces an increase
over time of the weight variance (Kong et al., 1994). In prac-
tice, this degeneracy problem makes the number of significant
particles decreases dramatically over time, implying an impover-
ishment of the estimate. To avoid degeneracy of the particles, the
filtering is supplemented with a resampling step of the particles
with respect to their distribution. This procedure aims at discard-
ing particles with weak normalized weights and at duplicating
particles associated to strong weights. Consequently, resampled
particles (with equal weights 1/N ) tend to be concentrated in the
significant areas of the state space. Various resampling strategies
have been described in the literature and will not be developed
in this paper. More details can be found in (Doucet et al., 2000).
The accuracy of the sampling can be estimated by a quantity
called the effective sample size (Doucet et al., 2000), or by an
entropy term as in the information theory (Pham, 2001) (see also
Kong et al., 1994). These criteria give an indication when the
resampling should be performed. Examples and comparisons of
several resampling schemes used in geophysical data assimila-
tion problems are thoroughly described in (van Leeuwen, 2009).
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2.3.3. Bootstrap filter. If the proposal distribution is set to
the dynamics

π
(

xk|x(i)
0:k−1, yo

1:k

)
= p

(
xk|x(i)

k−1

)
, (24)

the weights updating rule (22) thus simplifies to the data like-
lihood p(yo

k|x(i)
k ). This particle filter version is called Bootstrap

filter (Gordon et al., 1993), and is the most frequently used due
to the simplicity of its implementation. This is the kind of filter
that has been considered in several studies in order to compare
the respective performances of ensemble Kalman filters and par-
ticle filters in geophysical sciences (Pham, 2001; Kivman, 2003;
van Leeuwen, 2003).

In this approach the particles are sampled on the sole basis
of the dynamics and ignore completely the future measurement.
When the dynamics is highly non-linear a great number of par-
ticles is required in order to cover a sufficiently large domain
of the state space. In case of bad prediction all the particles be-
come insignificant and the filter will diverge if future random
explorations of the state space do not recover any significant
configurations at a given time. For huge state spaces driven by
fluid flow conservation laws, this ability to recover meaningful
areas of the state space is very unlikely. In addition, for geophys-
ical flows analysis problems, the number of particles is severely
constrained by the forecast computational cost which further
penalizes this scheme.

2.3.4. Optimal importance filter. In order to limit the de-
generacy of the particles, Doucet et al. have introduced the no-
tion of optimal importance function which minimizes the vari-
ance of the weights conditioned upon x0:k−1 and yo

1:k . This op-
timal choice corresponds to the proposal density (Doucet et al.,
2000)

π
(

xk|x(i)
0:k−1, yo

1:k

)
= p

(
xk|x(i)

k−1, yo
k

)
. (25)

From relation (18), observing that

p
(

xk|x(i)
k−1, yo

k

)
=

p
(
yo

k |xk

)
p

(
xk|x(i)

k−1

)
p

(
yo

k |x(i)
k−1

) , (26)

the weight recursive formulation (22) becomes in that case:

w
(i)
k ∝ w

(i)
k−1p

(
yo

k |x(i)
k−1

)
. (27)

The corresponding filter thus requires to evaluate p(yo
k |xk−1),

called the predicted likelihood, up to a proportionality constant.
Analytic expression of this function can be written for mod-
els composed of a discrete non-linear dynamics and a likeli-
hood defined as a Gaussian mixture (Arnaud & Mémin, 2007).
For continuous dynamical models, this density can only be ap-
proximated at the expense of additional integrations of the dy-
namical models. To see that, we consider an augmented state
vector gathering the states between instants k − 1 + �t and k:
x′

k = (x(k−1)+�t , x(k−1)+2�t , . . . , xk)T . For this augmented state

vector the optimal importance density reads

p
(
x′

k|x′
k−1, yo

k

) ∝
k∏

t=k−1+�t

p(xt |xt−�t )p
(
yo

k |xt

)
.

The predictive likelihood p(yo
k|xt ) is not explicitly known for the

different intermediate states. This probability can be evaluated
for a given state through a backward Kolmogorov equation (the
adjoint of a Fokker planck equation) associated to the infinites-
imal generator of the dynamical model (written as a stochastic
differential equation). This integration whose price is of the same
order as the original dynamical model must be realized for each
intermediate state x(i)

t from a pseudo-measurement at time t and
the likelihood p(yo

t |x(i)
t ). This procedure is in practice totally

unfeasible for geophysical data assimilation process.

2.4. Comparison of EnKF and particle filter

The two methods, the particle filter and the EnKF, share some
similarities: stochastic sampling and processing organized in
two steps (the predictive and the corrective steps). Technically,
the main difference lays on how the corrective step is done. The
computation of a weight for each particle is necessary in the
particle filtering procedure, whereas the particles are moved a
second time in the ensemble Kalman filter. From a conceptual
point of view, particle filtering aims at approximating through a
combination of Dirac masses centred on the particles the com-
plete filtering distribution. On the other hand, like the original
Kalman filter, the ensemble Kalman filter intends only to esti-
mate the two first moments of the distribution. From a theoretical
point of view, for a number of particles tending to infinity, the
limiting distribution of the particle filter converges to the opti-
mal filtering distribution (Crisan & Doucet, 2002; Del Moral,
2004). This is not true anymore for the ensemble Kalman filter
with non-linear dynamics, which converges toward a different
limiting distribution that has still to be characterized (Le Gland
et al., 2009, 2010).

From this discussion, we see that both methods have clearly
their own advantages and drawbacks:

(i) The EnKF places the particles in significant areas of the
state space by shifting them according to the dynamics and its
uncertainty but also taking into account the new observation
and the past measurements. This process and its in fine limited
goal (the estimation of the a posteriori two first moments) al-
low, as demonstrated in practice in numerous geophysical data
assimilation problems, to reduce efficiently the number of nec-
essary particles. The accuracy of the filter and eventually that
it does not diverge remains circumvented by the validity of the
Gaussian approximation of the filtering distribution (Harlim &
Majda, 2009). Despite of this limitation, EnKF has been suc-
cessfully applied to a wide range of geophysical systems in
operational settings (Houtekamer et al., 2005; Houtekamer &
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Mitchell, 2006; Miyoshi & Yamane, 2007; Liu et al., 2008;
Szunyogh et al., 2008; Whitaker et al., 2008).

Let us note that recent ensemble Kalman filters (Fertig et al.,
2007; Hunt et al., 2004; Harlim & Hunt, 2007a,b; Zupanski,
2005) are relaxing the Gaussian assumption through a combina-
tion of variational data assimilation and ensemble Kalman filters.
These methods formulate the problem as a deterministic opti-
mization where the solution is expressed as a linear combination
of the ensemble members. The optimization is conducted with
respect to the coefficients of these linear combinations. Those
coefficients are weighting the contribution of the different mem-
bers and are in nature completely different from the weights
involved in particle filtering. Furthermore, these techniques ex-
press the data assimilation problem as a smoothing deterministic
optimization problem that may converge through a local mini-
mum. Eventual multimodality of the pdf may pose problem, as
only a single (eventually local) mode will be retained. In theory,
particle filters allow to tackle this situation as they may keep a
trace along time of the most pregnant modes of a multimodal
distribution.

(ii) Particle filtering relies on an exact sequential probabilis-
tic formulation of the filtering law. It thus gives an exact result up
to sampling errors for a large number of particles. This technique
is as a consequence quite sensitive to the curse of dimensionality
and works well in practice only for state spaces of reduced di-
mension. When the importance sampling is based solely on the
dynamics (i.e. the bootstrap filter), the state space exploration
ignores completely the new measurement. Such a sampling,
‘blind’ to the different available observations, requires therefore
a great number of particles to be efficient. This constitutes a se-
rious limitation for their use in geophysical applications. From
a computational point of view, for an individual element, parti-
cle filters have lower computational cost compared to EnKF, as
no matrix inversions are required. The efficiency of the simple
particle filter scheme is however completely ruined by the great
number of particles needed to ensure the convergence of the
filter.

The EnKF has been mainly used for huge dimensional state
spaces associated to forecast of high computational cost (as in
meteorology or oceanography). In such contexts, this process
has shown to provide a correct approximation of the two first
moments of the filtering distribution addressed, even for a small
set of particles (if the Gaussian assumption appears to be valid).
When the state space dimension is much larger than the ensem-
ble size, EnKF may also suffer from the curse of dimensionality
and exhibit degeneracy. A common practice used to tackle this
problem in EnKF consists to perform a local analysis in con-
sidering for a given grid points only observations that lie into
a given neighbourhood. This process called spatial ‘localiza-
tion’ may be implemented in different ways (Houtekamer &
Mitchell, 1998; Anderson, 2003; Ott et al., 2004; Hunt et al.,
2007; Whitaker et al., 2008) and is justified by the suppres-

sion of spurious long-range correlations that may be introduced
through a small ensemble size (Houtekamer & Mitchell, 1998).
For a large ensemble, if achievable, localization would not be
needed. On the other hand, localization also improves the com-
putational efficiency of EnKF. In addition, it provides a broader
state space exploration, as the analysis consists in that case to
choose locally linear combinations of members. Arguments on
intrinsic low dimensional manifold representation in local re-
gions of atmospheric dynamics is also advanced in order to
justify this localization procedure (Patil et al., 2001; Kuhl et al.,
2007).

In comparison, particle filtering has demonstrated to be very
efficient in a complete non-linear setting for problems with a
state space of reduced dimension. However, the curse of dimen-
sionality is more pregnant for the Bootstrap filters as the new
measurements are not taken into account in the proposal distri-
bution. In case of large innovation (i.e. if the predicted state is far
from the observations), the filter requires a great number of parti-
cles to explore a sufficiently large region of the state space. This
drawback makes it inadequate for data assimilation processes
in geophysical sciences, which, for computational reasons, are
restricted to a very small number of particles for the exploration
of state spaces of huge dimensions. Formal arguments are also
given in (Snyder et al., 2008) for an intrinsic deficiency of the
bootstrap particle filters in the case of peaked likelihood function
(such as those that result from a large number of independent
observations). Even in the simple case of the bootstrap particle
filter there exist for the moment no theoretical bounds allowing
indicating, with respect to the state dimension, the number of
particle that should be drawn.

Experimental comparisons between ensemble Kalman filter-
ing and particle filtering have only been made on the basis of
the Bootstrap particle filters (Pham, 2001; Kivman, 2003; van
Leeuwen, 2003; Zhou et al., 2006; Rémy et al., 2010). In all
these studies it is reported that for highly non-linear systems
this simplest particle filter provided superior results compared
to EnKF but required a much higher number of particles than
the number of members needed for the EnKF. It has been noted
that as the number of observations was increased the need of
even a greater number of particles was required (Zhou et al.,
2006), confirming hence the formal statement developed in (Sny-
der et al., 2008) for bootstrap filter. Divergence was observed
when to few particles were used. In some experiments conver-
gence of the EnKF to wrong parameter values was also observed
(Kivman, 2003; van Leeuwen, 2003; Harlim & Majda, 2009).
This confirms the asymptotic analysis done in (Le Gland et al.,
2010) which states that EnKF for a non-linear state dynam-
ics with linear observations model converges toward a limiting
distribution that differs from the sought filtering distribution. To
avoid particle filter divergence, (van Leeuwen, 2003) considered
likelihood with broader tail than a Gaussian distribution. In (van
Leeuwen, 2002), it has been also proposed to draw the samples
of the state vectors using future observations in order to guide
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the particles towards the new observations. With the same pur-
pose, we propose in the following section a scheme that enables
through an ensemble Kalman filtering procedure to propose sam-
ples that integrate an history of past and current observations.

3. The weighted ensemble Kalman filter

Starting from the descriptions of the previous section, a hybrid
filtering procedure that takes advantage of both the particle filter
and the EnKF can be devised.

The importance sampling principle indicates that a wide range
of proposal distributions can be considered. We claim and we
will experimentally demonstrate that a proposal distribution de-
fined by the two successive particle shifts in the EnKF procedure
constitutes an efficient proposal mechanism. Moreover, the in-
sertion of the EnKF shift mechanisms into a particle filter scheme
enables a better approximation of the filtering law and thus in-
creases the filter accuracy. Two cases corresponding to the two
EnKF variants identified in Section 2.2 can be distinguished.

3.1. Proposal distribution from EnKF with perturbed
observations

The expression (14) defines the displacement of the ensemble
members; it can be rewritten as

xf ,(i)
k =

k−�t∑
t=k−1

(
M(xf ,(i)

t ) + η
(i)
t+�t

)
(28)

xf ,(i)
k−1 = x(i)

k−1 (29)

x(i)
k = (I − Ke

kH)xf ,(i)
k + Ke

kyo
k + Ke

kε
(i)
k (30)

= μ
(i)
k + γ

(i)
k , (31)

where

μ
(i)
k = (I − Ke

kH)xf ,(i)
k + Ke

kyo
k, (32)

γ
(i)
k = Ke

kε
(i)
k . (33)

The first term constitutes a drift term that depends respectively
on the integration of the dynamics for a given particle between
k − 1 and k, the new measurement and the ensemble error co-
variance (through the Kalman gain computed from the forecast
ensemble). Relying on the usual assumption of the EnKF (i.e.
considering the dynamics as a discrete Gaussian system), its con-
ditional distribution given the data is described as the following
Gaussian distribution:

μ
(i)
k ∼ N

(
μ

(i)
k , V

)
, (34)

with

μ
(i)
k = (I − Ke

kH)
k−�t∑
t=k−1

M
(

xf ,(i)
t

)
+ Ke

kyo
k (35)

V = (I − Ke
kH)Q(I − Ke

kH)T . (36)

Here N ( y, ϒ) denotes a Gaussian distribution with mean y and
variance ϒ . In what follows, a notation N (x; y, ϒ) will denote
the value of this Gaussian at x. The covariance Q depends on
the model noise and on the propagation of the incertitude by
the dynamics. Assuming it is independent of a given particle
(which is true only for linear dynamics or discrete Gaussian
systems), its precise characterization will not be needed as shown
below.

The second term is a noise term that depends on the measure-
ment noise but also on the accumulated forecast ensemble error
through the Kalman gain. It is a zero mean Gaussian variable
with covariance Ke

kRKe
k
T . Both terms are uncorrelated and as a

consequence, the conditional distribution of the state xk given the
new measurement and the particle at time k − 1 is approached
by

p
(

xk|x(i)
k−1, yo

k

)
= N

(
μ

(i)
k , �e

k

)
(37)

with

�e
k = (I − Ke

kH)Q(I − Ke
kH)T + Ke

kRKe
k
T ,

= (I − Ke
kH)Pfe

k . (38)

In the establishment of this distribution it can be noticed that
we have neglected the dependence on the other particles (that
appears through the forecast ensemble covariance) in consider-
ing the forecast ensemble covariance as a mean field variable,
intrinsic to the system and that does not depend on system re-
alizations, which is only true asymptotically for a number of
particles tending to infinity.

3.2. Proposal distribution from EnKF without perturbed
observations

As remarked in (van Leeuwen, 2009) a similar construction
can be applied to deterministic EnKF procedures that do not
introduce random perturbations of the observations. In that case
we have from (15) and the dynamical model (9)

x(i)
k =

N∑
j=1

(
k−�t∑
t=k−1

(
M

(
xf ,(j )

t

)
+ η

(j )
t+�t

)
− xf

k

)
Wj,i + xf

k .

(39)

Relying on the same Gaussian approximation as previously for
the forecast distribution we have now

p
(

xk|x(i)
k−1, yo

k

)
= N

(
μ

(i)
k , �e

k

)
, (40)

with

μ
(i)
k =

N∑
j=1

(
k−�t∑
t=k−1

(
M

(
xf ,(j )

t

))
− xf

k

)
Wj,i + xf

k (41)

�e
k = WQWT . (42)
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Square-root filters are usually built in order that the mean
and covariance of the ensemble respect the analysis mean and
covariance given by the Kalman update equations. The Kalman
analysis mean and covariance of the ensemble are directly ver-
ified in EnKF with perturbed observations (37–38). Up to sam-
pling errors these two procedures sample ensembles distribu-
tions with identical two first moments.

3.3. WEnKF algorithm

The distribution p(xk|x(i)
k , yo

k) (defined from the two previous
cases 37 or 40) provides us a natural expression for the proposal
distribution

π
(

xk|x(i)
0:k−1, yo

1:k

)
= p

(
xk|x(i)

k−1, yo
k

)
= N

(
μ

(i)
k , �e

k

)
.

In order to make the estimation of the filtering distribution
exact (up to the sampling), the formulas of the particle filter
are applied. As a consequence, each member of the ensemble
must be weighted at each instant, k, with a weight, w

(i)
k , defined

iteratively by

w
(i)
k ∝ w

(i)
k−1

p
(

yo
k |x(i)

k

)
p

(
x(i)

k |x(i)
k−1

)
N

(
x(i)

k − μ
(i)
k ; 0, �e

k

) , and
N∑

i=1

w
(i)
k = 1.

(43)

The proposal distribution depends on the ensemble Kalman gain
estimated from the mean and the covariance of the predicted par-
ticles xf ,(i)

k where the mean and covariance of the forecast parti-
cles in relations (11) and (12) must be here computed according
to the particles weights at instant k − 1. When a resampling
scheme is applied systematically at each measurement instant
every particle weights are re-initialized to 1/N , the previous
formula simplifies as

w
(i)
k ∝ p(yo

k |x(i)
k )p(x(i)

k |x(i)
k−1)

N
(

x(i)
k − μ

(i)
k ; 0, �e

k

) , and
N∑

i=1

w
(i)
k = 1, (44)

and the classical empirical formulas can be used to compute the
mean and covariance of the ensemble.

The probability distribution p(x(i)
k |x(i)

k−1) is known in a discrete
setting (or when the dynamics discrete scheme time step corre-
sponds to the measurement lapse time). It is usually analytically
and numerically unavailable in a continuous setting

p
(

x(i)
k |x(i)

k−1

)
=

∫ k∏
t=k−1+�t

p
(

x(i)
t |x(i)

t−�t

)
dxk−�t · · · dxk−1+�t ,

p
(

x(i)
t |x(i)

t−�t

)
= N

(
M

(
x(i)

t−�t

)
, Q�t

)
. (45)

We will see however that the calculation of this expression will
not be required when the Gaussian transition densities (45) are
represented on the basis of a very small number of particles
compared to the state space dimension.

The WEnKF procedure can be simply summarized by the
algorithm 1. Let us note that in this synoptic description, we

Algorithm 1 The WEnKF algorithm, one iteration.

Require Ensemble at instant k − 1:
{

x(i)
k−1, i = 1, . . . , N

}
observations yo

k

Ensure Ensemble at time k:
{

x(i)
k , i = 1, . . . , N

}
EnKF step: Get x(i)

k from the assimilation of yo
k with an EnKF

procedure (28-33) or (28,39);

Compute the weights w
(i)
k according to (44);

Resample: For j = 1 . . . N , sample with replacement index a(j)
from discrete probability {w(i)

k , i = 1, . . . , N} over {1, . . . , N}
and set x(j )

k = xa(j )
k ;

described the simplest resampling scheme, which consists to
draw the samples directly from the discrete weight distribu-
tion. This resampling consists to draw with replacement N
particles according to their normalized weights. Other efficient
schemes reducing the sampling noise can be used instead (see
van Leeuwen, 2009 and references therein for the description
of different resampling schemes and some comparison elements
on geophysical applications).

3.4. Practical considerations for implementation
in high dimension

For high dimensional problems, we first have to check if the
WEnKF does not imply some additional and prohibitive com-
putational costs compared to traditional ensemble filters. The
classical EnKF has been very carefully designed in order to al-
low its application in geophysical assimilation issues. This has
been done by taking care of problems that arise when facing high
dimensional covariance matrices and noise simulation. Based on
similar recipes (see Bishop et al., 2001; Evensen, 2003 for a de-
tailed description), we explain in what follows how the weights
can be computed on similar computational basis.

3.4.1. Weights computation. The three probabilities in-
volved in eq. (44) have to be evaluated in order to compute
the weights of the ensemble members after the prediction step.
These conditional probability distributions, namely, the likeli-
hood p(yo

k |x(i)
k ), the transition distribution p(x(i)

t |x(i)
t−�t ) (45) and

the proposal distributions N
(

x(i)
k − μ

(i)
k ; 0, �e

k

)
, are related to

centered Gaussian distributions:

p
(
a(i)

t |Ft

) ∝ exp

(
−1

2
a(i)T

t ϒ−1
t a(i)

t

)
, (46)

with covariance matrices of size n × n and where a(i)
t stand

for samples given respectively by the innovation (d(i)
t=k = x(i)

t=k −
yo

t=k) for the likelihood, the model noise variables η
(i)
t for the tran-

sition distribution, and the analysed particles resulting from the
ensemble Kalman process for the proposal distribution. These
three conditional distributions are formally defined according
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to respective σ -algebras Ft . In the following we drop the time
index for sake of notations simplification.

The inversion of n × n full rank covariance matrices can-
not be reasonably performed for high dimensional problems. To
deal with this recurrent problem, covariance matrices are rep-
resented on the basis of a reduced set of pseudo-random fields
undersampling the high dimensional state space (Bishop et al.,
2001; Evensen, 2003). This consists in representing the matrix
ϒ by the set of associated samples a(i), i = 1, . . . , N previously
introduced.

Given A the n × N matrix whose columns are the a(i), the
matrix ϒ is approximated by its empirical estimation

ϒ ∼ ϒe = AAT

N − 1
. (47)

The rank of the matrix ϒe is lower or equal to N. Hence, ϒe

is not invertible. A pseudo inverse can nevertheless be defined
from a reduced singular value decomposition of matrix A called
the Thin SVD. The thin SVD decomposes the n × N matrix
A as the product A = USWT where only the N first column
vector of the n × n orthogonal matrix U are computed. Thus U
is n × N, W is an orthogonal matrix of size N × N , and S is a
N × N diagonal matrix gathering the N first eigenvalues of A.
Defining the pseudo inverse S+ of the matrix S such as

S+
jj = 1/Sjj if Sjj �= 0,

S+
jj = 0 otherwise,

an approximation of the Gaussian distribution can be defined
from the pseudo inverse of matrix ϒe+

p(a(i)|F) ∝ exp

(
−1

2
a(i)T ϒe+a(i)

)

∝ exp

(
−N − 1

2
a(i)T US+S+UT a(i)

)
. (48)

The evaluation of the probability above is thus performed
through the following steps:

(i) Singular Value Decomposition of A.
(ii) Computation of S+.
(iii) Computation of a(i)

1 = UT a(i) for all i (N × 1 vectors).
(iv) Computation of a(i)

2 = S+a(i)
1 (N × 1 vectors).

(v) Computation of the scalar a
(i)
3 = a(i)T

2 a(i)
2

(vi) The required quantity is exp(−N−1
2 a

(i)
3 ).

In this process, none step has a complexity greater than n ×
N , and none matrix greater than n × N needs to be stored in
memory. The likelihood p(yo

k |x(i)
k ) can then be evaluated through

this procedure. The covariance is approximated with samples of
the observation noise and the likelihood is then evaluated at point
a(i)

k

�= x(i)
k − yo

k .
In high dimensional problems, it is important to note that

usually the sample dimension is much lower than the state space
dimension. In this case, if the probability is evaluated from
the same samples as those used to approximate the covariance

matrix (and drawn from the target Gaussian distribution), the
obtained distribution is uniform for the different particles. The
demonstration of this statement is given in the appendix. As
opposed to the likelihood, we fall in this case when evaluating the
a priori and the proposal distribution. As a matter of fact, these
two distributions are evaluated and approximated from Gaussian
i.i.d. samples. Indeed η

(i)
t and x(i)

k are used for the a priori and
the proposal distributions respectively. Their evaluations are not
necessary as their values have no influence on the weights after
their normalization.

3.4.2. Particles resampling and smoothing. The resampling
stage performed by the WEnKF method leads to discard par-
ticles with low weights and to duplicate particles associated to
high weight values. As a consequence several groups of identi-
cal particles may be generated. These groups constitute sets of
identical initial conditions for the next forecast. As the aim of
particles ensemble is to explore configurations of a gigantic state
space in comparison to the ensemble cardinality, such a crude
discretization of the initial condition yields an immediate loss
of efficiency. To attenuate this potential problem, we smooth the
ensemble members distribution by adding a zero mean Gaus-
sian field perturbation whose covariance depends on the mean
discrepancy between the estimate and the current measurement
given the whole history of measurements. The smoothed initial
conditions x̃(i)

k for the forecast are defined as

x̃(i)
k = x(i)

k + η(i), (49)

η(i) ∼ N (0, �), (50)

� =
(
E

(∥∥xk − yo
k

∥∥2|yo
1:k

)
+ α

)1/2
Q, (51)

�
(∑

i

w
(i)
k

∥∥∥x(i)
k − yo

k

∥∥∥2
+ α

) 1
2

Q. (52)

In this expression Q is a covariance matrix with variance 1 and
that has the same structure as the model noise covariance matrix
Q�t . The parameter α, set in practice to a small value avoids
degeneracy problems caused by a null discrepancy of a single
particle associated to unity weight. The proposed adaptation of
the resampling comes to introduce an uncertainty on the fore-
cast’s initial states, which depends on the filtering distribution
but also on the sample cloud’s spread around the current mea-
surements. Here the additional Gaussian variable constitutes a
‘mean-field’ variable as the covariance matrix is defined from
the filtering distribution. Each draw of the Gaussian variable is
nearly independent from the individual particles and the law of
the perturbed variable is such that

x̃(i)
k ∼ p

(
x(i)

k |yo
1:k

)
	 N (0, �), (53)

where 	 denotes the convolution product. The considered pertur-
bation corresponds thus to a smoothing of the filtering distribu-
tion by a Gaussian kernel. A similar strategy has been proposed
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and analysed in (Musso et al., 2001). It is also reminiscent to the
adaptation proposed in (Xiong et al., 2006) which consists in ap-
plying a Gaussian resampling to the particle nest. We will show
in the following section that the proposed smoothing allows sta-
bilizing efficiently the filter in a high dimensional experiment.
This smoothing may be also related to the technique proposed
in (Hamill & Snyder, 2000), which consider a Gaussian pertur-
bation to the ensemble members (and therefore to smooth the
filtering distribution) through the definition of a background co-
variance as a weighted mean of the ensemble covariance and a
typical background covariance used in 3DVAR assimilation of
Quasi-Geostrophic model. The perturbation considered is how-
ever constant in time and requires the tuning of a weighting
coefficient. Let us remark that for dynamics defined only up to
a random initial condition and in which the model noise covari-
ance does not have to be specified, covariance Q may be settled
to the empirical covariance of the particles. In that case this
comes thus to implement an inflation procedure similar to those
carried out in EnKF implementations with a factor defined from
the innovation.

In the following sections, the proposed adaptation of the par-
ticle filter is assessed on different examples. We first study
its performance on linear or non-linear scalar problems for
which measurements are available at every discrete instant. The
technique will be afterward assessed on a higher dimensional
state space for the assimilation of a 2-D turbulent flow. For all
these experiments we choose to rely on an implementation of
EnKF that incorporates perturbed observations (Evensen, 1994;
Burgers et al., 1998; Houtekamer & Mitchell, 1998; Evensen,
2003).

4. Experiments on scalar problems

In this section, the EnKF and WEnKF are compared on 1-D
examples with linear or non-linear dynamics. Comparisons are
done from the following metrics:

(i) For the linear case, both methods are compared to the
Kalman filter which gives the optimal solution. Denoting xa

k

the Kalman mean estimate, the error is computed between the
mean of the distribution given by the Kalman filter and the
one obtained by both ensemble techniques (EnKF or WEnKF),
and reads e(k) = (xa

k − ∑N
i=1 w

(i)
k x

(i)
k )2 at a given time k, where

w
(i)
k = 1

N
for the EnKF. A similar error metric is used to compare

the variances estimated by both methods to the reference Kalman
variance P a

k .
(ii) For the non-linear case, since the Kalman optimal fil-

tering distribution is unknown, estimated means of both meth-
ods are simply compared to the reference state xtrue

k (ground
truth): e(k) = (xtrue

k − ∑N
i=1 w

(i)
k x

(i)
k )2. Estimated variances are

also computed in order to compare the resulting dispersion of
both methods, but can not be compared to a ground truth.

4.1. Linear dynamics

As a first example, we study scalar scenarios with a linear dy-
namics, for which we know the optimal filtering distribution,
as it is provided by the classical Kalman filter. The state xk is
evolving along the dynamical model

xk = xk−1 + ηk,

where ηk is a white Gaussian noise with variance σQ. The
measurement model is given by

zk = xk + εk, (54)

where εk is a white Gaussian noise with variance σR . We also
assume a Gaussian distribution for the initial state (at time k =
0), centred at point 0 with a variance σB .

Different random realizations of the dynamics and the mea-
sures have been obtained from different values of σQ, σR and σB ,
in order to get different scenarios for 30 successive time steps.
The assimilation of these scenarios have been then carried out
using the EnKF and the WEnKF. For the WEnKF a systematic
resampling has been considered. The weights updating rule is
thus defined through eq. (44), with �e

k given by (38).
As the simulation of the random variables may play an im-

portant role (for each particle, there are two random draws for
the dynamics noise and the measurement noise), the two filter-
ing techniques are performed in parallel with the same random
realizations. In order to have mean comparisons between both
techniques a great number of trials have been realized (the ex-
periments have been run 5000 times). The errors have then been
averaged over the 30 time steps and all trials. Moreover, we indi-
cate the number of occurrences the WEnKF gives better results
than the EnKF (closer to the analytical result given by Kalman)
for the mean and variance estimations. The results obtained for
10 particles (or members) on different scenarios are summarized
in Table 1, where the first table represents the results related to
the estimation of the mean, and the second table compares the
results for the variance estimation.

In these first experiments, as we deal with linear Gaussian
systems, the filtering distribution is also Gaussian. The assump-
tions of the Ensemble Kalman filter are thus fully satisfied. This
case should be thus favourable to the Ensemble Kalman filter.
We observe, however, that the introduction of particles weight-
ing enables to enhance the results of the mean estimation in most
experiments. In order to improve the readability of Table 1, let
us describe more precisely the results associated to a specific
scenario. For instance, in the third line corresponding to the
scenario σQ = 1, σR = 1 and σB = 1, the WEnKF gives better
results (i.e. closer to the optimal result given by the Kalman
filter) in 56.1% of the runs with a mean squared error of 0.106.
Weighting the particles enables to take into account the fact that
the estimated ensemble Kalman gain is only an approximation
of the true gain. It also allows to take into account the probabil-
ity of forecast realizations. On the second table of Table 1, we
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Table 1. Experiments on 1-D linear problems

Scenario Results (mean estimation)

% WEnKF Error

σQ σR σB closer WEnKF EnKF

0.5 1 0.5 47% 0.092 0.089
1 1 5 49% 0.119 0.117
1 1 1 56.1% 0.106 0.114
1 1 10 48.5% 0.179 0.172
1 0.5 1 61.9% 0.056 0.065
1 0.2 1 63.6% 0.020 0.024

0.2 1 0.2 38.2% 0.134 0.096
10 2 10 66.5% 0.227 0.285

Scenario Results (variance estimation)

% WEnKF Error Estimate

σQ σR σB closer WEnKF EnKF WEnKF EnKF

0.5 1 0.5 31.7% 0.078 0.060 0.446 0.496
1 1 5 28.9% 0.114 0.087 0.547 0.604
1 1 1 31.8% 0.107 0.085 0.554 0.597
1 1 10 34.9% 0.112 0.092 0.564 0.609
1 0.5 1 33.3% 0.034 0.028 0.333 0.352
1 0.2 1 38% 0.007 0.006 0.158 0.167

0.2 1 0.2 38.4% 0.044 0.035 0.331 0.371
10 2 10 35.7% 0.726 0.619 1.589 1.655

Notes: Results obtained from WEnKF and EnKF with N = 10 particles are compared for
different sets of parameters (σQ, σR, σB ). Mean squared estimation errors with respect to the
Kalman mean estimate are presented on the first table, errors with respect to the Kalman
variance estimate on the second table, together with a comparison of variances estimated by
both methods. The mean squared errors have been computed on 5000 independent trials. On
both tables, we also indicate the percentage of cases among all time steps and trials where the
WEnKF estimate was closer to the Kalman estimate.

observe however that the error associated to the variance esti-
mation tends to be higher for the WEnKF method. It can also
be noticed that the empirical variance of the WEnKF is smaller
than the EnKF one for all scenarios.

Note that a significant enhancement of the results of the
WEnKF can be obtained by an empirical evaluation of the
Gaussian proposal distribution associated to the variables δx(i)

k =
x(i)

k − μ(i) in (43) instead of relying on its analytical expression
(37). The empirical mean δxk and the empirical variance �̂e

k are
computed through relations

δxk = 1

N

N∑
i=1

δx(i)
k ,

and

�̂e
k = 1

N − 1

N∑
i=1

(
δx(i)

k − δxk

) (
δx(i)

k − δxk

)T

,

and the weights are then updated according to

w
(i)
k ∝

p
(

yo
k |x(i)

k

)
p

(
x(i)

k |x(i)
k−1

)
N

(
x(i)

k − μ
(i)
k ; δxk, �̂

e
k

) . (55)

The actual proposal distribution used is then more correctly
described with respect to the particles and allows a compensation
of the simulation errors of the random realizations1.

The Table 2 gives the results obtained for the same scenarios
as Table 1 but using this empirical proposal distribution. The

1 (Pham, 2001) proposes to control the random realizations so as to
ensure they have the required mean and variance, through a ‘second
order accuracy’ sampling method. Weighting and using the empirical
propagation in the WEnKF enables to compensate the simulation errors
in the same way. We will see in the next paragraph that contrary to
the second order accuracy sampling, the WEnKF also compensates the
approximation error in the non-linear case.
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Table 2. Experiments on 1-D linear problems with an empirical propagation law [updating of
weights with (55)]

Scenario Results (mean estimation)

% WEnKF Error

σQ σR σB closer WEnKF EnKF

0.5 1 0.5 88% 0.046 0.089
1 1 5 94.5% 0.042 0.117
1 1 1 93.5% 0.052 0.114
1 1 10 91.7% 0.053 0.172
1 0.5 1 98.8% 0.028 0.065
1 0.2 1 96.9% 0.010 0.024

0.2 1 0.2 69.6% 0.055 0.096
10 2 10 96.8% 0.096 0.285

Scenario Results (variance estimation)

% WEnKF Error Estimate

σQ σR σB closer WEnKF EnKF WEnKF EnKF

0.5 1 0.5 50.6% 0.056 0.060 0.412 0.496
1 1 5 63.2% 0.076 0.087 0.515 0.604
1 1 1 54.9% 0.077 0.085 0.502 0.597
1 1 10 60.4% 0.079 0.092 0.514 0.609
1 0.5 1 72.6% 0.023 0.028 0.304 0.352
1 0.2 1 85.4% 0.004 0.006 0.145 0.167

0.2 1 0.2 44.1% 0.041 0.035 0.306 0.371
10 2 10 88.5% 0.387 0.619 1.467 1.655

Notes: Results obtained from WEnKF and EnKF with N = 10 particles are compared for
different sets of parameters (σQ, σR, σB ). Mean squared estimation errors with respect to the
Kalman mean estimate are presented on the first table, errors with respect to the Kalman
variance estimate on the second table, together with a comparison of variances estimated by
both methods. The mean squared errors have been computed on 5000 independent trials. On
both tables, we also indicate the percentage of cases among all time steps and trials where the
WEnKF estimate was closer to the Kalman estimate.

results obtained by the WEnKF for the mean estimation are sig-
nificantly improved for all the scenarios (the ratio of favourable
tests increased and reach a ratio greater than 90% in most sce-
narios). The variance estimation is also improved, leading to
better results for the WEnKF method in most cases. We observe
also that the empirical variance of the WEnKF is smaller for all
configurations.

Let us remark that in both techniques the same inflation proce-
dure as the one defined in Section 3.4.2 has been implemented.
For the linear dynamics, its influence revealed however to be
minor. The beneficial of this smoothing is much more notable in
the non-linear case (see Tables 3 and 4).

By increasing the number of particles, the mean squared error
is decreasing for both methods, and both converge to the analytic
result of the Kalman filter. Figure 1 illustrates this decrease for
four different scenarios of Table 2. We observe that the error for

the WEnKF always converges faster toward zero, except for the
case in which the model noise σQ is very small with respect to
the measurement noise σR , where both performances are close.
This case is the most defavourable configuration for the WEnKF,
already observed in Tables 1 and 2 for N = 10 particles).

4.2. Non-linear dynamics

We now perform an evaluation of the WEnKF for a non-linear
dynamics associated to a linear Gaussian measurement. The
following scalar dynamics has been chosen

xk = sin(3xk−1) + ηk,

where ηk is a white Gaussian noise with variance σQ. This dy-
namics is associated to the same measurement model (54) as
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Table 3. Experiments on 1-D non-linear problems without use of an inflation procedure

Scenario Results

% WEnKF Error Variance estimate

σQ σR σB closer WEnKF EnKF WEnKF EnKF

0.2 0.2 0.2 54.9% 0.197 0.202 0.131 0.142
0.2 0.2 1 52.7% 0.241 0.244 0.124 0.139
0.2 1 0.2 46.2% 0.610 0.601 0.368 0.392
1 0.2 1 64.4% 0.220 0.235 0.156 0.171
1 1 1 61.3% 0.683 0.712 0.529 0.573

Notes: Results obtained from WEnKF and EnKF with N = 10 particles are compared for different
sets of parameters (σQ, σR, σB ). Mean squared estimation errors with respect to the ground truth
are presented, together with a comparison of variances estimated by both methods. The mean
squared errors have been computed on 5000 independent trials. We also indicate the percentage of
cases among all time steps and trials where the WEnKF estimate was closer to the ground truth.

Table 4. Experiments on 1-D non-linear problems with use of an inflation procedure

Scenario Results

% WEnKF Error Variance estimate

σQ σR σB closer WEnKF EnKF WEnKF EnKF

0.2 0.2 0.2 59.7% 0.135 0.146 0.138 0.148
0.2 0.2 1 49.5% 0.093 0.093 0.135 0.148
0.2 1 0.2 53.6% 0.568 0.570 0.391 0.398
1 0.2 1 65.9% 0.224 0.241 0.158 0.172
1 1 1 64% 0.455 0.487 0.531 0.573

Notes: Results obtained from WEnKF and EnKF with N = 10 particles are compared for different
sets of parameters (σQ, σR, σB ). Mean squared estimation errors with respect to the ground truth
are presented, together with a comparison of variances estimated by both methods. The mean
squared errors have been computed on 5000 independent trials. We also indicate the percentage of
cases among all time steps and trials where the WEnKF estimate was closer to the ground truth.

before. The initial state is still defined as a zero mean Gaussian
distribution with variance σB .

Five scenarios with different choices of parameters have
been created. As previously, a great number of independent
trials (5000) have been realized and their results have been
averaged.

Two different tables of results are presented (Table 3 and 4),
that sum up the results obtained for the five non-linear scenarios
studied with N = 10 particles. Both have been obtained comput-
ing the weights of the WEnKF particles according to expression
(55), where the empirical form of the proposal distribution is
used in order to compensate the approximation error and im-
prove results. The difference in the two sets of results consists
in the use of the inflation procedure (smoothing of the particles
distribution, described in Section 3.4.2) for Table 4, but not for
Table 3. We can note that the introduction of the smoothing pro-
cedure tends to reduce the mean squared error for both methods.
This highlights the fact that an improvement of the EnKF proce-

dure may lead to an improvement of the results of the WEnKF,
through a better description of the proposal distribution. We also
observe that the empirical variances are slightly increased by the
smoothing procedure for both methods, but the empirical vari-
ance computed from the WEnKF distribution remains smaller,
showing that the WEnKF tends to concentrate more the particles
than the EnKF.

We observe in these two tables that the results obtained by
the WEnKF are better or comparable to the results of the EnKF.
The performances of the WEnKF are better in average when the
model noise σQ is not too small with respect to the initial noise
σB or the measurement noise σR .

Figure 2 clearly shows that the two methods do not always
converge toward the same filtering distribution when the number
of particles increases. These experimental results tend to confirm
the asymptotical results described in (Le Gland et al., 2010)
which state that the EnKF has a limiting distribution that differs
from the optimal Bayesian filtering distribution.
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Fig. 1. Experiments on 1-D linear problems.
Results obtained from WEnKF (line with
crosses) and EnKF (continuous line) are
compared for four different sets of
parameters (σQ, σR, σB ) and increasing
numbers N of particles. The mean squared
estimation error with respect to the mean of
the optimal Kalman filter distribution is
plotted versus the number of particles. The
mean squared errors have been computed on
5000 independent trials.

Fig. 2. Experiments on 1-D non-linear
problems. Results obtained from WEnKF
(line with crosses) and EnKF (continuous
line) are compared for two different sets of
parameters (σQ, σR, σB ) and increasing
numbers N of particles. The mean squared
estimation error with respect to the ground
truth is plotted versus the number of
particles. The mean squared errors have been
computed on 5000 independent trials.

5. Experiments on a high dimensional
non-linear problem

The high-dimensional experiments are performed on an ex-
ample with non-linear dynamics. As for the non-linear scalar
experiment, the optimal filtering distribution is unknown. The
performances of EnKF and WEnKF methods are then com-
pared by means of the error between the mean of the estimated
filtering distributions and the ground truth at each time step:
e(k) = (xtrue

k − xk)T (xtrue
k − xk), where xk = ∑N

i=1 w
(i)
k x(i)

k and
w

(i)
k = 1

N
for the EnKF method. Moreover, a dispersion crite-

ria is computed for both methods as d(k) = ∑N
i=1 w

(i)
k (x(i)

k −
xk)T (x(i)

k − xk).
The high dimensional experiments are realized on scenar-

ios representing the evolution of a 2-D turbulent flow. The
flow evolution is described through the 2-D incompressible
vorticity–velocity formulation of the Navier–Stokes equations
with a stochastic forcing

dξ = −∇ξ · wdt + 1

Re
�ξdt + σQdW, (56)

where ξ = vx − uy denotes the vorticity of the velocity field
w = [u, v]T , and Re is the flow Reynolds number. The operators
∇ξ and �ξ denote the 2-D gradient and Laplacian operators
applied on the vorticity ξ . The random forcing term dW is an
isotropic Gaussian fields correlated in space and uncorrelated in
time. Its covariance operator is defined as:

Q(r, τ ) = E(dW (x, t)dW (x + r, t + τ )) = gλ(r)dtδ(τ ), (57)

where gλ(r) = exp(−‖r‖2/λ2) describes the spatial correlation
structure and the delta Dirac function stands for the temporal
correlation structure. The Gaussian function plays here the role
of a cut-off function. Different numerical methods have been
proposed to generate such random fields with additional power
law constraints on the power spectrum (Elliot et al., 1997). In
this work, we used a simplified procedure similar to the one
proposed in (Evensen, 1994).

Furthermore, let us recall that introducing the Biot-Savart
integral, the velocity field can be recovered from its vorticity

w = ∇G ∗ ξ, (58)
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where G(x) = ln(|x|)
2π

is the Green’s kernel associated to the Lapla-
cian operator.

To achieve an accurate and stable discretization of the advec-
tive term ∇ξ · w, we have used a conservative numerical scheme
(Shu, 1998). Such schemes respect exactly the conservation law
within the discretization cell by integrating the flux value at cell
boundaries. Total variation diminishing (TVD) schemes (which
are monotonicity preserving flux) prevent from an increase of
oscillations over time and enable to transport shocks. All these
methods are well detailed in (Shu, 1998). The time integration
is realized with a third-order Runge–Kutta scheme, which also
respects the TVD property (Shu, 1998). The motion field is up-
dated at each time step in the Fourier domain with eq. (58).
With this whole non-oscillatory scheme, the vorticity–velocity
equations can be integrated on a domain of interest. In this
work, we considered a squared 2-D spatial domain of 64 × 64
and a temporal range k ∈ [0, 100]. This model has been simu-
lated starting from a fixed initial condition built from the sim-
ulation of a Gaussian random field of covariance σ 2

B
B, with

B(x, y) = gλ(x − y). The samples have been drawn with the
same procedure as for the model noise. Examples of some vortic-
ity map realizations obtained for a given ‘eddy diffusivity’ value,
σQ, and different initial noise amplitudes, σB , are presented in
Fig. 3.

The linear measurement model (54) is still used. However
we considered that these observations where available only at
discrete measurement instants k ∈ N, k + �k ≤ 100 with the
measurements latency �k = 1, 2, 3, 4, 5. The length of the time
integration interval �t is given by the Runge–Kutta process (a
typical value is �t = 0.1 << �k) and is fixed as the inverse
of the velocity field infinite norm in order to guarantee a stable
scheme (Shu, 1998). It is thus not directly defined as a fixed por-
tion of the measurement interval �k. The observations, with spa-
tial resolution 64 × 64, have been generated applying different
levels of Gaussian noise of covariance R(x, y) = σRgλ(x − y) to
the simulated velocity fields. As we used three different values
for σB = σR and σQ, this provides us a benchmark of nine sce-
narios to assess our filtering technique. A value of λ = 3 has
been used for all these scenarios. Table 5 sums up the different
parameters used to build this benchmark.

The two filters have been run and compared for the very same
number of particles (or ensemble members). Reduced sets of
particles have been used in the experiments. We have fixed the
number N of particles according to the measurement latency as
follows: N = 20 × �k, since both methods need more particles
to avoid divergence when the measurement latency gets larger.
For both methods, 100 independent trials have been run. The
smoothing procedure of the particles distribution (presented in
Section 3.4.2 and which can be related to covariance inflations
approaches usually applied in EnKF methods) has been applied
to both methods, aiming at avoiding the divergence of the filters
when the number of particles is small and the measurements
latency gets larger.

Fig. 3. Experiments on a high-dimensional non-linear problem.
Examples of ground truth vorticity maps are presented for three
different sets of parameters (σB, σQ). It can be noted that the
amplitude and the size of vorticity structures vary a lot with respect to
the scenarios.
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Table 5. Experiments on a high-dimensional non-linear problem

Scenario Results

Error Dispersion

σB = σR σQ �k WEnKF EnKF WEnKF EnKF

1 0.006 0.007 0.015 0.016

2 0.013 0.042 0.039 0.137

0.01 0.01 3 0.009 0.026 0.027 0.072

4 0.011 0.031 0.037 0.149

5 0.013 0.047 0.046 0.531

1 0.016 0.017 0.025 0.027

2 0.022 0.052 0.049 0.150

0.01 0.05 3 0.018 0.035 0.039 0.083

4 0.021 0.042 0.050 0.168

5 0.023 0.059 0.060 0.625

1 0.048 0.048 0.057 0.057

2 0.055 0.083 0.085 0.182

0.01 0.1 3 0.051 0.065 0.078 0.122

4 0.052 0.071 0.091 0.205

5 0.052 0.095 0.101 0.712

1 0.007 0.008 0.016 0.017

2 0.013 0.043 0.038 0.138

0.05 0.1 3 0.009 0.026 0.027 0.072

4 0.011 0.034 0.037 0.154

5 0.013 0.048 0.046 0.559

1 0.018 0.019 0.027 0.029

2 0.025 0.056 0.052 0.153

0.05 0.05 3 0.020 0.037 0.041 0.086

4 0.022 0.046 0.052 0.171

5 0.024 0.066 0.062 0.666

1 0.053 0.051 0.062 0.060

2 0.056 0.085 0.087 0.188

0.05 0.01 3 0.052 0.068 0.080 0.127

4 0.053 0.074 0.093 0.214

5 0.055 0.095 0.105 0.762

1 0.009 0.010 0.018 0.019

2 0.015 0.048 0.041 0.148

0.1 0.01 3 0.011 0.027 0.030 0.075

4 0.014 0.036 0.040 0.164

5 0.015 0.058 0.048 0.704

1 0.021 0.020 0.030 0.030

2 0.025 0.056 0.052 0.160

0.1 0.05 3 0.022 0.036 0.043 0.087

4 0.023 0.042 0.053 0.172

5 0.024 0.061 0.061 0.630

1 0.051 0.050 0.061 0.060

2 0.056 0.084 0.088 0.188

0.1 0.1 3 0.052 0.067 0.081 0.127

4 0.054 0.073 0.094 0.218

5 0.054 0.090 0.104 0.712

Notes: Results obtained from WEnKF and EnKF are compared for different sets of
parameters (σB, σR, σQ) and different measurement latencies �k (associated to different
numbers of particles N = 20 × �k). Mean squared estimation errors with respect to the
ground truth are presented, together with a comparison of the dispersion criteria computed
for both methods. The mean squared errors have been computed on 100 independent trials.
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Before examining in detail the results, let us first point out
that with the smoothing procedure introduced both techniques
converged in 100% of the trials. Without this smoothing, for a
small number of particles and large measurements latency the
WEnKF was unstable and diverged for a great proportion of
the trials. As an example, for N = 60 particles and �k = 5 we
observed filter divergence in 87% of the trials, whereas the filter
converges in 100% of the trials in the same configuration and
the smoothed resampling scheme. This smoothing appears thus
to be essential for the WEnkF.

The quantitative results of experimentations are presented in
Table 5. The error values given for each method represent the er-
rors e(k) averaged over all time steps and trials, and similarly for
the dispersion criteria d(k). The behaviours of the filtering tech-
niques, for different measurement latencies �k ∈ {1, 2, 3, 4, 5},
are presented in Figs. 4–8. For each measurement latency �k,
the associated nine plots illustrate along time the mean squared
error levels reached by the EnKF and WEnKF for the nine
studied scenarios. These results have been averaged over 100
independent trials.

Fig. 4. Experiments on a high-dimensional non-linear problem, with a measurement latency �k = 1. The time evolution of the mean squared
estimation error with respect to the ground truth is plotted for the WEnKF (dotted line) and the EnKF (continuous line), for different sets of
parameters (σB, σR, σQ). The mean squared errors have been computed on 100 independent trials.
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Fig. 5. Experiments on a high-dimensional non-linear problem, with a measurement latency �k = 2. The time evolution of the mean squared
estimation error with respect to the ground truth is plotted for the WEnKF (dotted line) and the EnKF (continuous line), for different sets of
parameters (σB, σR, σQ). The mean squared errors have been computed on 100 independent trials.

As it can be observed from Table 5 and the different plots,
the WEnKF provided better results than the EnKF filter in most
cases. Let us describe the conclusions that can be made from
these experiments:

(i) When the latency �k between observations is small both
filters give globally comparable results. This may be observed
in Table 5 where the errors and the dispersion are quasi iden-
tical. For small measurement time intervals the implicit linear
assumption of the EnKF seems to work well for the dynamics

carried out here. For small integration steps (in between two
observations) the system does not suffer from strong perturba-
tions and behave more like a deterministic dynamics with an
uncertainty on the initial condition.

(ii) When �k increases, both methods need some time steps
to stabilize and start to converge, due to the fact that particles
are not guided nor corrected towards the observations on greater
time intervals.

(iii) However, when the measurement latency �k gets larger,
the WEnKF method converges more quickly than the EnKF, and
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Fig. 6. Experiments on a high-dimensional non-linear problem, with a measurement latency �k = 3. The time evolution of the mean squared
estimation error with respect to the ground truth is plotted for the WEnKF (dotted line) and the EnKF (continuous line), for different sets of
parameters (σB, σR, σQ). The mean squared errors have been computed on 100 independent trials.

always gives a smaller error, for all parameters configurations
tested. Note that the greater �k, the faster the WEnKF converges
in comparison with the EnKF. For large �k an ineffective Gaus-
sian assumption of the ensemble members distribution probably
penalizes the EnKF and slows down its convergence rate.

(iv) Finally, we can observe from Table 5 that the dispersion
criteria is smaller for the WEnKF method for almost all sce-
narios. This has already been observed in the scalar case when
comparing estimated variances, and confirms that the WEnKF
method tends to concentrate more the particles.

All these results allow us to conclude that the WEnKF strategy
leads globally to a gain of efficiency compared to the traditional
EnKF implementation. This gain is provided with a compara-
ble computational cost. Let us remark that convergences over
different limiting distribution have not been observed in this
last experiment opposite the non-linear scalar case. This may be
an indication that both filters still converge toward an inexact
filtering distribution. Several directions of improvements could
probably be investigated in the future. First of all, the approxima-
tion of the covariance matrix through random draws shows some
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Fig. 7. Experiments on a high-dimensional non-linear problem, with a measurement latency �k = 4. The time evolution of the mean squared
estimation error with respect to the ground truth is plotted for the WEnKF (dotted line) and the EnKF (continuous line), for different sets of
parameters (σB, σR, σQ). The mean squared errors have been computed on 100 independent trials.

limitations as the filters are in a way blind to the quality of the
forecasts and proposals with respect to the previous state and
the new measurements. Other approximations will have on the
other hand to tackle the difficult issue of a relevant and efficient
approximations/evaluations of the weights computation. Other-
wise, as an augmentation of the number of particles cannot be
a solution for geophysical applications, efficient dimension re-
duction approaches allowing a clever repartition of the particles
cloud have to be investigated. Strategies coupling variational as-
similation and ensemble based technique may provide some im-

provements for small measurements latencies or asynchronous
observations and would be worth investigating.

6. Conclusions

In this paper, two sequential Monte Carlo filters have been stud-
ied: the ensemble Kalman filter and a particular version of a
particle filter adapted to high dimensional problems. The advan-
tages and drawbacks of both methods have been described and
analysed.
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Fig. 8. Experiments on a high-dimensional non-linear problem, with a measurement latency �k = 5. The time evolution of the mean squared
estimation error with respect to the ground truth is plotted for the WEnKF (dotted line) and the EnKF (continuous line), for different sets of
parameters (σB, σR, σQ). The mean squared errors have been computed on 100 independent trials.

The particle filter proposed in this paper borrows to the en-
semble Kalman filter its ensemble members sampling strategy.
This modification consisted in defining the particle filter pro-
posal density from this ensemble members sampling scheme.
The weights corresponding to the ratio between the Bayesian
filtering and the proposal distribution are then updated accord-
ing to this ‘ensemble Kalman’ proposal density. The sequential
Bayesian filter resulting from this strategy constitutes in fine a
simple extension of Ensemble Kalman filters.

It has been shown experimentally in this paper that such an
extension allows improving the results obtained by a traditional
implementation of ensemble Kalman filtering. Also as a by prod-
uct of the resampling used in the particle filter, the extended en-
semble filter proposed, provides in general a faster error decrease
along time.

The weighted ensemble Kalman filter has been tested on
linear and non-linear scalar scenarios. We also applied the
method for the assimilation of 2-D flow scenarios. For this last
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example, we showed that with a smoothed resampling scheme
and an adapted implementation strategy the proposed modifica-
tion of the particle filter was well suited to a high dimensional
problem. In several cases, this filter has shown to outperform the
traditional ensemble Kalman filtering with a comparable com-
putational load. The good behaviour of the WEnKF technique
for large measurements latency could probably be beneficial for
geophysical applications for which the time interval between
two observations is long.

In future works, we aim at directly considering image obser-
vations, as it has been done in (Corpetti et al., 2009) in the context
of a variational assimilation strategy or introducing image based
non-linear measurements and sampling relying on the dynam-
ics stable and unstable directions (Cuzol & Memin, 2009). We
also plan to test this methodology on realistic meteorological or
oceanic forecast models.
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8. Appendix A: A simplification of the particle
weights computation

The weights computation (44) requires to evaluate the proposal
density distribution N (x(i)

k − μ
(i)
k ; 0, �e

k) and the a priori distri-
bution p(x(i)

k |x(i)
k−1) (45). These distributions require to evaluate

Gaussian distributions through a small number of samples. We
are going to prove that for ensembles of dimension much smaller
than the size of the state space, all the samples are equiprobable
with respect to these distributions.

Both distributions require to evaluate Gaussian distributions
N (γ (i)

k ; 0, �e
k ) centered on μ

(i)
k (32) and x(i)

t−�t with covariance
matrices Ke

kRKeT
k and Q�t respectively for the proposal and the

transition distributions involved in the expression of the a priori
distribution (45).

Of course, in the latter case, successive products at every time
steps and huge integrals have to be performed in addition (45).
Nevertheless, let us focus first on the inner Gaussian expressions
involved in the evaluation of this distribution.

As the process will be the same for both distributions, we
here rely on a general formulation. For samples of Gaussian
distribution y(i), i = 1 · · · N , of mean 0 and variance �, we have

N (y(i); 0, �) ∝ exp

(
−1

2
y(i)T (�)−1 y(i)

)
. (A1)

Let � be a n × N matrix whose columns are samples of the
target density y(i), the covariance matrix is approximated by its
empirical extension, through the method previously described

in paragraph 3.4.1

�e � ��T

N − 1
. (A2)

In order to keep simple notations, the thin Singular Value De-
composition of � is written with the same notations as those
used previously (Section 3.4.1). We then have � = USWT and
the previous expression reads

�e � USST UT

N − 1
. (A3)

We also denote by � the matrix whose components �ij are
defined as

� = 1

2
�T (�e)−1

�, (A4)

and such that the weight contribution for each sample i, defined
by the eq. (A1), is proportional to exp(−�ii). By replacing the
matrix by its approximation (A3), we do not need to realize an
inversion but a pseudo inversion

� = 1

2
�T

(
USST UT

N − 1

)+
�, (A5)

= N − 1

2
�T U

(
SST

)+
UT �, (A6)

= N − 1

2
WSS+S+SWT . (A7)

The matrix � being of size n × N , with N << n, its rank
(and its number of non-null singular values) is lower than or
equal to N. As the columns of � are provided by the simulation
of a centred Gaussian distribution, the sum of the columns will
be close to zero and the rank lower than or equal to N − 1. We
assume that the rank is equal to N − 1 since the set of samples
is assumed to represent a space of dimension much greater than
N and particles alignment would constitute a loss of efficiency.

We then have SS+ = 1N−1
N , where 1m

n defines a matrix of size
n × n with the m first diagonal terms equal to 1 and the others
are 0. One has

� = N − 1

2
W1N−1

N WT , (A8)

and we deduce that

�ii = N − 1

2

N−1∑
k=1

W 2
ik . (A9)

As the columns of W are normalized vectors, this expression
reads

�ii = N − 1

2

[
1 − W 2

iN

]
. (A10)

This quantity depends on the components of the last vector
of the orthogonal matrix W, i.e. the one corresponding to the
Nth singular value, which is equal to zero. This vector is thus
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in the kernel of the matrix �. The kernel is spanned by vec-
tor (1, 1, . . . , 1)T , noting the set of samples has a null mean
((1, 1, . . . , 1)� = 0) and according to the kernel definition.

Furthermore, as the columns of W are normalized, W 2
iN =

1/N . We then conclude that �ii = �jj ,∀(i, j ) ∈ [1, N ]2.
In relation (44), the proposal density distribution N (x(i)

k −
μ

(i)
k ; 0, �e

k) and the inner Gaussian transition distributions
p(x(i)

t |x(i)
t−�t ) involved in the a priori distribution (45) are thus

independent of the particle index (when the number of parti-
cles is inferior to the size of the state space). For the different
ensemble members the proposal distribution and the a priori
distribution have equiprobable values, their computations in the
weight updating rule can be thus ignored.
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