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A B S T R A C T
Common parametrization models for cloud microphysical processes use condensate mass density and/or particle number
density as prognostic properties. However, other moments of the particle size distribution can likewise be chosen for
prediction. This study deals with parametrization models with one and two, respectively, prognostic moments for the
sedimentation of drop ensembles. The spectral resolving model defines the reference solution.

The evolution of the vertical profiles of liquid water content, drop number density and rain rate strongly depend on the
choice of the prognostic moments in the parametrization models. In models with a single prognostic moment, its vertical
profile is copied by all other moments. The moment of most physical pertinence is recommended for prediction. In
models with two prognostic moments, the vertical profiles of all moments differ. The orders of the prognostic moments
should be chosen close to the order of moments of highest relevance. Otherwise large errors occur. For example,
comparison of modelled versus observed radar reflectivity (6th moment with respect to diameter) does not tell much
about the quality of other properties if reflectivity is diagnosed from for example, number density and mass density.
Furthermore, mass conservation is fulfilled only if mass density is forecasted.

1. Introduction

An adequate simulation of weather and climate should include
clouds and precipitation, since they are important weather and
climate parameters and influence many other processes in the
troposphere and at the surface. However, in those models cloud
microphysical processes are not treated in spectral resolving
form, but their effects are described in parametrized form, based
on the ideas presented by Kessler (1969), for the sake of com-
putational efficiency. For instance, extensive schemes for mixed
phase clouds are currently used in weather prediction models
as COSMO of the Deutscher Wetterdienst (DWD; Doms et al.,
2005) and as the one of the Japan Meteorological Agency (JMA;
Saito et al., 2006) and in climate models as CCSM (NCAR;
Collins et al., 2004) and ECHAM5 (MPI Hamburg; Roeckner
et al., 2003). A spectral treatment of cloud microphysical pro-
cesses is presently done in a weather forecast model for research
purpose, see Lynn et al. (2005), and in cloud models, as for
example, by Khain et al. (2004).

Parametrization schemes (or ‘bulk schemes’) for cloud micro-
physical processes are based on the assumption that the particle
size distribution is well represented by a self-preserving drop
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size distribution with only few parameters. These parameters
can be expressed in terms of few moments of the size distribu-
tion, such that the forecast of those moments is equivalent to the
forecast of the spectrum. In the above mentioned weather and
climate models, so-called 1-moment parametrization schemes
are routinely used, in which only one moment of the spectrum
of each category of condensate particles is forecasted. Any other
moment of the spectrum is then diagnosed as a function of the
single prognostic moment.

Schemes with two or more prognostic moments have been
developed and applied to research models. 2-moment schemes
generally used particle number density and condensate mass
concentration as prognostic moments; examples are the schemes
developed by Ferrier (1994) and by Seifert and Beheng (2005)
for mixed phase clouds and by Lüpkes et al. (1989) for warm
clouds. An example for a parametrization with three prognostic
moments is the one reported by Milbrandt and Yau (2005b), who
additionally forecast the radar reflectivity.

Information on the strengths and weaknesses of the
parametrization approach can be gained from a comparison
with the results from a microphysical spectral model (‘refer-
ence model’), which is based on the solution of the prognos-
tic equation for the hydrometer size distribution, for example,
Lüpkes et al. (1989), Lynn and Khain (2007) and others. For
an idealized system of a rain drop ensemble evolving under the
influence of sedimentation alone, such a comparison is done by
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Wacker and Seifert (2001), hereafter referred to as WS. The
focus on sedimentation alone is certainly a strong restriction,
when considering all processes, which modify a drop example,
as for example, coagulation, evaporation and freezing. The sim-
plified system has the advantage that the evolution of the drop
size distribution and hence of the moments can be calculated
analytically as function of space and time. This solution for the
moments is a reference, against which the results from various
parametrization models can be compared. WS used the liquid
water content as prognostic moment for their 1-moment model.
An important finding was that solutions from the parametrization
model show a shock wave. This is in contrast to the reference so-
lution and is explained by WS as follows. The reference solution
accounts for gravitational sorting of the falling drops; that is the
largest drops will arrive first at a particular height level, followed
by the next drops in size. This feature cannot be reproduced by
a 1-moment scheme, since the ensemble is shifted downward by
its moment-weighted sedimentation speed. Furthermore, owing
to the increase of the moment-weighted sedimentation velocity
with increasing liquid water content, the sedimentation term in
the prognostic equation of the liquid water content takes the form
of a quasi-linear advection term. This term can cause solutions
in form of shock waves. This solution type is hardly noticed in
numerical solutions of the moment’s equation, since the widely
used numerical methods are diffusive and hence cover this ef-
fect. WS found shock waves to be also part of the solution of a
2-moment model with the prognostic variables liquid water con-
tent and drop number density; but here they play a weaker role,
since some part of the gravitational sorting can be at least rudi-
mentarily reproduced by the model. Therefore, the solution is
closer to the result of the reference model than for the 1-moment
model.

The different representation of the size sorting effect by differ-
ent parametrization models is further investigated by Milbrandt
and Yau (2005a). The evolution of the profiles of several mo-
ments of the particle ensemble matches the reference solution
the better, the more moments are forecasted. They additionally
show the influence of the assumed shape of the particle size
distribution on the solution from the parametrization model, and
suggest to diagnose a shape parameter of the distribution from
current number and mass concentration.

Research on the appropriate treatment of sedimentation within
parametrization schemes is ongoing. Geleyn et al. (2008), for
instance, propose a refined 1-moment scheme for sedimentation
by a statistical approach for the vertical distribution of liquid
water within a model layer.

In this study, a central question concerns the dependence of
the results of the bulk-parametrization approaches on the specific
selection of the prognostic moments of the drop size distribution.
This point has received little attention so far. Let Mk denote the
moment of order k of the drop size distribution. In case of a
1-moment scheme with prognostic moment Mk, all moments Ml

of order l �= k are, if not prescribed, diagnosed from Mk, so that

the spatial structure of Ml is determined by that of Mk. Likewise
for the 2-moment models it is not a priori obvious, how to choose
the two prognostic moments Mj and Mk, and how the results of
Ml will vary for different combinations.

This dependence will be elaborated in the present paper with
the idealized model of a raindrop ensemble evolving under the
influence of sedimentation, as in WS. The model differs from
the one of WS insofar, as we consider here various candidates
for the prognostic moments. It will be shown, how the resulting
vertical profile of, for example, liquid water content depends on
the choice of the prognostic moment(s).

Once the dependence of the results on the specific prognostic
moments is found for the bulk models, the second central ques-
tion arises, as to which moments are the most suitable ones to
be predicted.

To concentrate on these two aspects, we specifically keep as
close as possible to the framework of common bulk schemes,
although some assumptions may be questioned, such as a self-
preserving drop size distribution ranging for drop diameters 0 ≤
D ≤ ∞ and a constant shape parameter of the assumed gamma
distribution. An alternative concept is not within the scope of
the present study.

In this paper, we start in Section 2 with the description of
the spectral model for the evolution of the drop size distribution
and the resulting reference solutions for the vertical profile of
various moments. In Sections 3 and 4, the 1-moment and the
2-moment schemes, respectively, are investigated with regard
to the dependence of the moments’ profiles on the prognostic
moment(s), and the profiles are compared with the reference
solution. In Section 5, we will discuss the results and suggest
criteria for the choice of the prognostic moments.

2. The moments’ profiles as they follow from
the spectral resolving microphysical model

The microphysical state of an ensemble of drops is character-
ized by the drop size distribution (DSD) f (D, x, y, z, t) with D
denoting drop diameter, x, y, z the spatial coordinates and t time.
f (D, x, y, z, t) dD gives the number of drops per unit volume in
the diameter interval [D, D + dD]. In the following we consider
only sedimentation and discard any dependence on the horizon-
tal coordinates x, y. The accordingly simplified budget equation
for f then takes the form

∂f (D, z, t)

∂t
− ∂[vT (D)f (D, z, t)]

∂z
= 0 (1)

with the sedimentation velocity vT (D) of a drop with diameter
D. As long as we assume that vT depends only on the drop size,
eq. (1) is a strict linear PDE.

We adopt for the sedimentation velocity an empirical
velocity–diameter relation in the form of a power law,

vT (D) = αDβ, (2)
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and use α = 1300 cm1/2 s−1, β = 0.5 for raindrops (Kessler,
1969).

As outlined in WS, eq. (1) is solved by the method of char-
acteristics for the given initial condition f (D, z, t = 0) =
f 0(D, z),

f (D, z, t) = f0[D, z + vT (D)t]. (3)

That is, the number of drops in the interval dD at height z and
time t, f (D, z, t) dD, is equal to the initial number of drops in the
interval dD at height z + vT (D)t with vT (D) t being the distance,
which drops of diameter D have travelled during time t.

The initial vertical profile is now prescribed as in WS in form
of a homogeneous cloud layer with upper and lower boundaries
at heights zu and zl, respectively:

f0(D, z) =
{

f0(D) for zl ≤ z ≤ zu

0 else
(4)

The solution f (D, z, t) of (1) as given in (3) in combination
with (2) and (4) follows as (see WS)

f (D, z, t) =

⎧⎪⎨
⎪⎩

f0(D) for Dl(z, t) ≤ D ≤ Du(z, t)
and z ≤ zu

0 else

(5)

with Dl and Du denoting

Dl =

⎧⎪⎨
⎪⎩

(
1

α

zl − z

t

) 1
β

for z ≤ zl

0 for z > zl

Du =

⎧⎪⎨
⎪⎩

(
1

α

zu − z

t

) 1
β

for z ≤ zu

0 for z > zu.

(5)

Dl is the diameter of the smallest drop which, after starting at
level zl, has arrived at level z after time t; and Du is the diameter
of the largest drop which, after starting at level zu, has arrived
at level z after time t. Both Du and Dl decrease with increasing
time.

The kth moment Mk of a DSD is defined as

Mk(z, t) =
∫ ∞

0
Dkf (D, z, t) dD. (6)

The 0th moment is the number density of drops, M0 = N, the
third moment M3 is proportional to the liquid water content,
L = M3πρw/6 (ρw: bulk density of liquid water) and the 6th
moment M6 is the radar reflectivity, provided the particles are
assumed spherical. Once f (D, z, t) is known, one can calculate
the evolution of the various moments from (6).

We now choose as DSD for rain drops a gamma distribution
as in Milbrandt and Yau (2005a)

f0(D) = n0D
μ exp(−λD) (7)
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Fig. 1. Drop size distribution function f (D) in form of a gamma-
function (7) as function of drop diameter D for number concentration
N = 3 × 10−3 cm−3, liquid water concentration L = 5 × 10−7 g
cm−3, and various parameter values μ.

with the three parameters n0, μ and λ. The exponent μ is
a shape parameter. For μ = 0, f 0(D) takes the form of the
Marshall–Palmer size distribution, which is frequently assumed
for raindrop ensembles in parametrization schemes, for example,
Kessler (1969). Milbrandt and Yau (2005a) suggest the use of
μ = 3. In Fig. 1, the size distribution is plotted for various values
of μ, but for the same number concentration N and liquid water
content L. The influence of μ is such that the size distribution
becomes narrower with increasing μ.

Figure 2 gives an example for the development of the mo-
ments’ profiles for the initial homogeneous cloud layer accord-
ing to (4) and (7). As expected, the signals move downward
under the impact of sedimentation. Due to gravitational sorting,
the signals’ shapes are deformed, that is the initial discontinuities
at the upper and lower boundaries of the signal are smoothed
and the maxima are damped. The signals of the higher mo-
ments travel faster, since they are influenced more strongly by
the larger, faster falling drops. The two examples in Fig. 2 differ
due to the chosen shape parameter μ. As the size distribution
becomes narrower with increasing μ (see Fig. 1), the moments
become dominated by drops of similar sizes, such that the down-
ward shifts of the various moments converge. In the limiting case
μ → ∞, all drops and any moments would settle at the same
fall speed, since the DSD becomes essentially monodispered.

The evolution of a moment Mk(z, t) can be calculated in two
ways. First, as done before, one solves eq. (1) for the DSD
and then uses the definition of Mk by (6). Alternatively, the
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Fig. 2. Evolution of the vertical profiles of four moments of the drop
size distribution (7) with μ = 0 (first two rows) and μ = 3 (last two
rows) as follows from the spectral reference model (solution of (1)).
Initial conditions are defined by prescribing N(z, t = 0) and L(z, t = 0)
as in Fig. 1.

prognostic equation for Mk is derived from the budget
equation (1), multiplied with Dk and integrated over the drop
ensemble. The result is

∂Mk

∂t
− ∂Fk

∂z
= 0 (8)

Fk = ∫ ∞
0 vT (D)Dkf (D, z, t)dD denotes the sedimentation flux

for the kth moment.
Equation (8) is a source-free budget equation for any moment

Mk. The volume integral
∫

V
MkdV changes only by fluxes Fk

into and out of that volume, which gives a straightforward con-
servation condition. This reads for horizontally homogeneous
conditions∫ ∞

0
Mk(z, t) dz +

∫ t

0
Fk(z = 0, t ′) dt ′ = Ck = const. (9)

It is relevant for the following Sections 3 and 4, that the
sedimentation flux Fk cannot be expressed as function of the
prognostic Mk alone, except in the special case that the sedimen-
tation velocity vT is independent of drop size, that is β = 0 in
(2). Hence, in the general case, eq. (8) cannot be solved alone.
Either its solution requires knowledge of the DSD; but then Mk

simply follows from (1) and the solution of (8) is not required.
Otherwise, the flux Fk has to be parametrized, that is Fk has to
be expressed in terms of the prognostic moment(s), for which a
budget equation as (8) is to be solved.

Familiar parametrization models as will be used in this study,
are based on the assumption of a self-preserving rain drop size
distribution of the type (7). The knowledge of the parameters as
function of space and time is then equivalent to the knowledge
of the DSD. The free parameters can be uniquely expressed by
the same number of moments, thus solving the coupled system
of budget equations for those moments will likewise allow the
reconstruction of the DSD. In difference to the spectral model,
in which the DSD becomes naturally truncated due to gravita-
tional sorting, see the solution (5), the integration boundaries
are always set to D = 0, ∞ in the parametrization model. This
restriction might be skipped in favour of time dependent integra-
tion boundaries in case of the present idealized sedimentation
model. But since this is not feasible when other cloud physical
processes are included, we will neither do here.

Frequently it is assumed in parametrization schemes, that only
one or two moments of the DSD (7) vary independently. Then
additionally two or one, respectively, closure assumptions are
required to determine all three parameters and the DSD.

3. The 1-moment scheme

In 1-moment parametrization schemes, only a single moment Mk

is forecasted. We will study in this section the influence of the
choice of this particular kth moment on the resulting evolution
of the vertical profile of, for example, the 0th, the 3rd and the 6th
moment. It is assumed that the drop size distribution is always of
the form (7). Two closure conditions are necessary. We choose
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Fig. 3. Moment-weighted sedimentation velocity vk according to (A5)
as function of k for a drop size distribution (7) with μ = 0 and μ = 3,
respectively, and conditions for N and L as in Fig. 1.

the common approach n0 = const. and μ = const., yet other
closure conditions are feasible. The sedimentation flux Fk and
the moment-weighted sedimentation velocity vk = Fk/Mk are
expressed as functions of the moment Mk alone. The equations
for Fk(Mk) and vk(Mk) are given in (A4) and (A5) in Appe-
ndix A.

We first inspect the moment-weighted sedimentation velocity
vk (eq. A5). vk depends on the order k of the prognostic moment.
This is illustrated by an example. We select a constant μ, we
assume the same values for N and L as in Fig. 1, and we calculate
the parameters n0 and λ to get the drop size distribution. For this
DSD we calculate vk for k = 0, 1, . . . 10. As illustrated in Fig. 3,
vk increases with increasing k due to the increasing contribution
of large, fast falling drops on vk . Furthermore, since the size
distribution becomes narrower with increasing μ, see Fig. 1, the
range of variation of the moment-weighted velocity decreases
accordingly. Indeed, vk varies roughly by a factor 4 if μ = 0 and
only by a factor 2 if μ = 3 in the examples presented in Fig. 3.

We now turn to the budget equation (8) for Mk. Due to
Fk = Fk(Mk) in the 1-moment parametrization, we can rewrite
this equation in the form of an advection equation

∂Mk

∂t
− ṽk

∂Mk

∂z
= 0 (10)

with the apparent advection velocity

ṽk = dFk

dMk

= β + k + μ + 1

k + μ + 1
vk > vk . (11)

The PDE (10) is of the mathematical type of a quasi-linear
source-free advection equation and describes the propagation of
the signal Mk(t, z) with the velocity ṽk = ṽk(Mk) depending on
the signal Mk itself. In contrast to eq. (10), eq. (1) for f(D) is a
strict-linear advection equation, since the advection velocity is
independent of the variable f.

WS discuss eq. (10) for the case that Mk is replaced by the liq-
uid water mass concentration L (∝ M3). They solve the PDE (10)
analytically for given initial conditions, and they document that
the dependency of ṽk on Mk can lead to shock-wave solutions.

Here, emphasis is put on the impact of the selected prognostic
moment. Suppose that Mk is chosen as the relevant moment.
Then the apparent advection velocity ṽk determines the propa-
gation of Mk. Any other moment Ml (l �= k) can be expressed in
terms of Mk, see eq. (A7). Once Mk(z, t) is known as solution of
(10), the distribution Ml(z, t) is determined as Ml[Mk(z, t)], thus
it will have the same spatial and temporal structure as Mk(z, t)
regulated by ṽk . The moment-weighted sedimentation velocities
vk, vl differ for k �= l, see Fig. 3, and so will the apparent ad-
vection velocities ṽk, ṽl , see eq. (11). They are ordered in size
according to the sequence (see eq. A11)

ṽl =

⎧⎪⎪⎨
⎪⎪⎩

<

=
>

⎫⎪⎪⎬
⎪⎪⎭ ṽk for l =

⎧⎪⎪⎨
⎪⎪⎩

<

=
>

⎫⎪⎪⎬
⎪⎪⎭ k. (12)

Thus the higher the order of the selected prognostic moment is,
the faster propagates the signal, and this propagation speed is re-
flected in the evolution of the profile of each moment diagnosed
from the prognostic one. Consequently, if we select instead
Ml (l �= k) as the relevant prognostic moment, the advection
velocity ṽl determines the propagation of Ml, and we find a
solution Ml(z, t), which differs from Ml[Mk(z, t)].

Equation (10) is solved numerically by a MUSCL-Hancock
scheme (Toro, 1999). Figure 4 gives examples for the evolution
of the profiles of various moments for the special cases that
either the 0th moment (number concentration N), the 3rd moment
(proportional to the liquid water mass concentration L) or the 6th
moment (radar reflectivity) is chosen as prognostic moment. For
comparison, also the reference solution of the spectral model is
plotted. The initial conditions are the same as used for Fig. 2. The
parameters n0 and λ are calculated from the initial conditions
for N(t = 0) and L(t = 0) for zl ≤ z ≤ zu as used for Fig. 2, from
which follows the initial state for any moment Mk. n0 is kept
constant later on.

The solution from the 1-moment model always shows a shock
wave on the leading edge of the signal, due to the initial discon-
tinuity. A rarefaction wave develops in the rear of the signal; see
the discussion in WS for the L-profile.

For the case that M0 is the prognostic moment (‘M0-model’),
the maxima of N (=M0), L (∝ M3) and M6 after a given integra-
tion time are found at the same height, as to be expected from the
diagnosis L = L(M0) and M6 = M6(M0). The same is true when
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Fig. 4. Vertical profiles of the number density N, the liquid water
concentration L, and the 6th moment M6 (radar reflectivity), valid at
t = 300 s and at t = 600 s, obtained from the reference spectral model
and from the 1-moment model for prognostic moments M0, M3 and
M6, respectively. Shape parameter of the drop size distribution (7) is
μ = 0. Initial conditions for N and L are as in Fig. 1.

M3 or M6 is the prognostic moment (‘M3-model’, ‘M6-model’).
The heights of the maxima in the M0-, M3- and M6-models,
however, differ. The maximum is found in the M3-model fur-
ther downward, see for example, eq. (A10) for v3 > v0. In the
M6-model, the signal propagates still faster. In the reference
model, however, different moments propagate at different ve-
locities, and hence the maxima of N, L and M6 are always found
at different heights at time t.

Major features are similar, when the shape parameter μ = 3
is chosen (Fig. 5). But due to the narrower DSD (Fig. 1) the
moment-weighted sedimentation speeds (Fig. 3) do not differ as
strong as in the case μ = 0, hence the resulting profiles from the
various models are closer. Vice versa, we can expect the largest
differences between the results of the bulk models with different
prognostic moments in the μ = 0-case due to the broadest DSD.

The evolution of the vertical profile from the various bulk
models and the reference model show better agreement, when
the moment of most interest is forecasted. For example, the N-
profile is best reproduced by the M0-model. Furthermore, the
agreement is better for μ = 3 than for μ = 0. Very large drops
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Fig. 5. As Fig. 4, but for the shape parameter μ = 3.

are always present in the DSD presumed in the bulk model,
and they influence the moment-weighted sedimentation velocity.
This influence increases with increasing order of the forecasted
moment, and one should tend in case of indecision rather towards
the forecast of a low order moment.

4. The 2-moment scheme

2-moment parametrization schemes have the advantage over
1-moment schemes, that they allow to account for many more
processes, which influence the drop ensemble and that a self-
preserving distribution like (7) can be reconstructed in terms of
two parameters, most frequently n0 and λ, while μ is again fixed.
These two parameters then follow by the solution of the budget
equations for any combination of two moments Mj as well as
Mk, for example, the 0th and the 3rd moment.

We select Mj and Mk as the relevant ones (‘MjMk-model’).
Their budget equations (see 8) read

∂Mj

∂t
− ∂Fj (Mj, Mk)

∂z
= 0 (13)

∂Mk

∂t
− ∂Fk(Mj, Mk)

∂z
= 0. (14)

Each of the sedimentation fluxes Fj and Fk is a function of
both moments Mj and Mk, given in (B3) and (B4) in Appendix B.
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We assume j < k everywhere. Once j and k are fixed, any other
moment Ml follows diagnostically as Ml(t, z) = Ml[Mj(t, z),
Mk(t, z)] and no longer from a budget equation.

The moment-weighted sedimentation velocity vk depends on
the order k and on λ, see eq. (B6). For prescribed values N
and L, the parameter λ is fixed, and the same result is found
for vk as in the 1-moment model (Fig. 3). The increase of the
moment-weighted sedimentation velocity vk with k is expected
to influence the evolution of the moments’ profiles as follows
from solution of prognostic eqs (13) and (14), however, in a
different way as in the 1-moment model due to the dependence
λ = λ(Mj, Mk).

Equations (13) and (14) form a coupled set of PDEs. As
discussed in WS for the M0M3-model, they can be cast into
a set of quasi-linear PDEs, and the solutions allow for shock
waves. Equations (B3) and (B4) are solved numerically by the
same MUSCL-Hancock scheme as used for solving eq. (10) in
Section 3.

Figure 6 shows the results for the vertical profiles of the
number concentration N and the liquid water concentration L
as follow from the 2-moment model after 300 s and after 600 s
integration time for the cases that (i) M0 and M3 and (ii) M0 and
M6 are selected as the prognostic moments. The results from
the reference model are again shown as comparison. The shape
parameter is set μ = 0.

The simulated profiles of the number density N (=M0) from
the M0M3- and M0M6-models, for which M0 is a prognostic
moment (j = 0), are close to each other, but obviously differ-
ent. They are in overall agreement with the reference solution,
although both models give a faster downward shift.

In the M0M3-model results, matters are similar for the liq-
uid water content L (∝ M3) as for N, except that the downward
propagation of the L-maximum is slightly retarded and that the
maximum is damped after 600 s in the M0M3-model as com-
pared to the reference model results. Furthermore, a consider-
able amount of L reaches z = 0 earlier in the bulk model than
in the spectral model. Regarding the profile of M6, the M0M3-
model gives totally unrealistic results. The plotted M6-values
have been divided by 100 in Fig. 6. The order l = 6 is larger than
the highest order k = 3 of a prognostic moment in the M0M3-
model; according to eq. (B8) with j = 0, k = 3, l = 6, it holds
M6 ∝ M2

3M−1
0 . Since the M0-signal moves downward more

slowly than the M3-signal, M0-values are small at low altitudes,
which brings about the excessive M6-values. Such a feature may
cause huge problems, when for example, the 6th moment is di-
agnosed from this M0M3-model and is compared with observed
radar reflectivity for verification purposes. This is not a short-
coming of the M0M3-model as long as the goal of the NWP or
climate model is to provide information on L and N, but this
demonstrates the limited information gained from a comparison
of the diagnosed moment M6 with observed radar reflectivity.

The M0M6-model results show a different feature after 300 s
simulation time: M6 is in reasonable agreement with the refer-
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Fig. 6. Vertical profiles of the number density N, the liquid water
concentration L, and the 6th moment M6 (radar reflectivity) valid at t =
300 s and at t = 600 s as follow from the reference spectral model and
from the 2-moment scheme with M0, M3 and M0, M6, respectively, as
prognostic moments. Shape parameter of the drop size distribution (7)
is μ = 0. Initial conditions for N and L are as in Fig. 1. Note that the
M6-values for the M0M3-model (marked with ×) are to be multiplied
by 100.

ence solution. The L-profile comes out as a narrow signal after
300 s with a peak at about 2000 m height and as a weak signal
after 600 s, suggesting that water mass has been lost. In this
model the evolution of M3 (and hence L) is not controlled any-
more by a budget equation as for M0 and M6, but diagnosed
from the prognostic moments using eq. (B8). M6 is the highest
prognostic moment (k = 6). According to (B8) we find for l =
3 (thus j < l < k) that M3 ∝ M1/2

0 M1/2
6 , and M3 is expected to be

low whenever M0 or M6 are low. The maxima in the M6-profiles
from all models have already left the region of consideration
after 600 s simulation time.

We discuss now some other combinations of Mj, Mk as prog-
nostic moments for the same initial conditions N(z, t = 0) and
L(z, t = 0) as used in Fig. 6. Fig. 7 shows the profiles of N, L
and M6 after 300 s integration time. j, k are chosen to be within
0 and 3 (left-hand column) and to be somewhat extreme with
k > 3 (right-hand column). Some of the profiles N, L and M6

show values, which considerably exceed the maximum initial
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Fig. 7. As Fig. 6, but for other combinations of prognostic moments.
Results are valid at t = 300 s. Note that the N-values for the M3M6-
and M3M4-models and L-values for the M0M1-model are to be
multiplied by 10 (‘+’), and that the M6-values for the M0M1-model
are to be multiplied by 100 (‘×’), and that the scaling of the abscissae
differs from that of the previous figures.

values, similarly to the M6-profile in the M0M3-model (Fig. 6)
discussed above. As an example, such an overshooting is seen
in the reconstructed profile of the 0th moment (l = 0) in the
M3M6- and M3M4-models. We compare these diagnosed M0-
profiles with the predicted M0-profiles from the M0M1-, M0M2-,
M0M3-models etc., in which M0 is a prognostic moment: The
overshooting in the diagnosed M0-profiles are located at the
upper flank of the predicted M0-profiles. This feature is hence-
forth referred to as an ‘overshooting at the upper flank’ (of the
predicted signal) for shortness. Overshooting is also seen in
the diagnosed profiles of M6 (l = 6) in the M0M1-, M0M2-,
M1M2- and M3M4-models. Compared to the profile M6 from
the M3M6-model, the overshooting is located at the lower flank
of the predicted signal.

In general, the tendency to overestimate a diagnostic moment
Ml is expected, whenever Ml is reconstructed from Mj and Mk

for either l < j, k or l > j, k. The overshooting occurs for l < j, k
(l > j, k) on the upper (lower) side of the predicted signal. The
reason for the overshooting of the diagnosed Ml-profile is, that
the Mk-signal propagates faster downward than the Mj-signal for

j < k. According to eq. (B8), Ml ∝ [ Mk−l
j /Mj−l

k ]1/(k−j ) for l < j,
k, hence we expect large values of the diagnosed Ml, whenever
Mk (but not Mj) becomes very small, that is at upper height. For
j, k < l, matters are inverted. According to eq. (B8), we find Ml ∝
[M l−j

k /M l−k
j ]1/(k−j ), and we expect large Ml, where Mj decreases

faster than Mk, that is at lower height. The overshooting is the
stronger, the larger is the deviation between the moments’ orders
l and j, and l and k, respectively.

Matters are different for j < l < k, see for example in Fig. 7
the profiles L and M6 from the M0M10-model, that is for
l = 3 and 6, j = 0, k = 10. Equation (B8) tells that Ml ∝
[M l−j

k Mk−l
j ]1/(k−j ) for j < l < k, and no excessive values show

up in the diagnosed profiles. Yet either small Mj or Mk causes
low values of Ml. The agreement between the spatial structure of
the reconstructed profile of Ml and that of the solution from the
reference model is not bad, but the maximum can be strongly
damped; the agreement is better when l is close to j or k.

These findings suggest to choose the prognostic moments Mj

and Mk such that it gives the smallest range of j and k to embrace
the required moments Ml in the forecast model. It is explicitly
mentioned that a condition j ≤ l ≤ k cannot be achieved as
long as β > 0, because the sedimentation flux is proportional
to a higher order moment, Fk ∝ Ml with l = k + β, see eqs
(B3) and (B4). The selection of the prognostic moment of order
k + β is no remedy, because the forecast of Mk+β would require
the flux Fk+β which in return is proportional to the higher order
moment Mk+2β . When other cloud microphysical processes are
to be included, their parametrization equations are proportional
to moments of order l

′
, and l

′
may be likewise outside the range

between j and k.
We now turn to the shock wave as part of the solution of the

PDEs (13) and (14). The shock wave travels at the leading edge
of the signal, as discussed in WS. It propagates very fast (and
fastest for small j, k) and quickly transmits information of the
propagating signal. In all the examples presented in Figs. 6 and
7, the shock wave has already passed the level z = 0 after 300 s
simulation time.

The amplitude of the shock wave depends on the minimum
values N min and Lmin, which have to be introduced to avoid
mathematical singularities, see Appendix B. N min and Lmin can
be freely chosen, so that some ambiguity enters the solution. The
propagation speed of the shock wave decreases with increasing
N min at fixed Lmin, that is with decreasing average drop mass.
Once the shock wave has reached the level z = 0, the vertical
profiles of the moments are independent of the chosen N min- and
Lmin-values. Thus their choice is important during the very early
phase and unimportant for later times. In the examples discussed
in this section, the shock wave passes the level z = 0 within less
than 100 s.

The initial phase may be of relevance for the time series of
the precipitation rate RR at the surface, here defined as z = 0.
RR = F3 πρw/6 is the total mass flux with F3 denoting the
sedimentation flux of the 3rd moment according to eq. (A3)
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Fig. 8. Time series of precipitation rate RR at z = 0 for the reference
spectral model (thick line) and various 2-moment models as used in
Figs. 6 and 7 for μ = 0 (left-hand column) and for μ = 3 (right-hand
column). The ordinate is scaled logarithmically.

in general or according to (B9) for the 2-moment model. In
Fig. 8, the time-series of RR (converted to the unit mm h−1;
logarithmic scaling) are shown in the left-hand column for the
results following from the reference model (thick line) and from
various 2-moment models, as used before in Figs. 6 and 7 for
μ = 0. The onset of precipitation is mostly earlier in the results
from the parametrization models than in those from the reference
model, and the precipitation rates in the initial phase often exceed
those from the reference solution. Both features are related to
the passage of the fast travelling shock wave in the solution for
the prognostic moments Mj, Mk, from which RR is diagnosed.
RR as well as the flux F3 are proportional to the moment of order
3 + β, see (A4) and (2), with β denoting the exponent in the
equation of the terminal velocity. So we can apply a discussion
of the evolution of the vertical profile for RR or F3 similar to
the discussion for a diagnosed moment Ml of order l = 3 +
β. Hence we expect in the lower part of the profile of the flux
F3 = F3(Mj, Mk) overestimated values if j, k < 3 + β. When
they arrive at z = 0, they give peak values in the time series of
RR(t), as seen in Fig. 8 (left middle figure). If the initial phase is
discarded from interpretation, we find a reasonable agreement
between the results from the 2-moment models and the reference
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Fig. 9. Time series of vertically integrated liquid water content
(left-hand column) and of the sum of vertically integrated liquid water
content and accumulated rain at surface (right-hand column). Results
follow from the spectral model (thick line) and from various 2-moment
models as used in Figs. 6 and 7 for μ = 0. Note that the Lint- and
(Lint + RRsum)-values from the M0M1-model are to be multiplied by
100 (‘×’).

model, if j and/or k are close to 3+β, that is for the M3M4-, the
M3M6- and eventually the M0M3-models for the cases in Fig. 8.
Otherwise the results strongly distinguish from each other.

An important aspect in modelling is the conservation of total
H2O-mass. In our pure-sedimentation model this condition is
simply stated by Lint + RRsum = const. with Lint denoting the
vertically integrated liquid water content and RRsum denoting the
accumulated rain flux at z = 0, as follows from eqs (8) and (9)
for k = 3. In Fig. 9, Lint and the sum of Lint and RRsum are plot-
ted as function of time for various combinations of prognostic
moments Mj and Mk. In those models with M3 as prognostic mo-
ment, mass conservation is fulfilled, since (8) for k = 3 controls
the mass budget. Generally, if Mj and Mk are forecasted, then Cj

and Ck are conserved, see eq. (9). The numerical results fulfil
this criterion (not shown here). If, however, M3 is not among
the prognostic moments, then mass conservation is no longer
ensured. We take the M0M6-model as an example. As seen in
Fig. 9, Lint + RRsum = const. decreases with time. This is a
consequence of the diagnosis of the moment M3 (hence L) and
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Fig. 10. As Fig. 6 but for μ = 3. Note that the M6-values for the
M0M3-model at t = 300 s are to be multiplied by 10 (‘+’).

the flux F3 (and hence RR) from M0 and M6. Due to j = 0 <

3, 3 + β < k = 6, the profiles of M3 and F3 are considerably
damped, see Fig. 6 for L(z, t), and the surface precipitation rate
underestimated, see Fig. 8 for RR(t). Another example is model
M0M1. Due to j = 0, k = 1 < 3, the diagnostic liquid water
content L (Fig. 6) and the rain rate RR (Fig. 8) are strongly over-
estimated, and the sum Lint + RRsum increases with time well
beyond its initial value. Such an extreme violation of mass con-
servation is intolerable from the physical point of view. Whether
the slight change in Lint + RRsum as in the M1M2-model is ac-
ceptable, should be discussed in the frame of pros and cons for
that model.

So far all numerical results hold for a shape parameter μ =
0 in this section. According to the discussion in Section 2 (see
Fig. 2) and in Section 3 (see Fig. 5) on the influence of μ, we
again expect for increasing μ a weaker influence of the choice
on the prognostic moments Mj and Mk of the evolution of a
moment Ml. This is indeed confirmed by the results presented
in Figs. 10 and 11, which give the vertical distributions of N,
L and M6 for the same conditions as in Figs. 6 and 7, except
for μ = 3. The simulated profiles of N, L and M6 from the
2-moment models are closest to the results from the reference
model, whenever l is close or equal to one of the orders j or k of
the prognostic moments. On the other hand, the M0M3-model
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Fig. 11. As Fig. 7, but for μ = 3. Note that the M6-values for the
M0M1- and the M0M2-models are to be multiplied by 100 (‘×’), and
for the M1M2-model by 10 (‘+’).

gives a strong overshooting in the profile of the reconstructed
moment M6, that is, for j, k < l, and the M3M6- and the M3M4-
models show an overshooting in the N-profile, see upper right-
hand graph in Fig. 11. These effects are less pronounced than
in the case μ = 0. Whenever a bulk model MjMk with μ =
0 overestimates (underestimates) precipitation in comparison
to the spectral model, it will do so in case of μ = 3 (Fig. 8,
right-hand column). Again, the differences are weaker. Thus,
the choice of the prognostic moments Mj and Mk becomes less
important with increasing μ.

5. Discussion and conclusions

Raindrop sedimentation has been simulated using well-known
1-moment and 2-moment parametrization schemes, as well as
a spectral microphysical model to provide a reference solution.
The parametrization models are based on the assumptions, that
the rain drop size distribution and thus the microphysical state
is fully determined by one and two parameters, and that these
parameters can be uniquely expressed in terms of the selected
prognostic moments, which are the moment Mk of order k in case
of a 1-moment model and the moments Mj and Mk of order j and
k, respectively, in case of a 2-moment model. So far, one is free
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to choose the prognostic moment(s), since the evolution of each
moment is governed by the budget eq. (8). Any other moment
Ml then uniquely follows diagnostically from the prognostic
moment(s). For practical application, however, the choice of the
prognostic moment(s) will have to account for constraints, as
discussed below.

The two questions raised in the Introduction are answered
now for the sedimentation problem on the basis of the results
presented in the preceding sections. First, the evolution of the
profile of a moment Ml(z, t) is indeed strongly affected by
the selected order of the prognostic moments(s). This is due
to the dependence of a drop’s sedimentation velocity on its size.
As a consequence, the larger the order of a prognostic moment
Mk, the stronger is the sedimentation flux Fk biased towards
the influence of the large particles in the integral (A3). Also
the moment-weighted sedimentation velocity vk (A6) increases
with the order k of the moment, see Fig. 3. Hence, a prognostic
moment of high order will propagate faster downward than a
prognostic moment of lower order.

The impact of the selected order of the prognostic moment(s)
on the evolution of a diagnostic moment Ml is different in the
1-moment and 2-moment models. In case of the 1-moment
model, Ml is diagnosed from the forecasted profile Mk(z, t) and
thus will always show the same vertical structure as Mk. In par-
ticular, the height zk of the maximum in the Mk-profile at time t
is determined by vk , and the maximum of diagnosed Ml is found
at exactly the same height zk for whatever l.

Matters are different for the 2-moment model. Let zj, zk denote
the heights of the maxima in the vertical profiles of the prognostic
moments Mj, Mk. For any MjMk-model, the heights zj and zk

differ, as seen in Figs. 6, 7, 10 and 11. Let us define z∗
l as the

height of the maximum in the profile of a diagnosed moment
Ml = Ml(Mj, Mk). This z∗

l differs from zj and zk for l �= j, k.
In particular, we find (i) z∗

l > zj, zk if l < j, k, (ii) zj > z∗
l >

zk if j < l < k and (iii) z∗
l < zk, zj if j, k < l. In cases (i) and

(iii) an overshooting may be observed, as discussed in Section
4. Furthermore, different profiles of Ml will follow for different
combinations j and k, as seen in Figs. 6 and 7.

In the previous sections also the sensitivity of the forecasted
moments on the shape parameter μ of the drop size distribution
has been inspected. With increasing μ an integral moment be-
comes more and more dominated by the contributions from a
particular size interval, see Fig. 1. Thus the deviation between
the moment-weighted sedimentation velocities, for example, vj

and vk , of different moments Mj and Mk decreases with increas-
ing μ, so that the choice of the prognostic moments becomes
less important. If justified by information on the typical rain
drop size distribution, a large μ-value should be used to reduce
the influence of the choice of the prognostic moments.

Secondly, there is the question, which moments should be
forecasted, when the parametrization is applied in weather pre-
diction and climate models. We start the discussion with the case
that only sedimentation influences the drop size spectrum and its

moments. The comparison between the results from the spectral
resolving reference model and the 1-moment model (Figs. 4 and
5) suggests to choose the prognostic moment to be the physi-
cally most relevant one. In case of indecision, a moment of low
order is preferable, since the propagation of a moment of high
order due to sedimentation is overestimated. The comparison of
the results from the reference model and the 2-moment models
(Figs. 6 and 11) suggests to predict the moments Mj and Mk

such that any moment Ml required in the prediction model is in
the range of j and k to prevent overshooting. Unfortunately, this
condition cannot be exactly achieved, since the sedimentation
flux is proportional to a higher order moment, Fk ∝ Ml with l =
k + β. Forecast of prognostic moment Mk+β is not a solution,
because now we have to account for the sedimentation flux
Fk+β ∝ Mk+2β .

Furthermore, the orders j and k should not differ too much to
avoid strong damping of the profiles of Ml for j < l < k, see for
example, Fig. 6 for the reconstructed profile of liquid water L(∝
M3) from the M0M6-model.

Another criterion for the selection of the prognostic moments
is the fulfilment of conservation conditions. While we have
the conservative properties for each moment (eq. 9), 1- and
2-moment models can comply with only one and two, respec-
tively, of the conditions as implication of the parametrization
assumptions. For instance, conservation of liquid water mass is
satisfied only, if M3 (or L) is a prognostic moment, see Fig. 9
for the 2-moment model.

The 6th moment, that is radar reflectivity, is relevant, since
observation data are frequently available. These data are often
used for verification of model results, either by inferring rain rate
from observed reflectivity or by diagnosing M6 from the model
predicted moment(s). For the 1-moment scheme, the model
forecasted M6-profile has the identical vertical structure as the
prognostic moment Mk. If k is chosen to give best agreement
for, for example, N- or L-profiles with the reference solution,
then the diagnosed M6-profile is not a good approximation to
the corresponding reference profile. For the 2-moment scheme,
the selection of Mj and Mk with j, k < 6 gives dubious values
for the diagnosed M6-profile, see Fig. 6 for the M0M3-model.
Hence, a verification of model results against observed radar
reflectivity cannot give much evidence, since it does not tell
much on the quality of other modelled, physically more rele-
vant properties such as, for example, rain rate and liquid water
content.

In NWP and climate models, the parametrization scheme has
to account also for other cloud physical processes besides sed-
imentation, such as condensation/evaporation and coagulation.
The respective rates of change of a prognostic moment Mk due
to these processes are formulated on the basis of the spectral
description for any k in terms of integrals over the DSD. The
integrals turn out to be proportional to moments Ml, with l not
necessarily equal to j or k. Then the calculation of the transfor-
mation rate will be subject to the same problems as discussed
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for the diagnosis of Ml. In practice, one can consider whether
particular properties of the cloud processes can be exploited,
such as for instance the invariance of drop number concentra-
tion during condensation or invariance of rain water mass during
self collection of rain drops.

A crucial point in the parametrization is the DSD function.
Assumptions are required despite its large natural variability.
Tokay et al. (2001) present fitted parameters for the rain drop
DSD of the analytic form (7), and the shape parameter turned
out to be μ = 1 for their full database. Furthermore, the authors
address that the data for the small- and the large-size ends of
the spectra are not very reliable. Similarly, Waldvogel (1974)
and Willis (1984) concluded from their observation results, that
the fitted exponential DSD is uncertain for large drops. These
findings give an argument in favour of predicting low order
moments in 1-moment and 2-moment models, since they are
less affected by the presence of large drops in the assumed DSD.

A note is added on the occurrence of shock waves in the
parametrization models. In case of 1-moment models, the shock
wave is apparent at the forefront of the downward travelling
signal. Precipitation at level z = 0 starts abruptly, irrespective of
the choice of the prognostic moment Mk, while the starting time
depends on the order k and the starting time is latest for lowest k.
In the 2-moment models the shock wave causes an early onset of
precipitation at z = 0, see Fig. 8. As long as the early precipitation
rate is weak, as is the case for, for example, the M0M3-model,
this phase error should be acceptable. For other combinations
of the prognostic moments, the passage of the shock wave can
result in excessive values of the diagnosed precipitation rate,
as for example, in the M0M1- and M0M2-models, see Fig. 8.
Yet the amplitude of the shock wave can be influenced to some
degree by the non-zero minimum values N min and Lmin, which
are required to avoid mathematical singularities.

In any parametrization model of the type as applied in this
study, the forecast of different moments of the drop size dis-
tribution function, but otherwise same assumptions, will give
different results for a particular moment Ml, as long as the sed-
imentation velocity of a drop increases with its size. This is all
the more important, since the falling drops interact with their en-
vironment and among themselves by for example, condensation
and coagulation, and these effects are parametrized mathemati-
cally in terms of the prognostic moments.
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Appendix A: Relationships for the 1-moment
scheme

We assume that the size distribution function is given by (7)
with constant parameters n0 and μ. Then the kth moment Mk is

a function of λ alone,

Mk =
∫ ∞

0
Dkf (D) dD = n0�(k + μ + 1)λ−(k+μ+1). (A1)

�(. . .) denotes the gamma function. Likewise, λ is expressed by
the moment Mk,

λ = [n0�(k + μ + 1)]1/(k+μ+1) M
−1/(k+μ+1)
k . (A2)

The sedimentation flux Fk of the kth moment is defined as

Fk =
∫ ∞

0
DkvT (D)f (D) dD (A3)

and follows with (2) as

Fk = α
�(β + k + μ + 1)

�(k + μ + 1)

M
β/(k+μ+1)
k

[n0�(k + μ + 1)]β/(k+μ+1)
Mk.

(A4)

The moment-weighted sedimentation velocity vk is given by

vk = Fk

Mk

= α
�(β + k + μ + 1)

�(k + μ + 1)
λ−β

= α
�(β + k + μ + 1)

�(k + μ + 1)

M
β/(k+μ+1)
k

[n0�(k + μ + 1)]β/(k+μ+1)
,

(A5)

and the apparent advection velocity ṽk follows as

ṽk = dFk

dMk

= α
�(β + k + μ + 1)

�(k + μ + 1)

β + k + μ + 1

k + μ + 1

× M
β/(k+μ+1)
k

[n0�(k + μ + 1)]β/(k+μ+1)

= β + k + μ + 1

k + μ + 1
vk .

(A6)

The lth moment follows as function of Mk by using λ from
(A2):

Ml = n0�(l + μ + 1)λ−(l+μ+1)

= n0�(l + μ + 1)

[
Mk

n0�(k + μ + 1)

](l+μ+1)/(k+μ+1)

(A7)

Similarly, the moment-weighted sedimentation velocity vl =
Fl/Ml and the apparent advection velocity ṽl = dFl/dMl of the
lth moment are related to vk and ṽk , respectively, by

vl = �(k + μ + 1)

�(l + μ + 1)

�(β + l + μ + 1)

�(β + k + μ + 1)
vk (A8)

ṽl = �(k + μ + 2)

�(l + μ + 2)

�(β + l + μ + 2)

�(β + k + μ + 2)
ṽk. (A9)

Suppose l > k. Since β > 0, it follows that

vl = �(k + μ + 1)

(l + μ)(l + μ − 1) . . . (k + μ + 1)�(k + μ + 1)

× (β + l + μ) . . . (β + k + μ + 1)�(β + k + μ + 1)

�(β + k + μ + 1)
vk

= (β + l + μ) . . . (β + k + μ + 1)

(l + μ) . . . (k + μ + 1)
vk > vk, (A10)
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ṽl = �(k + μ + 2)

(l + μ + 1)(l + μ) . . . (k + μ + 2)�(k + μ + 2)

× (β + l + μ + 1) . . . (β + k + μ + 2)�(β + k + μ + 2)

�(β + k + μ + 2)
ṽk

= (β + l + μ + 1) . . . (β + k + μ + 2)

(l + μ + 1) . . . (k + μ + 2)
ṽk > ṽk. (A11)

Likewise one can show for l < k that vl < vk and ṽl < ṽk .

Appendix B: Relationships for the 2-moment
scheme

We assume the size distribution function is given by (7) as in
Appendix A, however, now with the single constant parameter
μ. Any moment follows as function of the parameters λ and
n0, see (A1). We can express λ and n0 as functions of the two
moments Mj and Mk

λ =
[

Mj

Mk

�(k + μ + 1)

�(j + μ + 1)

]1/(k−j )

(B1)

n0 =
[

Mj

�(j + μ + 1)

](k+μ+1)/(k−j )

×
[

Mk

�(k + μ + 1)

]−(j+μ+1)/(k−j )

. (B2)

Without lack of generality, we use j < k everywhere.
The sedimentation fluxes Fj and Fk are calculated from (A3)

with (2). Replacing the parameters λ and n0 in terms of the two
moments Mj and Mk, we find the fluxes

Fj = α �(β + j + μ + 1)

×
[

Mk

�(k + μ + 1)

]β/(k−j ) [
Mj

�(j + μ + 1)

]−(β+j−k)/(k−j )

(B3)

Fk = α �(β + k + μ + 1)

×
[

Mk

�(k + μ + 1)

](β+k−j )/(k−j ) [
Mj

�(j + μ + 1)

]−β/(k−j )

.

(B4)

The moment-weighted sedimentation velocities then read

vj = Fj

Mj

= α
�(β + j + μ + 1)

�(j + μ + 1)
λ−β

= α
�(β + j + μ + 1)

�(j + μ + 1)

[
Mk

Mj

�(j + μ + 1)

�(k + μ + 1)

]β/(k−j )

(B5)

vk = Fk

Mk

= α
�(β + k + μ + 1)

�(k + μ + 1)
λ−β

= α
�(β + k + μ + 1)

�(k + μ + 1)

[
Mk

Mj

�(j + μ + 1)

�(k + μ + 1)

]β/(k−j )

. (B6)

vj and vk differ only by a constant factor, and for j < k we find

vj = �(β + j + μ + 1)

�(β + k + μ + 1)

�(k + μ + 1)

�(j + μ + 1)
vk

= (k + μ) . . . (j + μ + 1)

(β + k + μ) . . . (β + j + μ + 1)
vk < vk. (B7)

As for the one-moment scheme, the moment-weighted sed-
imentation velocity increases with increasing order of the mo-
ment. Note that vk according to (A5) for the 1-moment model
and to (B6) for the 2-moment model are expressed by the same
functional relationship. For given λ as function of prescribed L
and N, as used for Fig. 3, the results for vk coincide in both
models.

The lth moment follows in terms of the prognostic moments
Mj and Mk from (A1), (B1) and (B2) as

Ml = �(l + μ + 1)

×
[

Mk

�(k + μ + 1)

](l−j )/(k−j ) [
Mj

�(j + μ + 1)

](k−l)/(k−j )

,

(B8)

and the sedimentations flux Fl follows as

Fl = α �(β + l + μ + 1)

×
[

Mk

�(k + μ + 1)

](β+l−j )/(k−j ) [
Mj

�(j + μ + 1)

](k−l−β)/(k−j )

.

(B9)

The moments may generally become also zero. Then singu-
larities for Ml arise if j > l or if k < l, according to the diagnostic
eq. (B8). To avoid such singularities, we prescribe non-zero
minimum values N min and Lmin, from which also the minima of
the other moments are derived. N min = 10−12 cm−3 and Lmin =
10−17 g cm−3 are used for the examples presented in this study.
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