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A B S T R A C T
A new concept, namely the critical predictable time Tc, is introduced to give a more precise description of computed
chaotic solutions of non-linear differential equations: it is suggested that computed chaotic solutions are unreliable and
doubtable when t > Tc. This provides us a strategy to detect reliable solution from a given computed result. In this way,
the computational phenomena, such as computational chaos (CC), computational periodicity (CP) and computational
prediction uncertainty, which are mainly based on long-term properties of computed time-series, can be completely
avoided. Using this concept, the famous conclusion ‘accurate long-term prediction of chaos is impossible’ should be
replaced by a more precise conclusion that ‘accurate prediction of chaos beyond the critical predictable time Tc is
impossible’. So, this concept also provides us a timescale to determine whether or not a particular time is long enough
for a given non-linear dynamic system. Besides, the influence of data inaccuracy and various numerical schemes on the
critical predictable time is investigated in details by using symbolic computation software as a tool. A reliable chaotic
solution of Lorenz equation in a rather large interval 0 ≤ t < 1200 non-dimensional Lorenz time units is obtained for
the first time. It is found that the precision of the initial condition and the computed data at each time step, which is
mathematically necessary to get such a reliable chaotic solution in such a long time, is so high that it is physically
impossible due to the Heisenberg uncertainty principle in quantum physics. This, however, provides us a so-called
‘precision paradox of chaos’, which suggests that the prediction uncertainty of chaos is physically unavoidable, and that
even the macroscopical phenomena might be essentially stochastic and thus could be described by probability more
economically.

1. Introduction

One of the main goals of science is to make reliable predictions
(Malescio, 2005). However, Lorenz (1963) found that a deter-
ministic non-linear dynamic system might have unpredictable
solutions, for example, the famous Lorenz’s equations
⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = σ [y(t) − x(t)] ,

ẏ(t) = R x(t) − y(t) − x(t) z(t),

ż(t) = x(t) y(t) + b z(t),

(1)

where σ , R and b are physical parameters and the dot denotes
the differentiation with respect to the time t, respectively, have
‘non-periodic’ solutions in many cases such as σ = 10, R = 28,
b = −8/3, which were named ‘chaos’ later by Li and Yorke
(1975). Chaos is a feature in all sciences (e.g. Hanski et al.,
1993; Ashwin, 2003) and has the famous ‘butterfly effect’: solu-
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tions are exponentially sensitive to initial conditions, and thus,
a tiny variation of initial conditions may bring huge difference
of numerical results for a long time t.

Mostly, non-linear continuous-time dynamic systems are in-
vestigated by means of numerical integration algorithms (Parker
and Chua, 1989), which model a continuous-time system by
a discrete-time system. Numerical simulations are widely ap-
plied to study chaos, and such computations are often called
‘numerical experiments’. Unfortunately, numerical errors are
inherent in any numerical algorithms: there always exist the so-
called ‘numerical noise’, that is, the round-off and truncation
errors. For evaluating floating-point expressions, the magnitude
of round-off error depends upon the hardware used. Typically,
a double-precision representation uses 64 bits and is accurate to
16 decimal places. The truncation error is introduced when an
infinite series is truncated to a finite number of terms. The local
round-off and truncation errors propagate together in a rather
complicated way, which cause the so-called global round-off
error and global truncation error (Parker and Chua, 1989). So,
like physical experiments, numerical experiments are also ‘not’
perfect.

550 Tellus 61A (2009), 4

P U B L I S H E D  B Y  T H E  I N T E R N A T I O N A L  M E T E O R O L O G I C A L  I N S T I T U T E  I N  S T O C K H O L M

SERIES A
DYNAMIC 
METEOROLOGY
AND OCEANOGRAPHY



RELIABILITY OF COMPUTED CHAOTIC SOLUTIONS 551

Exponential sensitivity to initial conditions implies that an
arbitrarily small ‘local’ error greatly affects the macroscopic be-
haviour of a non-linear dynamic system with chaos, no matter
whether such local error comes from the initial condition (due to
the inaccuracy of measured input data) or from the ‘numerical
noise’ mentioned above. So, not only the inaccuracy of initial
conditions but also both of the round-off and truncation errors
at ‘each’ time step eventually affect the long-term behaviour
of a chaotic dynamic system. Thus, theoretically speaking, all
results of chaos given by ‘numerical experiments’ are a kind
of admixture of ‘pure’ solutions of non-linear dynamic systems
and rather complicated propagations of the round-off error, the
truncation error and the inaccuracy of initial data. Note that a
lots of conclusions about chaos are based on such kind of ‘inac-
curate’ computed results, although it has been mathematically
proved that Lorenz attractor indeed exists (Stewart, 2000). Are
these conclusions based on ‘impure’ chaotic time-series believ-
able? Are they different from those given by the ‘pure’ chaotic
solutions (with negligible numerical noise) if such kind of ‘pure’
solutions exist? Obviously, if the answers to these questions are
negative, our knowledge about chaos must be changed com-
pletely.

A system of continuous-time differential equations may have
various discrete-time-difference approximations with different
time step τ . Each of them has different dynamic properties. It
has been found (Cloutman, 1996; Cloutman, 1998) that com-
puted results given by some discrete-time difference schemes
are parasitic, which have no meanings at all. For example, when
the exact time-dependent solution of a set of non-linear differ-
ential equations is known to be periodic, there is sometimes a
range of the time step τ where the computed solution of the
finite difference equations is chaotic (Lorenz, 1989; Cloutman,
1998). This kind of non-physical parasitic solutions is called
computational chaos (CC; Lorenz, 1989). By contraries, when
the exact solution is known to be chaotic, computed solutions
are, however, periodic within a range of time step τ , and this nu-
merical phenomenon is called computational periodicity (CP)
(Lorenz, 2006). So, ‘computed’ dynamic behaviours observed
for a finite time step in some non-linear discrete-time difference
equations sometimes have nothing to do with the ‘exact’ solution
of the original continuous-time differential equations at all, as
pointed out by many researchers (Lorenz, 1989; Lorenz, 2006;
Cloutman, 1996; Cloutman, 1998; Teixeira et al., 2007).

Lorenz (2006) investigated the influence of the time step τ on
the long-term dynamic properties of a system of three non-linear
differential equations:
⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = −y2(t) − z2(t) − Ax(t) + AF,

ẏ(t) = x(t)y(t) − Bx(t)z(t) − y(t) + G,

ż(t) = Bx(t)y(t) + x(t)z(t) − z(t),

(2)

where A, B, F and G are constant physical parameters. Using
a numerical procedure based on the Mth-order truncated Taylor

series in the interval t ∈ [tn, tn + τ ]:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = x(tn) +
M∑

k=1
αk (t − tn)k,

y(t) = y(tn) +
M∑

k=1
βk (t − tn)k,

z(t) = z(tn) +
M∑

k=1
γk (t − tn)k,

(3)

where

αk = 1

k!

dkx(tn)

dt k
, βk = 1

k!

dky(tn)

dt k
, γk = 1

k!

dkz(tn)

dt k
.

Lorenz (2006) studied the relationship between computational
periodicity (CP) and the time step τ , the order M and so on.
It is commonly believed that eq. (2) has chaotic solution when
A = 1/4, B = 4, F = 8 and G = 1. However, when M = 1,
the leading Lyapnuv exponent λ1 changes sign frequently in the
range 0 < τ < τ ∗, so that alternations between chaos (λ1 > 0)
and CP (λ1 < 0) occur frequently. Here, τ ∗ is the lowest value of
time step above which the computational instability (CI) occurs.
As one continuously decreases the time step τ , chaos is first
observed in the range 0.0402 ≤ τ ≤ 0.0435, then disappears,
and is observed again in the range 0.0344 ≤ τ ≤ 0.0374, then
disappears once more for the smaller τ , and is observed again
when τ = 0.0028, but disappears once again for the smaller
τ until τ = 0.00039. Rather unexpectedly, even the different
chaotic solutions in case of M = 1 have unlike features: the
intersections with plane z = 0 for the attractor with τ = 0.037
and τ = 0.042 are quite dissimilar. Similar numerical phenomena
are observed for different physical parameters. Besides, when
M = 2 or 3, the range of τ , where the CP occurs, is still much
larger than the range where the true chaos is captured. Even
when M = 4 the ranges are nearly the same. Only when M = 6
does the CP almost disappear. For details, please refer to Lorenz
(2006).

Recently, Teixeira et al. (2007) investigated the time step sen-
sitivity of three non-linear atmospheric models of different level
of complexity, that is, Lorenz eqs (1), a quasi-geostrophic (QG)
model and a global weather prediction system (NOGAPS). They
illustrated that numerical convergence cannot be guaranteed for-
ever for fully chaotic systems, because the time of decoupling
of numerical chaotic solutions by different time steps follows a
logarithmic rule as a function of time step for the three models.
Besides, for regimes that are not fully chaotic, different time
steps may lead to different model climates and even different
regimes of the solution. For instance, for Lorenz eq. (1) with
fully chaotic solution in case of σ = 10, R = 28 and b = −8/3,
Teixeira et al. (2007) employed the same second-order numeri-
cal scheme as used by Lorenz (1963) with three different time
steps: τ = 0.01 (used by Lorenz, 1963), 0.001 and 0.0001 non-
dimensional Lorenz time units (LTU). All solutions are quite
close to each other for some initial time. However, the solution
with τ = 0.01 LTU decouples at about 5 LTU from the other
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two solutions, and the solution with τ = 0.001 LTU decouples
at about 10 LTU from the solution with τ = 0.0001 LTU. It is
interesting that all of these three solutions agree well in the inter-
val 0 ≤ t ≤ 5 LTU. Besides, Teixeira et al. (2007) found that the
decoupling time T̂ follows approximately T̂ = α − β log10 τ ,
where α > 0 and β > 0 are constants. Replacing τ by τN in
this formula, where N is the order of the numerical scheme,
Teixeira et al. (2007) deduced the conclusion that T̂ should be
directly proportional to N, although no direct numerical proofs
were given to support it. They showed that in case of σ = 10,
b = −8/3 and R = 19, the solution of x(t) with τ = 0.01 LTU
converges to a stable positive fixed-point, while the other two
solutions with τ = 0.001 LTU and 0.0001 LTU converge to a
stable negative fixed-point. Besides, for Lorenz equation with-
out fully chaotic behaviour in case of σ = 10, b = −8/3 and
R = 21.3, the solutions of x(t) with τ = 0.01 LTU and τ =
0.0001 LTU converge to a stable fixed point, but the solution
with τ = 0.001 LTU keeps chaotic. Thus, based on these com-
putations, they concluded that different time steps may lead to
not only the uncertainty in prediction but also fundamentally
different regimes of the solution. The solutions of y(t) and z(t)
behave similarly. The same general findings mentioned above
are confirmed by means of the forth-order Runge–Kutta scheme.
For details, please refer to Teixeira et al. (2007).

Facing these numerical phenomena mentioned above, one
might be confused: how can we ensure that a computed solution
with chaotic behaviour is ‘indeed’ chaotic but not a so-called
computational chaos (CC), and that a computed long-term solu-
tion with periodicity is ‘indeed’ periodic but not a computational
periodicity (CP)? Unfortunately, ‘exact’ chaotic solutions for
non-linear differential equations have never been reported. So,
one even has reasons to believe that ‘all chaotic responses are
simply numerical noises and have nothing to do with differential
equations’ (Yao and Hughes, 2008a,b).

These observed numerical phenomena of the uncertainty of
long-term predictions, CC and computational periodicity (CP)
reveal some fundamental features of non-linear differential equa-
tions with chaos. Obviously, both CC and CP are parasitic so-
lutions and have no physical meanings at all and, thus, should
be avoided in numerical simulations. It seems that chaotic nu-
merical results are made of reliable and unreliable parts. Also
different numerical schemes might lead to completely different
long-term predictions, as pointed out by Lorenz (1989, 2006)
and Teixeira et al. (2007). Certainly, all conclusions based on
unreliable computed results are doubtable. So, some fundamen-
tal concepts and general methods should be developed to detect
the reliable solution from given computed results, which are even
more important than putting forward a new numerical scheme
for non-linear differential equations.

This paper is organized as follows. In Section 2, a new con-
cept, namely the critical predictable time Tc, is introduced to
detect the reliable numerical solution from calculated chaotic
results. In Section 3, the influence of the round-off error, the

truncation error and the inaccuracy of initial condition on the
critical predictable time Tc is investigated by using Lorenz equa-
tion as an example. In Section 4, some examples are given to
illustrate how computational uncertainty of prediction (CUP),
CC and CP of complicated nonlinear dynamic systems can be
avoided by means of the concept of the critical predictable time.
In Section 5, the origin of prediction uncertainty of chaos is
investigated. In Section 6, some discussions are given.

2. A strategy to detect reliable numerical results

As pointed out by Yao and Hughes (2008a), it would be an excit-
ing contribution if ‘convergent’ computational chaotic solutions
of non-linear differential equations could be obtained. Unfor-
tunately, such ‘convergent’ solutions of chaos have never been
reported. It is even unknown whether such kind of ‘convergent’
solutions (in traditional meaning) of chaos exist or not. Besides,
it is also ‘not’ guaranteed whether or not a computed chaotic
result obtained by the smallest time step is closest to the ‘exact’
chaotic solution of the continuous-time differential equations
(Teixeira et al., 2007, 2008; Yao and Hughes, 2008b). How can
we detect a reliable solution from different computed chaotic
results? How can we avoid the so-called CC and CP?

Discovering the exponential sensitivity of chaos to initial con-
ditions, Lorenz (1963) revealed that it is impossible to give ac-
curate ‘long-term’ prediction of a non-linear dynamic system
with chaotic behaviours. The current works of Lorenz (2006)
and Teixeira et al. (2007) further revealed the sensitivity of com-
puted chaotic results to various numerical schemes and different
time steps. All of these current investigations confirm Lorenz’s
famous conclusion: accurate ‘long-term’ prediction of chaos is
impossible (Lorenz, 1963). This conclusion is widely accepted
today by scientific society. However, from mathematical points
of view, this famous conclusion is not very precise, because it
contains an ambiguous word ‘long-term’. The concept of ‘long’
or ‘short’ is relative: 100 yr is long for everyday life but is rather
short for the evolution of the universe. Is 10 non-dimensional
LTU or 105 LTU long enough for Lorenz equation? Given a
computed chaotic result, it seems that there should exist a criti-
cal time T∗

c , beyond which the computed result is unreliable or
inaccurate. If the exact (or convergent) chaotic solution could be
known, it would be easy to determine T∗

c simply by comparing
the computed result with the exact ones. Unfortunately, no exact
chaotic solutions have been reported. It is a pity that no theories
about such critical time T∗

c have been proposed, so that the con-
clusion ‘long-term prediction of chaos is impossible’ is not very
precise.

Lorenz (1989), Lorenz (2006) and Teixeira et al. (2007) con-
firmed such a numerical ‘fact’ that two computed chaotic results
given from the same initial state by either different time steps or
different numerical schemes are rather close to each other un-
til they decouple at a critical time Tc, as illustrated in Fig. 1 for
comparisons of numerical results of Lorenz’s equation by means

Tellus 61A (2009), 4



RELIABILITY OF COMPUTED CHAOTIC SOLUTIONS 553

Fig. 1. Comparison of numerical results x(t) of Lorenz’s equation by
the 4th-order Runge–Kutta’s method when σ = 10, R = 28, b = −8/3
and x(0) = −15.8, y(0) = −17.48, z(0) = 35.64. (a) Solid line: τ =
10−5; dash–dotted line: τ = 10−2. (b) Solid line: τ = 10−5;
dash–dotted line: τ = 10−4.

of the 4th-order Runge–Kutta’s method with different time steps
in case of σ = 10, R = 28, b = −8/3 and the initial condition
x(0) = −15.8, y(0) = −17.48, z(0) = 35.64. Note that the nu-
merical result given by the time step τ = 10−2 LTU decouples
the result given by τ = 10−5 LTU at about 14.5 LTU, as shown in
Fig. 1(a), and the result given by τ = 10−4 LTU decouples the
result given by τ = 10−5 LTU at about 33.5 LTU, as shown in
Fig. 1(b). Besides, Parker and Chua (1989) pointed out that a
‘practical’ way of judging the accuracy of numerical results of
a non-linear dynamic system is to use two (or more) ‘different’

routines to integrate the ‘same’ system: the initial time interval
over which the two results agree is then ‘assumed’ to be ac-
curate and predictable. More precisely speaking, the computed
results beyond the critical decoupling time Tc are not reliable.
Here, it should be emphasized that, up to now, it is even ‘not’
guaranteed that the computed results in the ‘whole’ region 0 ≤
t < Tc given by two different time steps or various numerical
schemes are convergent or very close to the ‘exact’ solution,
especially when the time steps are very close or the numerical
schemes are rather similar. Even so, we have many reasons to
‘assume’ that the computed chaotic results are reliable in the
region 0 ≤ t < Tc if we properly choose two (or more1) different
time steps and/or numerical schemes. This is mainly because
the computed results in the interval 0 ≤ t ≤ Tc are ‘predictable’:
one can get nearly the same results by different time step and/or
various numerical schemes. In this way, we define a ‘timescale’
for the concept ‘long-term’ of a computed chaotic result: t is
regarded to be ‘long-term’ if t > Tc. According to Lorenz (1963,
1989, 2006) and Teixeira et al. (2007), Tc is sensitive to initial
condition, time step and numerical schemes used to compute the
‘two’ different results of the same non-linear dynamic system
with chaos. For convenience, we call Tc the ‘critical predictable
time’. Obviously, Tc is dependent upon non-linear differential
equations, time step and numerical scheme; thus, the so-called
‘long-term’ is also a relative concept.

The so-called ‘critical predictable time’ Tc can be defined in
different ways. According to Teixeira et al. (2007), a numerical
result given by the smallest time step is ‘assumed’ to be closest
to the exact solution. So, Teixeira et al. (2007) defined the decou-
pling time by means of the state vector L2 norm error between
the result obtained by the smallest time step and the result by
a larger one. This kind of definition includes the error at each
time step and thus is a global one for decoupling. However, the
decoupling of two curves is essentially a local occurrence. Thus,
we give here a local definition of ‘critical predictable time’ Tc,
which is based on geometrical characteristic of decoupling of
two curves and thus is straightforward. Mathematically, let u1(t)
and u2(t) denote two time-series given by different numerical
routines for a given dynamic system. The so-called ‘critical pre-
dictable time’ Tc for u1(t) and u2(t) is determined by the criteria

u̇1 u̇2 < −ε,

∣∣∣∣1 − u1

u2

∣∣∣∣ > δ, at t = Tc, (4)

where ε > 0 and δ > 0 are two small constants (we use ε =
1 and δ = 5% in this paper). Mathematically, the critical pre-
dictable time Tc can be interpreted as follows: the influence of
truncation error, round-off error and inaccuracy of initial condi-
tion on numerical solutions is negligible in the interval 0 ≤ t ≤
Tc, so that the computed result is predictable and, thus, can be
regarded as a reliable solution in this interval. Using the concept

1 Obviously, it is better to compare computed results given by disparate
numerical schemes with different time steps: the more, the better.
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of the critical predictable time Tc, the famous statement that
‘accurate long-term prediction of chaos is impossible’ can be
more precisely expressed as that ‘accurate prediction of chaos
beyond the critical predictable time Tc is impossible’. Here, Tc

is regarded as a critical point: computed results beyond the crit-
ical predictable time Tc are doubtable and unreliable. Thus, the
critical predictable time Tc provides us a strategy to detect the
reliable solution from a given numerical result.

As pointed out by Lorenz (1989, 2006), CC and CP are mainly
based on the evaluation of Lyapnunov exponent, which is a long-
term property. As mentioned above, any computed results for t
> Tc are doubtable and unreliable and, thus, have no meanings.
Unfortunately, most of computed ‘long-term’ solutions are often
far beyond the critical predictable time Tc, and thus, all related
conclusions or calculations based on these doubtable ‘long-term’
numerical results, such as CC, CP, Lyapunov exponent and at-
tractors, are unreliable, too. Note that, using the concept of the
critical predictable time Tc, the third figure given by Teixeira
et al. (2007) should be interpreted in such a new way: the critical
predictable time Tc for three computed results given, respec-
tively, by τ = 0.01, 0.001 and 0.0001 LTU is less than 15 LTU;
so, all computed results beyond t > 15 LTU have no meanings,
and thus, one ‘cannot’ make such a conclusion that ‘different
time step may not only lead to uncertainty in the predictions af-
ter some time, but also lead to fundamentally different regimes
of the solution’ (Teixeira et al., 2007). In fact, by means of the
concept of the critical predictable time, the CUP, CC and CP can
be avoided completely, as shown in Section 4 for details.

As suggested by Parker and Chua (1989), all numerical results
should be interpreted properly. The critical predictable time Tc

can be understood as follows: the influence of truncation error,
round-off error and inaccuracy of initial condition on computed
chaotic solutions is almost negligible in the time interval 0 ≤
t ≤ Tc. Thus, the so-called critical predictable time Tc provides
us a scale to investigate chaos in a more precise way. This new
concept may greatly deepen and enrich our understanding about
chaos, not only mathematically but also physically, as shown
later.

3. Influence of numerical scheme and data
inaccuracy on Tc

Since computed chaotic results beyond the critical predictable
time Tc are unreliable, a numerical solution with small Tc is
almost useless. Thus, it is necessary to obtain reliable chaotic
solutions with large enough Tc.

Without loss of generality, let us consider Lorenz’s eq. (1) in
case of σ = 10, R = 28, b =−8/3, with the exact initial condition
x(0) = −15.8, y(0) = −17.48, z(0) = 35.64. Using the 4th-order
Runge–Kutta’s method with different time increment τ = 10−2,
10−3, 10−4 and 10−5 LTU, the corresponding critical predictable
times of computed chaotic results are about 13.7, 24.5 and 32.6
LTU, respectively, as shown in Fig. 1. So, by means of traditional

numerical methods, the critical predictable time Tc of computed
chaotic results is often not long enough. Teixeira et al. (2007)
found that for given numerical scheme, the decoupling time of
numerical chaotic results with different time steps follows a log-
arithmic rule as a function of time step τ . Thus, the time step
should be exponentially small for a given critical predictable
time Tc. Lorenz (2006) reported, qualitatively, some influences
of numerical schemes (based on the truncated Taylor series at
a few different orders M) on the computed chaotic results but
did not give a quantitative relationship between the critical pre-
dictable time Tc and the approximation order M. Besides, it is
a pity that the influence of the round-off error on the decou-
pling time of computed chaotic results given by various numer-
ical schemes is neglected, mainly because traditional floating-
point computations use data in either single or double precision
only.

Currently, some advanced symbolic computation software,
such as MATHEMATICA and MAPLE, are widely used. In
this paper, the symbolic computation software MATHEMATICA

(Wolfram Research, Champaign, IL) is employed as a compu-
tational tool to investigate the influence of various numerical
schemes based on the truncated Taylor series (3), the round-
off error and the inaccuracy of initial condition on the critical
predictable time Tc. From the view-point of round-off error,
symbolic computation is completely different from evaluating
floating-point expressions: the round-off error can be almost ne-
glected or even ‘avoided’ by means of symbolic computation.
For example, by means of symbolic computation, we can have
the ‘exact’ result 1/2 + 1/3 = 5/6. Note that, using numerical
computation with double precision representations, one has only
the ‘approximate’ result 1/2 + 1/3 ≈ 0.8333333333333333,
whose round-off error is about 10−16. Besides, using the com-
mand ‘N[Pi, 800]’ of MATHEMATICA, we can get the approxi-
mation π ≈ 3.1415926535897932384626433832 · · ·, which is
accurate even to 800 decimal places! By means of so precise data
representation provided by symbolic computation software, the
round-off error can be almost neglected. Let K denote the num-
ber of decimal places of all data used by the symbolic software
in this paper. Then, by means of different values of K, it is
easy to investigate the influence of the round-off error on Tc,
as shown later. Furthermore, by means of the truncated Taylor
series scheme (3), the system of Lorenz equations (1) is approx-
imated by a time-continuous system in each interval t ∈ [tn, tn +
τ ] as the truncated Mth-order Taylor’s expansion. Obviously, the
truncation error of this scheme is determined by M. Therefore,
using symbolic computation and the analytic approach described
above, it is convenient to control the magnitude of the truncation
and round-off errors by means of M and K, respectively. Clearly,
the larger the values of M and K, the smaller the truncation
error and the round-off error, respectively. Thus, the symbolic
computation software provides us a useful tool to investigate the
influence of truncation-error, round-off error and inaccuracy of
initial conditions on the critical predictable time Tc.
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Without loss of generality, we consider here Lorenz eq. (1)
in case of σ = 10, R = 28, b = −8/3 with the initial condition
x(0) = −15.8, y(0) = −17.48, z(0) = 35.64 and the time step
τ = 10−2, if not mentioned particularly. Note that the initial
condition is assumed to be exact. To investigate the influence
of the truncation error on computed chaotic results alone, we
set a large enough number of decimal places, that is, K = max
{200, 2M}, where M is the order of truncated Taylor series (3) of
Lorenz’s eq. (1). In this way, the round-off error is much smaller
than the truncation error and, thus, is negligible. Since the initial
condition is assumed to be exact, there exists truncation error
alone, whose magnitude is determined by M, the order of trun-
cated Taylor series (3) of Lorenz eq. (1). Using different values
of M from M = 4 to 110, we get different computed results with
different truncation errors. Using (4) as the decoupling criteria
of two computed trajectories, it is easy to find the correspond-
ing critical predictable time Tc of the numerical result given by
the smaller M. It is found that the critical predictable time Tc is
directly proportional to M, that is,

Tc ≈ 3M, (5)

as shown in Fig. 2.
It is a little more difficult to investigate the influence of

the round-off error on chaotic results alone, mainly because
the round-off error might greatly increase for given K, when
the order M is too large compared with K. Note that the previ-
ous formula Tc ≈ 3M (with K = max {200, 2M}) gives a time
interval 0 ≤ t ≤ Tc in which the influence of both truncation
error and round-off error is negligible, as interpreted before.

Fig. 2. The critical predictable time Tc versus the order M of truncated
Taylor series (3) in case of σ = 10, R = 28, b = −8/3 and x(0) =
−15.8, y(0) = −17.48, z(0) = 35.64 with K = max{200, 2M}.
Symbols: computed results; Solid line: Tc = 3M.

For example, when M = 32 and K = 200, the influence of the
truncation error and the round-off error is negligible for t ≤
96. Thus, without loss of generality, let us consider the case of
M = 32, with different values of K (K < 100). Comparing the
results given by different values of K (K < 100) with the re-
sult obtained by K = max{200, 2M}, we get the corresponding
critical predictable times Tc. It is found that, when K > 40, Tc

tends to the same value close to 96, respectively. This is mainly
because, when K is large enough, the round-off error is much
smaller than the truncation error. So, the results for K > 40 is
useless in investigating the influence of the round-off error on Tc.
It is also found that, when K ≤ 16, the precision of computation
is too low relative to the M, the order of approximation, so that
the round-off error increases greatly. Thus, the results with too
small K is also useless. So, only results given by proper values
of K are useful. It is found that, for 18 ≤ K ≤ 40, the computed
critical predictable times agree well with the formula

Tc ≈ 2.51K − 4.26, (6)

as shown in Fig. 3. Furthermore, it is found that, in general,
the critical predictable time Tc indeed increases ‘linearly’ with
respect K, the number of accurate decimal places of results.

Note that the initial conditions are assumed to be exact in
above computations. According to our above investigations,
in case of K = 200 and M = 100, both of the round-off er-
ror and the truncation error are negligible in the interval 0
≤ t ≤ 300. This provides us a convenient way to investi-
gate the influence of the inaccuracy of initial conditions on Tc

alone. To do so, we add a tiny difference �x0 into the initial

Fig. 3. The critical predictable time Tc versus K (the number of
accurate decimal places ) in case of σ = 10, R = 28, b = −8/3 and
x(0) = −15.8, y(0) = −17.48, z(0) = 35.64 with M = 32. Symbols:
computed results; Solid line: Tc = 2.51 K − 4.26.
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Fig. 4. The critical predictable time Tc versus the inaccuracy �x0 of
initial conditions in case of σ = 10, R = 28, b = −8/3 and x(0) =
−15.8 + �x0, y(0) = −17.48, z(0) = 35.64 with M = 100 and K =
200. Symbols: computed results; Solid line: log10(�x0) = − 0.4 Tc.

condition x(0) = −15.8, y(0) = −17.48, z(0) = 35.64 in such a
way that

x(0) = −15.8 + �x0,

but with the same values of y(0) and z(0). Comparing the results
given by different values of �x0 > 0, M = 100 and K = 200 with
the result given by �x0 = 0, M = 100 and K = 200, we obtain
the corresponding Tc by means of the decoupling criteria (4). It
is found that for given different values of �x0, the corresponding
results of Tc agree well with the formula

Tc ≈ −2.5 log10(�x0),

as shown in Fig. 4. This formula can be rewritten as

�x0 ≈ 10−0.4 Tc , (7)

which means that the precision of the initial condition must in-
crease ‘exponentially’ with respect to a given critical predictable
time Tc. For example, to get a reliable chaotic solution with
Tc = 200 LTU, the initial condition must be with the precision
�x0 < 10−80. Therefore, we need a rather precise initial con-
dition to get a reliable chaotic solution with Tc > 200 LTU.
Unfortunately, such precise initial conditions are impossible in
practice, as discussed in Section 5. That is exactly the reason
why the ‘butterfly effect’ exists, as pointed out by Lorenz (1963).
However, the formula (7) might inform us much more than the
so-called ‘butterfly effect’, as discussed in details in Section 5.

Can we get reliable chaotic solutions with large enough crit-
ical predictable time Tc? Assuming that the initial condition
is exact, it is found that Tc ≈ 3 M generally holds in case of

Fig. 5. The used CPU time versus Tc in case of σ = 10, R = 28, b =
−8/3 and x(0) = −15.8, y(0) = −17.48, z(0) = 35.64 with M = Tc/3
and K = 200.

K = max{200, 2M}. Therefore, M (the order of truncated Tay-
lor series) and K (the number of accurate decimal places) should
be increased linearly with respect to the critical predictable time
Tc. So, theoretically speaking, for a given Tc, one can always find
the corresponding value of M and K to get a ‘reliable’ chaotic
solution in 0 ≤ t ≤ Tc. However, the CPU time increases with
respect to Tc in a power-law, as shown in Fig. 5. Suppose that
we would like to get a reliable chaotic solution with Tc = 1200
LTU. According to (5), we should choose M = 400 so as to get
such a reliable chaotic result. In fact, by means of M = 400 and
K = 800, we indeed obtain such a reliable chaotic solution in
the interval 0 ≤ t < 1200 LTU, as shown in Figs 6 and 7. The
corresponding result is rather precise: the maximum residual
error is only 1.1 × 10−481. However, more than 461 h 16 min
CPU time (more than 19 d) is used by a cluster Intel Clovertown
Xeon E5310 with 8GB RAM. To the best of our knowledge,
such kind of reliable chaotic solution of Lorenz equation in such
a long time interval has never been reported. Based on this time-
consuming computation, we are quite sure that the solution of
Lorenz eq. (1) in case of σ = 10, R = 28 and b = −8/3 is indeed
chaotic ‘within’ the interval 0 ≤ t < 1200 LTU, as shown in
Table 1.2 However, strictly speaking, it is unknown whether or
not the chaotic behaviour disappears when t > 1200 LTU. This
is because, based on our current computations, chaotic numeri-
cal results beyond Tc is unreliable. To answer this question, one
has to spend more CPU time to get a reliable chaotic solution

2 The full data may be downloaded in the online version of
this paper (Supporting Information) or on the author’s website:
http://numericaltank.sjtu.edu.cn/.
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Fig. 6. The curve x(t)–y(t) given by the reliable chaotic result with
Tc = 1200 LTU by τ = 0.01, M = 400, K = 800 in case of σ = 10,
R = 28, b = −8/3 and x(0) = −15.8, y(0) = −17.48, z(0) = 35.64.

Fig. 7. The curve x(t) − z(t) given by the reliable chaotic result with
Tc = 1200 LTU by τ = 0.01, M = 400, K = 800 in case of σ = 10,
R = 28, b = −8/3 and x(0) = −15.8, y(0) = −17.48, z(0) = 35.64.

with even larger Tc. Unfortunately, Tc is always a finite value, no
matter how large it is! Also the non-linearly increased CPU time
indicates the impossibility to get a reliable chaotic solution in
an infinite interval 0 ≤ t < +∞. This is revealed from the view-
point of CPU time that chaos is mathematically unpredictable in
essence.

4. Avoidance of computational chaos,
computational periodicity and computational
uncertainty of prediction

The uncertainty of prediction of chaos have two reasons. One is
computational (or more precisely, mathematical), which is due
to non-linearity of models and the imperfection of numerical
schemes and data precision mentioned in Section 3. The other is
physical, which is based on the fundamental physical principles
of nature.

In this section, we investigate the computational uncertainty
(CU) of chaos. In essence, the CU of long-term prediction comes
from the unpredictability of trajectories, that is, the decoupling
of different trajectories for a long time. By means of the concept
of the critical predictable time Tc and regarding chaotic results
unreliable when t > Tc, the numerical phenomena such as CC,
CP and CU, can be avoided completely, as illustrated below.

It is well known that solution of Lorenz’s equation (1) be-
comes unstable if R > Rc = σ (σ − b + 3)/(σ + b − 1). In
case of σ = 10 and b = −8/3, we have the critical value Rc =
24.7368. Thus, in case of σ = 10, b = −8/3 and R = 19 < Rc

with the initial state x = y = z = 5, the exact solution should tend
to a fixed point. However, it is unknown which fixed point the
solution tends to. It is found that the computed result x(t) given
by the Mth-order scheme (3) with τ = 0.01 LTU tends to a ‘neg-
ative’ fixed-point for M = 2 but goes to a ‘positive’ fixed point
for M = 3, as shown in Fig. 8. Thus, at least one of these two
different predictions must be wrong. However, based on these
two computational results, it is hard to detect which prediction
is correct. This kind of CUP is similar to those mentioned by
Teixeira et al. (2007). Note that the critical predictable time Tc of
these two computed results are only about Tc ≈ 9 LTU, as shown
in Fig. 8, so that they are reliable only in the interval 0 ≤ t < 9
LTU. In other words, the two computed results in the interval t >

9 are ‘unreliable’ and, thus, has no meanings. Therefore, based
on these two computational results, one cannot give any reliable
conclusions about the fixed point. To get a reliable prediction
about the fixed-point, we had to give a ‘reliable’ solution with
large enough Tc. To do so, we use the truncated Taylor series
scheme (3) with much higher order M. As shown in Fig. 9, the
two computed results given by M = 30 and 40 with τ = 0.01
LTU agree well in the interval 0 ≤ t ≤ 100 LUT, and both of
them give the same’ numerical fixed-point:

x(100) = −6.928204, y(100) = −6.928204,

z(100) = 18.000000.

Based on these two reliable results, we are quite sure that the
exact solution x(t) of Lorenz equation (1) tends to a negative
fixed point in case of σ = 10, b = −8/3 and R = 19 < Rc with
the initial state x = y = z = 5. In this way, the CUP mentioned by
Teixeira et al. (2007) and Lorenz (2006) can be avoided.

Similarly, the so-called CC and CP mentioned by Lorenz
(1989, 2006) can be turned away, too. For example, when σ = 10,
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Table 1. Some reliable numerical results with Tc = 1200 LTU in case of σ = 10, R = 28, b =
−8/3 by means of M = 400, K = 800 and τ = 0.01

0 −15.8 −17.48 35.64
50 12.779038299490452 8.825054357006032 36.40092236534542
100 −10.510118721506247 −12.17254281368225 27.476265630374762
150 −1.9674157212680177 −2.5140404626072206 17.233128197642884
200 −6.697233173381982 −11.911020483539128 13.036826414358321
250 3.480010996527037 5.743865139093177 22.424028925951887
300 10.197534991661733 3.906517722362926 35.33742709240441
350 0.009240166388150502 −1.1520585946848019 20.259118270313508
400 −1.8892476498049868 −3.5657880408974663 20.299639635504597
450 2.3442055460290803 2.473910407011588 19.324756580383077
500 −5.30509963157152 −9.425991029211517 12.302184230689779
550 −9.710817000847529 −6.878169205988265 31.67393963382737
600 −0.8635053825976141 0.499057856286716 21.581438144249077
650 −6.249196468824656 −1.3133350412836564 30.3936296733578
700 10.884963668216704 16.32989379246704 22.247458859587212
750 −1.5200586402319973 −0.4164281272461717 21.530357757012936
800 1.3963347154139534 2.40877126758134 14.590441270059282
850 1.580132807298193 2.6273272210193146 12.83939375621528
900 −6.449367823985297 −10.984642417532422 14.647974468278282
950 10.098469202323805 0.4959032511015884 37.72812801085503
1000 13.881997000862393 19.918303160406396 26.901943308376104
1025 −2.831908677750036 −5.127291386139972 10.787422525560384
1050 −6.0495817084397405 −0.5249599507390699 30.805747242725836
1075 −8.445628564097573 −16.91583633884055 8.185099340204886
1100 2.2974592711836634 2.299710874996516 19.617779431769037
1125 −2.0420317363264457 −0.3357510158682992 23.174657463445286
1150 −14.378782424952437 −11.819346602645444 37.319351169225996
1175 −11.794511899005188 −13.181679857519981 29.65720151904728
1200 2.4537546196402595 4.124943247158509 19.349201739150004

Note: The full data may be downloaded in the online version of this article (supporting
information) or on the author’s website: http://numericaltank.sjtu.edu.cn/

b = −8/3 and R = 21.5 < Rc with the initial state x = y = z = 5,
it is found that the computed result x(t) given by the Mth-order
truncated Taylor series scheme (3) with τ = 0.01 LTU keeps
chaotic when M = 2 but tends to a positive fixed-point when
M = 3, as shown in Fig. 10. Since R = 21.5 < Rc, the exact
solution of x(t) must tend to a fixed point in a large enough
time, therefore the chaotic solution given by M = 2 is obviously
wrong, although it is unknown whether the exact solution of x(t)
indeed tends to the ‘positive’ fixed point or not. To get a correct
prediction, reliable results with large enough critical predictable
time Tc are needed. It is found that the computed result given by
M = 30 agrees well with that given by M = 40 in the interval
0 ≤ t ≤ 100, as shown in Fig. 11. These two results, which are
reliable in 0 ≤ t ≤ 100, clearly indicate that the solution in case
of σ = 10, b = −8/3 and R = 21.5 < Rc with the initial state x =
y = z = 5 is ‘not’ chaotic, and besides, x(t) tends to a ‘negative’
fixed-point. Thus, both of the two results given by M = 2 and 3
are wrong: one gives the so-called CC from the result based on
M = 2, and the other a wrong prediction from the result based

on M = 3. In this way, both of CC and CUP can be avoided by
using reliable solutions with a large enough critical predictable
time Tc. Similarly, the so-called CP can be avoided by means of
the concept of the critical predictable time.

The above examples illustrate the importance and need of
introducing the concept of the critical predictable time Tc. In
this way, CC, CP and CUP of non-linear dynamic systems can
be avoided completely by using reliable solutions with a large
enough critical predictable time Tc.

Theoretically speaking, in case of σ = 10, R = 28, b = −8/3
with the initial condition x(0) = −15.8, y(0) = −17.48, z(0) =
35.64, given a ‘finite’ value of the critical predictable time Tc,
one can always determine the order M ≈ Tc/3 of the truncated
Taylor series scheme (3) by means of (5) and the number K ≈
0.4 Tc of the accurate decimal places of data by means of (6),
respectively, although the needed CPU times might be rather
long. So, from mathematical review-points, by means of the
concept of the critical predictable time Tc, the CU of long-term
prediction of chaotic dynamic systems could be avoided, as long
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Fig. 8. Comparison of x(t) in case of σ = 10, R = 19, b = −8/3 with
the initial state x = y = z = 5 by means of τ = 0.01 LTU and the
Mth-order scheme (3) based on truncated Taylor series. Red line: M =
2; green line: M = 3.

as we have fast enough computer with large enough memory
(RAM). Even so, it is always impossible to get a reliable chaotic
solution in an infinite time interval 0 < t < +∞, as mentioned
in Section 3.

5. On the origin of prediction uncertainty
of chaos

Unfortunately, most non-linear dynamic systems describe phys-
ical phenomena in nature. Thus, results given by these models
should have physical meanings. So, it is necessary to investigate
the prediction uncertainty of chaos from physical view-points.

The famous Lorenz eq. (1) is a macroscopical model for cli-
mate prediction on earth: it models a unsteady flow occurring in
a layer of fluid of uniform depth H with a constant temperature
difference �T between the upper and lower surfaces, and x(t)
is proportional to the intensity of convective motion (Lorenz,
1963). So, it is reasonable that the influence of physical factors
in the level of atom and molecule on the climate is completely
neglected in Lorenz equation. On one hand, for purpose of cli-
mate prediction, measured data are ‘unnecessary’ to be precise
in the level of atom and molecule. On the other hand, as output of
a macroscopical model, computational results given by Lorenz
equation are ‘impossible’ to be precise in the microcosmis level.

As mentioned in Section 3, a reliable computational chaotic
result with Tc = 1200 LTU is obtained by means of M = 400
and K = 800 with the ‘exact’ initial condition x(0) = −15.8,
y(0) = −17.48, z(0) = 35.64. Note that K = 800 corresponds
to very precise data. However, according to (5) and (6), it is
unnecessary to use so precise data to get a chaotic result with

Fig. 9. (a) Comparison of x(t) in case of σ = 10, R = 19, b = −8/3
with the initial state x = y = z = 5 by means of τ = 0.01 LTU and the
Mth-order scheme (3) based on truncated Taylor series in the interval
0 ≤ t ≤ 30. Line: M = 30; Symbols: M = 40. (b) The same, but in the
interval 30 ≤ t ≤ 50.

Tc = 1200 LTU. Substituting Tc = 1200 LTU into (5) and (6)
gives M = 400 and K = 480, respectively. Thus, mathemati-
cally speaking, at least the precise data with 480 decimal places
‘must’ be used to get a chaotic result reliable in the interval 0 ≤
t ≤ 1200 LTU. This conclusion is obtained with the assumption
that the initial condition is exact. Unfortunately, the initial con-
dition is not perfect in practice. It is interesting that substituting
Tc = 1200 into (7) gives �x0 = 10−480, which agrees well with
the previous calculation K = 480. This indicates that the initial
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Fig. 10. (a) Comparison of x(t) in case of σ = 10, R = 21.5, b = −8/3
with the initial state x = y = z = 5 by means of τ = 0.01 LTU and the
Mth-order scheme (3) based on truncated Taylor series in the interval
0 ≤ t ≤ 30. Red line: M = 2; Green line: M = 3. (b) The same, but in
the interval 30 ≤ t ≤ 66.

condition must be at least with the same accuracy as all computed
data used at each time step. Therefore, from pure mathematical
view-points, the initial condition (and all computed data) must
be with the precision �x0 = 10−480 to get a reliable chaotic
solution with Tc = 1200 LTU.

First, to show how small the number 10−480 is, let us compare
it with some physical constants. According to NASA’s Wilkin-
son Microwave Anisotropy Probe (WMAP) project, the age of
the universe is estimated to be about 1.373 × 1010 yr, that is, Tu ≈
4.33 × 1017 s, and its diameter is about 93 billion light years, that
is, du ≈ 8.8 × 1026 m (http://en.wikipedia.org/wiki/Universe).

Fig. 11. (a) Comparison of x(t) in case of σ = 10, R = 21.5, b = −8/3
with the initial state x = y = z = 5 by means of τ = 0.01 LTU and the
Mth-order scheme (3) based on truncated Taylor series in the interval
0 ≤ t ≤ 30. Line: M = 30; Symbols: M = 40. (b) The same, but in the
interval 30 ≤ t ≤ 60.

On the other side, helium is the smallest atom with a radius of
32 picometre (http://en.wikipedia.org/wiki/Atom#Size), that is,
ra ≈ 3.2 × 10−11 m, and the diameter of the nucleus for a proton
in light hydrogen is about 1.6 feotometre (http://en.wikipedia.
org/wiki/Atomic_nucleus), that is, dn ≈ 1.6 × 10−15 m. As-
sume that one ‘object’ moves a distance of radius of helium
or a diameter of a proton in light hydrogen since the begin-
ning of the universe, that is, the Big Bang (http://en.wikipedia.
org/wiki/Big_Bang). Then, the corresponding velocities are
ua = ra/Tu ≈ 7.39 × 10−29 (m s−1) and un = dn/Tu ≈ 3.7 × 10−33
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(m s−1), respectively. However, even dividing them by the speed
of light (http://en.wikipedia.org/wiki/Light_speed) c ≈ 3.0 ×
109 (m s−1), which is assumed to be the largest velocity in nature
(Einstein, 1905), we have only the dimensionless velocities ūa =
ra/(cTu) ≈ 2.46 × 10−38 and ūn = dn/(cTu) ≈ 1.23 × 10−42,
respectively. Even so, they are ‘much’ larger than 10−480, be-
cause both ūa/10−480 = 2.46 × 10442 and ūn/10−480 = 1.23 ×
10438 are ‘much’ greater even than du/dn = 5.5 × 1041, the ratio
of the diameter of the universe to the diameter of the nucleus for
a proton in light hydrogen!

Secondly, according to the Heisenberg uncertainty principle in
quantum physics (Heisenberg, 1927), the values of certain pairs
of conjugate variables (position and momentum, for instance)
cannot both be known with arbitrary precision, and any mea-
surement of the position with accuracy �δ and the momentum
with accuracy �p must satisfy

�δ �p ≥ h

4π
, (8)

where h = 6.62606896 × 10−34 [J] [S] is Planck’s constant
(http://en.wikipedia.org/wiki/Planck_constant), with the unit [J]
of energy (joule) and the unit [S] of time (s). Rewriting
�p = m �v, where m denotes the mass and v the velocity,
one has

�v�δ ≥ h

4πm
. (9)

Therefore, the more precisely the velocity is known, the less
precisely the position is known. Because Lorenz equation mod-
els the flow of fluid on the earth, the worst measurement of
a position is with accuracy �δ = dE, where dE = 1.2745 ×
107 (m) is the average diameter of the earth. Then, the most
precise measurement of velocity is at most

�v ≥ h

(4πdE)m
= 4.1372 × 10−42

m
. (10)

Even if m is regarded as the mass of earth, that is, m = 5.9742 ×
1024 (kg), the most precise measurement of velocity is at most

�v ≥ 6.92511 × 10−67(m s−1). (11)

Let v̄ denote the dimensionless velocity and U the velocity ref-
erence, respectively. The above formula gives

�v̄ ≥ 6.92511 × 10−67

U
.

According to the special relativity (Einstein, 1905), light prop-
agates fastest in nature. However, even if the velocity of light is
used as the reference velocity, that is, U ≈ 3.0 × 109 (m s−1), the
most precise measurement of dimensionless velocity on earth is
at most

�v̄ ≥ 2.3 × 10−76. (12)

Therefore, it is impossible to measure a dimensionless velocity
more precisely than the above value. Here, it should be empha-
sized that even the above very tiny number 2.3 × 10−76 is much

larger than 10−480: the ratio (2.3 × 10−76)/10−480 = 2.3 × 10404

is much greater even than du/dn = 5.5 × 1041, the ratio of the
diameter of the universe to the diameter of the nucleus for a
proton in light hydrogen! In fact, the ratio (2.3 × 10−76)/10−480

is larger than (du/dn)7. Therefore, according to the Heisenberg
uncertainty principle in quantum physics, it is ‘physically’ im-
possible to give an initial condition with so high precision �x0 =
10−480, which is however ‘mathematically’ necessary to get a
chaotic result reliable in the interval 0 ≤ t ≤ 1200 LTU), as
mentioned in Section 3.

How can we interpret the above interesting result? It seems
unavoidable to use non-linear dynamic models to describe the
nature; besides, chaos generally exist in various non-linear dy-
namic models. However, as mentioned above, to get chaotic
results reliable in a long enough time, we need initial con-
dition with precision even higher than the most precise mea-
surement allowed by the Heisenberg uncertainty principle in
quantum physics. Note that the precision, which is ‘mathemati-
cally’ necessary for the initial condition and all computed data
at different time, is so high that even the quantum fluctuation
becomes a very important physical factor and therefore cannot
be neglected. Therefore, the famous ‘butterfly effect’ of Lorenz
equation should be replaced by the so-called ‘quantum fluctu-
ation effect’: even the ‘microcosmic’ physical uncertainty such
as quantum fluctuation may produce a large variations in the
long-term macroscopical behaviour of a chaotic dynamic sys-
tem describing natural phenomena.

Thus, although from mathematical points of view we can
indeed obtain reliable chaotic solution with Tc > 1200 LTU
in case of σ = 10, R = 28, b = −8/3 with the initial condition
x(0) = −15.8, y(0) = −17.48, z(0) = 35.64 by means of τ = 0.01
LTU, M = 400 and K = 480, unfortunately, this ‘mathematical’
solution with such a high precision has no ‘physical’ meanings. It
should be emphasized that Lorenz equation is a ‘macroscopical’
model for climate prediction, and thus ‘microcosmic’ physical
factors such as the quantum fluctuation are neglected. However,
it is ‘mathematically’ necessary for Lorenz equation to have the
initial condition with such a high precision that the Heisenberg
uncertainty principle in quantum physics must be considered
‘physically’. This provides us a ‘precision paradox of chaos’.

A paradox often brings us much deeper understandings about
some thoughts and/or theories. What can such a paradox tell us?
It seems that, to avoid this paradox, the following assumptions
or view-points should be accepted:

(1) In essence, chaos is physically unpredictable. The ori-
gin of the unpredictability of chaos comes essentially from the
microcosmic uncertainty, which is described by the Heisenberg
uncertainty principle in quantum physics.

(2) Even macroscopical phenomena might be essentially un-
certain, and thus, it would be more reliable and more economic
to describe them by probability.
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Fig. 12. The probability Px(μ) in case of σ = 10, R = 28, b = −8/3
and the exact initial condition x(0) = −15.8, y(0) = −17.48, z(0) =
35.64 by means of τ = 0.01 (LTU) with different Tc. Symbols: result
given by reliable solution with Tc = 300 (LTU); Solid line: result given
by reliable solution with Tc = 75 (LTU); Dashed line: result given by
reliable solution with Tc = 50 (LTU); Dash–dotted line: result given by
reliable solution with Tc = 25 (LTU).

(3) Most of current non-linear dynamic models, which de-
scribe complicated macroscopical phenomena such as chaos
and turbulence, do not consider the influence of microcosmic
uncertainty and, thus, should be modified.

To support the above interpretations for the so-called ‘preci-
sion paradox of chaos’, let us first consider the statistic prob-
ability of x(t) less than μ, denoted by Px(μ). The probabilities
Px(μ) obtained by reliable chaotic results with different critical
predictable time Tc in case of σ = 10, R = 28, b = −8/3 with
the exact initial condition x(0) = −15.8, y(0) = −17.48, z(0) =
35.64 by means of τ = 0.01 LTU are as shown in Fig. 12. Note
that the probability Px(μ) given by Tc = 75 LTU agrees well with
the probability given by the reliable computational result with
Tc = 300 LTU. It indicates that one can obtain a ‘stable’ or ‘con-
vergent’ probability Px(μ) by means of a reliable solution with a
proper Tc, which is not necessarily very long. Note that it is much
easier to get a reliable chaotic result with Tc = 75 LTU than that
with Tc = 1200 LTU. Therefore, it is much cheaper to get a reli-
able probability Px(μ) than a reliable time-series x(t) with Tc =
1200 LTU. So, it seems more reliable and, especially, more ‘eco-
nomic’ to describe chaotic phenomena by means of probability.
Second, it is well known that chaotic time-series is non-periodic.
Assume that a time-series f(t) in the interval t ∈ [0, T ρ] has N+

maximum values at t = t+i and N− minimum values at t = t−j ,
respectively, where i = 0, 1, 2, 3, . . ., N+, j = 0, 1, 2, 3, . . ., N−

and N+ and N− are dependent upon T ρ . If f(t) is periodic, then
|t+i − t+i−1 | and |t−j − t−j−1 | are the same for any 1 ≤ i ≤ N+ and 1 ≤

j ≤ N−. However, if f(t) is chaotic, then |t+n − t+n−1 | and |t−n − t−n−1

| are dependent upon n. Let us define the ‘generalized-period’

T̂ + =
N+∑
n=1

|t+
n − t+

n−1|/N+

and

T̂ − =
N−∑
n=1

|t−
n − t−

n−1|/N−,

respectively. Using the reliable result in case of σ = 10, R =
28, b = −8/3 with the exact initial condition x(0) = −15.8,
y(0) = −17.48, z(0) = 35.64 by means of M = 400, K =
800 and τ = 0.01 LTU, it is found that the generalized-periods
of x(t), y(t), z(t) tend to the stable values T̂ +

x = T̂ −
x = 0.96 LTU,

T̂ +
y = T̂ −

y = 0.62 LTU and T̂ +
z = T̂ −

z = 0.75 LTU, respectively,
if the used interval is larger than 600 LTU. Such kind of stable
values of the generalized-period can be called ‘statistic period’.
Therefore, from statistic view-point, even a chaotic solution can
be regarded as a periodic one in a more general meaning! Fur-
thermore, it is found that the generalized-periods T̂x , T̂y and T̂z of
Lorenz equation (1) are dependent upon the physical parameters
σ , R and b. Our calculations indicate that the generalized-periods
T̂x , T̂y and T̂z of Lorenz eq. (1) are the same for a non-chaotic
solution but are different for a chaotic ones. All of these partly
support our above interprets about the so-called ‘precision para-
dox of chaos’.

Thus, although the CU of chaos can be avoided from the
mathematical point of view, it is unavoidable from the physical
point of view: the so-called ‘precision paradox of chaos’ suggests
us that the origin of the uncertainty of chaos comes from the
Heisenberg uncertainty principle in quantum physics and, thus,
is not avoidable, forever!

6. Discussions

In this paper a new concept, namely the ‘critical predictable time’
Tc, is introduced to give a more precise description of computed
chaotic solutions of non-linear differential equations: computed
chaotic solutions are regarded to be reliable only when 0 < t ≤
Tc. This provides us a method or strategy to detect the reliable
result from a given computed solution. Besides, it provides us a
timescale for the so-called ‘long-term’: t is regarded to be long-
term as long as t > Tc. It is also suggested that numerical results
beyond the critical predictable time Tc are unpredictable, and
thus, all related conclusions based on computed chaotic results
beyond the critical predictable time Tc are doubtable. In this way,
the numerical phenomena such as CC, CP and computational
prediction uncertainty, which are mainly based on long-term
properties of computed results, can be avoided, as shown in
Section 4. By means of this concept, the famous conclusion
‘accurate long-term prediction of chaos is impossible’ should be
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replaced by a more precise conclusion that ‘accurate prediction
of chaos beyond the critical predictable time Tc is impossible’.

For a non-linear dynamic system with chaotic behaviour, one
had to solve it by at least two different computation schemes
to get the critical predictable time Tc. Certainly, it is better to
use more different computation schemes to investigate the re-
liability of computed results with chaos: the more, the better.
So, the reliability of chaotic solutions is a relative concept: it is
dependent on not only non-linear differential equations but also
the accuracy of the initial condition, the time step and computa-
tion schemes. Without knowing the exact solution, such reliable
solutions within the critical predictable time Tc might be the
best in practice: they are at least predictable, that is, different
computation schemes lead to very close results. Note that even
the definition (4) of the critical predictable time is dependent
upon the two constants δ and ε. Fortunately, the same qualita-
tive conclusions are obtained even by different (but reasonable)
values of δ and ε. So, all of our conclusions mentioned in this
paper have general meanings.

On one hand, the so-called critical predictable time Tc pro-
vides us a scale to investigate chaos more precisely. On the other
hand, the symbolic computation software (such as MATHEMAT-
ICA) provide us a convenient way to investigate the influence of
the truncation error, the round-off error, and the inaccuracy of
the initial condition on the critical predictable time Tc. It is found
that Tc is directly proportional to M, the order of the truncated
Taylor series scheme (3), and K, the number of decimal places of
all computed data. Besides, the precision of the initial condition
must increase exponentially as Tc enlarges. For example, in case
of σ = 10, R = 28, b = −8/3 with the initial condition x(0) =
−15.8, y(0) = −17.48, z(0) = 35.64, we obtain a reliable chaotic
result with Tc = 1200 LTU by means of τ = 0.01 LTU, M = 400
and K = 800. Such a reliable chaotic solution in so long time is
reported for the first time. Theoretically speaking, given a finite
value of the critical predictable time Tc, we can always get a
reliable chaotic result in the interval 0 ≤ t ≤ Tc by means of a
high-performance computer with large enough memory (RAM)
and fast enough CPU, although the needed CPU time might be
rather long. Therefore, in essence, the CUP for chaos can be
avoided, if only from the mathematical points of view.

However, the precision of the initial condition and the com-
puted data at each time step needed for a large Tc (such as Tc =
1200 LTU) is ‘mathematically’ so high that such precise data is
‘physically’ impossible due to Heisenberg uncertainty principle
in quantum physics. Note that the precision, which is ‘mathemat-
ically’ necessary for the initial condition and all computed data
at different time, is so high that even the quantum fluctuation
becomes a very important physical factor and therefore cannot
be neglected. However, as a macroscopical model for climate
prediction on Earth, Lorenz equation completely neglects the
influence of physical factors in the level of atom and molecule
on the climate. This provides us the so-called ‘precision para-
dox of chaos’, which implies that the prediction uncertainty of

chaos is physically unavoidable; besides, even the macroscopi-
cal phenomena might be essentially stochastic and thus should
be described by probability more economically.

Many non-linear evaluation equations for macroscopical phe-
nomena, such as Lorenz equation for climate prediction and
Navier–Stokes equation for turbulent viscous flows, completely
neglect the influence of physical factors in the level of atom and
molecule. However, the so-called ‘precision paradox of chaos’
suggests that this might be wrong: even the microcosmic phys-
ical factors should be considered for non-linear dynamic sys-
tems that model complicated macroscopical phenomena. It is
well known that turbulent flows are much more complicated
than chaos. Our work mentioned in this paper suggests that one
should be very careful in applying numerical schemes to inves-
tigate turbulent flows. Today, the direct numerical simulation
(DNS) is frequently used in the computational fluid dynamics
(CFD) to simulate turbulence flows (e.g. Le et al., 1997; Moin
and Mahesh, 1998; Moser et al., 1999; Scardovelli and Zaleski,
1999; Martin et al., 2006). However, it is a pity that the sensitivity
of the DNS results to the inaccuracy of the initial condition, the
round-off error and the truncation error has not been studied sys-
tematically, mainly because the DNS is rather time-consuming.
Without a method or strategy to detect the reliability of a given
DNS result, we have many reasons to assume that something
without physical meanings (similar to CP and CC) might be
contained in the so-called DNS ‘solutions’ for turbulence, and
thus, conclusions based on such kind of unreliable computed
results might be doubtable. More importantly, all models for
turbulent flows completely neglect the influence of microcos-
mic physical factors. Also, this might be one of the reasons why
there is no satisfactory model to describe all turbulent flows
precisely.

Note that the concept of the critical predictable time Tc is
not new: it is rather similar to the so-called ‘decoupling time’
mentioned by Teixeira et al. (2007). However, this concept has
never been obtained enough recognition. In this paper, we show
the importance of such concept for the reliability of computed
results and also for the avoidance of computational prediction
uncertainty, CC and CP. More importantly, the concept of the
critical predictable time Tc greatly deepens and enriches our
understanding about chaos, not only mathematically but also
physically.

Non-linear dynamic systems describing chaos or turbulence
might be much more complicated than we thought: we should
feel awe to them. It is the time for us to consider seriously the
reliability of a mass of computed chaotic or turbulent results
reported every day.
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Appendix S1 Numerical results of Lorenz equation with Tc =
1200 LTU.
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