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ABSTRACT
We formulate a four-dimensional Ensemble Kalman Filter (4D-LETKF) that minimizes a cost function similar to that in
a 4D-VAR method. Using perfect model experiments with the Lorenz-96 model, we compare assimilation of simulated
asynchronous observations with 4D-VAR and 4D-LETKF. We find that both schemes have comparable error when
4D-LETKF is performed sufficiently frequently and when 4D-VAR is performed over a sufficiently long analysis time
window. We explore how the error depends on the time between analyses for 4D-LETKF and the analysis time window
for 4D-VAR.

1. Introduction

Operational data assimilation schemes traditionally have assim-
ilated available observations as though they, or their innovations
from the background forecast, occurred at the analysis time.
With a growing number of observations from instruments such
as satellites, many observations are available between analysis
times. However, employing three-dimensional data assimilation
schemes to match the frequency of these asynchronous observa-
tions would be prohibitively expensive and could introduce im-
balances in the resulting analysis states. New generations of data
assimilation schemes, most notably the 4D-VAR and Ensemble
Kalman Filter (EnKF) techniques, are able to more accurately
take into account the timing of asynchronous observations.

One approach to assimilating observations at various time is
4D-VAR (see Le Dimet and Talagrand, 1986; Courtier et al.,
1994; Rabier et al., 1998, 2000). This assimilation system is
currently the operational data assimilation scheme at the Euro-
pean Centre for Medium-Range Weather Forecasts and Meteo-
France, and being developed for operation at centres including
the Canadian Meteorological Centre and the Japan Meteorologi-
cal Agency. ‘Strong constraint’ 4D-VAR seeks a model trajectory
that best fits the available observations during a specified time
window before the analysis time.

Another developing approach to data assimilation is the EnKF
technique (Evensen, 1994; Burgers et al., 1998; Houtekamer and
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Mitchell, 1998; Anderson, 2001; Bishop et al., 2001; Whitaker
and Hamill, 2002; Ott et al., 2004; Zupanski, 2005). These
schemes evolve an ensemble of model trajectories to estimate
background uncertainty. Though not yet operational, experi-
ments such as those of Houtekamer et al. (2005), Szunoygh et al.
(2005), and Whitaker et al. (2004) have shown the potential of
EnKF for operational data assimilation. In these implementations
of EnKF on operational models, observations are still assimi-
lated as though they were taken at the analysis time. As Lorenc
(2003) points out, when assimilating asynchronous observations
with EnKF, one should use the time sequence of ensemble states
between analysis times to account for model state correlations
in time as well as space. In this way, Evensen and van Leeuwen
(2000), Anderson (2001) and Hunt et al. (2004) extend EnKF to
accurately assimilate asynchronous observations at the correct
time. Their methods have been successfully applied to opera-
tional models by Houtekamer and Mitchell (2006), Szunyogh
and Kostelich (2006, personal communication) and Whitaker
et al. (2006).

In this paper, we present 4D-LETKF, a simplified version
of the four-dimensional Ensemble Kalman Filter in Hunt et al.
(2004), and compare it to 4D-VAR in a perfect model sce-
nario using the Lorenz-96 system (Lorenz, 1996). In Section 2,
we describe our implementation of 4D-VAR, and then derive
4D-LETKF using a modification of the 4D-VAR cost function.
In Section 3, we describe our experimental design and present
our numerical results. We find that the two methods yield sim-
ilar results when the time between analysis is short enough for
4D-LETKF and when the analysis time window is long enough
for 4D-VAR and we discuss our results further in Section 4.
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2. Formulation

2.1. 4D-VAR

Since we consider a perfect model scenario in this paper, we
formulate here a strong constraint 4D-VAR scheme. It seeks an
initial condition close to the background state (determined by
the prior analysis) from which the resulting exact model trajec-
tory remains closest to the observations over the analysis time
window, [t0, tn ]. More precisely, it minimizes a cost function:

J (x(t0)) = 1

2

[
x(t0) − xb

]�
B−1

[
x(t0) − xb

]
+ 1

2

n∑
l=0

{
yo

l − Hl [x(tl )]
}�

R−1
l

{
yo

l − Hl [x(tl )]
}

(1)

where � denotes the transpose, x(t0) is an m-dimensional the
model state at the start of the analysis window. The model state
at each observation time is obtained by integrating the non-linear
model from x(t0). xb is the the m-dimensional background fore-
cast at the same time and B is an m × m background error
covariance matrix, which is typically constant, homogeneous
and isotropic. The observation state at time tl is given by the
sl-dimensional vector yo

l . Rl is the associated sl × sl observa-
tion error covariance matrix, for l = 0, . . . , n. The observation
operator, Hl , maps the model state x(tl) to the observation space
at time tl. For this formulation, observations taken at different
times are assumed to have uncorrelated errors.

The cost J is only a function of the initial model state, x(t0).
Therefore, once we determine x(t0) that minimizes the total cost
J, the integrated state x(tn) is the 4D-VAR analysis at time tn.
For this study, we obtain the minimum using a BFGS algorithm
adapted from Numerical Recipes in Fortran (Press et al., 1992,
p. 418). This algorithm requires the gradient of the cost func-
tion, which we compute using the adjoint technique presented in
Lawson et al. (1995). For large systems, Hessian pre-
conditioning is often employed to ensure that the minimization
algorithm converges quickly on an accurate state. In this study,
we judged pre-conditioning to be unnecessary because here the
BFGS algorithm converges to the minimum state quickly (gen-
erally after about 20 iterations).

2.2. 4D-LETKF

EnKF replaces the time-independent background error covari-
ance matrix B with a time-dependent sample covariance matrix
Pb = (k − 1)−1 Xb(Xb)�, where Xb is an m × k matrix of back-
ground ensemble perturbations. That is,

Xb = [
xb(1) − x̄b

∣∣xb(2) − x̄b
∣∣ · · · ∣∣xb(k) − x̄b

]
, (2)

where xb(i) denotes the ith ensemble member and x̄b denotes the
ensemble mean. In 4D-LETKF, the deviation of a model solution
x(t) from the background mean state x̄b(t) is approximated be-
tween analysis times by a linear combination of the background

ensemble perturbations by

x(t) ≈ x̄b(t) + Xb(t)w, (3)

where w ∈ IRk is a time-independent weight vector. As in Hunt
et al. (2004), the analysis determines which weight vector makes
this linear combination ‘best fit’ the observations over the analy-
sis time window, in the sense of minimizing a cost function like
(1).

The projection of x(t) to the observation space at time tl is
approximated by:

Hl (x(tl )) ≈ Hl

(
x̄b(tl ) + Xb(tl )w

) ≈ Hl

(
x̄b(tl )

) + Yb
l w. (4)

The ith column vector of the sl × k matrix Yb
l is defined to

be Hl (xb(i)(tl )) − Hl (xb(i)(tl )), where Hl (xb(i)(tl )) represents the
ensemble mean of the projection of the background state on
observation space.

Replacing B by Pb(t0) and xb by x̄b(t0) and substituting ap-
proximations (3) and (4) into the cost function (1) yields the
modified cost function:
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Here, the m-dimensional minimization problem is reduced to
a k-dimensional problem, reducing the cost of implementa-
tion if the ensemble size k is less than the number of model
variables m.

The minimum of (5) occurs at
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[
n∑

l=1

Yb�
l R−1

l

(
yo

l − Hl

(
xb(tl )

))]
, (6)

where P̃a is the k × k matrix given by:
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[
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These equations correspond to the Kalman filter analysis mean
and covariance equations; here the background mean and covari-
ance for w are 0 and (k − 1)−1 I, respectively. Now, the model
state corresponding to (6) is the mean analysis state:

x̄a = x̄b + Xbwa, (8)

The analysis ensemble is generated as follows:

xa(i) = x̄a + XbW(i). (9)

where W (i) is the ith column of the matrix W = [(k − 1)P̃a]1/2.
The forecasts from these analysis ensemble states are then used
for the next analysis as the background ensemble states.

We remark that a cost function similar to (5), but without
the linear approximation (4) to the observation operator, is used
in the Maximum Likelihood Ensemble Filter (Zupanski, 2005).
The analysis (6)–(9) is equivalent to the Ensemble Transform
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Kalman Filter (Bishop et al., 2001) with the Centred Spherical
Simplex Ensemble (Wang et al., 2004). It is also equivalent,
though formally less similar, to the analysis described in Hunt
et al. (2004) and Ott et al. (2004). In this paper, the analysis is
performed locally like in Ott et al. (2004), as described in the
next section.

3. Results

We test both 4D-VAR and 4D-LETKF on Lorenz-96, a toy model
with variable x in m-equally spaced points around a circle of con-
stant latitude. The jth component is propagated in time following
differential equation:

dx j

dt
= 1

120
[(x j+1 − x j−2)x j−1 − x j + F] (10)

where j = 1, . . ., m represents the spatial coordinate
(‘longitude’).

Following Lorenz (1996), like the study of Ott et al. (2004),
we choose the external forcing to be F = 8 and the number
of spatial elements to be m = 40. We have inserted the factor

1
120 so that, according to Lorenz’s estimate, the timescale of the
dynamics roughly matches that of a global weather model, with t
measured in hours. We use a fourth-order Runge–Kutta scheme
for time integration of (10) with time step �t = 1.5 hr.

We perform all simulations by assuming a perfect model sce-
nario. That is, a long integration from an arbitrary initial condi-
tion is assumed to be the ‘true’ state. We create the observations,
yo, by adding uncorrelated random noise with standard Gaussian
distribution (mean 0, variance 1) to the true state. To simulate the
asynchronous observations, we make 10 uniformly distributed
observations at every time step (1.5 hr). We rotate the observation
locations so that for every 6 hr period, we make one observation
available at each model grid point.

To ensure consistency between the 4D-VAR and 4D-LETKF
experiments, the assimilation experiments use the same truth
and observations. At each analysis time, we compute the anal-
ysis error as the Root Mean Square (RMS) difference between
the true state and the analysis ensemble mean for 4D-LETKF
(or simply the analysis state for 4D-VAR). Furthermore, we
also compute the RMS difference between the mean forecast
from the analysis ensemble for 4D-LETKF (or the forecast from
4D-VAR) and the true state at 6 hr intervals up to a 5 d fore-
cast. We then average the analysis errors and the forecast errors
over time by taking the RMS over T/1.5n analysis cycles, where
the analysis is done every n time steps (1.5n hr) and T is the
total length of the simulation. In our simulations, we choose T
= 120 000 hr (approximately 13.5 yr). We vary the value of n
to examine how the analysis error depends on the time between
analyses for 4D-LETKF and on the analysis time window for
4D-VAR.

For the 4D-VAR experiments in this perfect model scenario,
we obtain the constant background error covariance matrix B

for each analysis window iteratively. We initially run 4D-VAR
for T/1.5n analysis cycles using an arbitrary background covari-
ance matrix B0 and compute the covariance B1 of the differences
between the true and analysis states at all of the analysis times.
Next, we run 4D-VAR using B1 as the background error covari-
ance matrix and again compute the covariance B2 of the differ-
ences between the truth and background. We repeat this process
until the average analysis error does not change significantly. To
ensure optimality, we then replace the error covariance matrix
found by the iterative algorithm, B, with αB and tune α to empiri-
cally minimize the analysis RMS error. For all analysis windows
in this study, α was found to be close to one. This covariance
matrix is similar to that used for the constant error covariance
for OI by Wang et al. (2006). In this scenario, it provides similar
analysis errors to using a covariance matrix generated with the
NMC method (Parrish and Derber, 1992).

For 4D-LETKF, we obtain the analysis ensemble at each grid
point by computing the 4D-LETKF equations using only the ob-
servations within a local region. That is, for each grid point we
make a separate computation of (6)–(9) using only the rows and
columns of Yl and Rl corresponding to the observations in its re-
gion. Following Ott et al. (2004), the local region for a grid point
is centred at that grid point and contains a total of 13 grid points.
We present results produced from an ensemble of 15 members, as
we found that additional ensemble members did not significantly
benefit the analysis when using this localization. We apply mul-
tiplicative variance inflation, as in (Whitaker and Hamill, 2002),
to compensate for the effects of model non-linearity and limited
ensemble size. Multiplicative inflation replaces the background
covariance matrix Pb with (1 + r)Pb for some r > 0; we do this
in LETKF by replacing (k − 1)I with (k − 1)I/(1 + r ) in (7).
We tune r to minimize the analysis RMS error. For these studies,
the optimal inflation factor r increased with the length of the
analysis window.

We show the average analysis error as a function of the anal-
ysis time window in Fig. 1 for 4D-LETKF (solid) and 4D-VAR
(dashed). For 4D-LETKF, which should not use the same ob-
servation in more than one analysis, the analysis window must
correspond to the time between analyses, but for 4D-VAR the
time between analyses can be chosen independently of the anal-
ysis window. However, for 4D-VAR the analysis window can
be chosen independently. We see that the average analysis error
of 4D-LETKF grows with the time between analyses, and the
average analysis error of 4D-VAR decreases with the length of
the analysis window. The 4D-VAR scheme remains stable for
a larger range of analysis windows than 4D-LETKF. The mean
analysis RMS error of 4D-LETKF appears to saturate at approx-
imately 0.23 for analysis windows between 6 and 24 hr, while for
4D-VAR the mean analysis error appears to approach a similar
value for analysis windows between 96 and 108 hr.

For the model we consider here it is computationally feasible
to use a large enough ensemble that no localization is neces-
sary. In Fig. 1, we also display results for 4D-LETKF (dot–
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Fig. 1. We show the mean analysis error as a function of analysis
window for 4D-VAR (dashed). The mean analysis error is shown as a
function for time between analyses for 4D-LETKF with 15 ensemble
members and localization (solid) and 50 ensemble members and no
localization (dot–dashed). The 15 (50) ensemble member 4D-LETKF
experiments used inflation factors of 10% (8%) for the 12 hr, n = 8,
analysis window, 23% (14%) for the 24 hr, n = 16, analysis window,
and 65% (24%) for the 42 hr, n = 28, analysis window. The
4D-LETKF analysis diverged for all inflation factors below 100% for
analysis windows longer than 42 and 48 hr in the 15 and 50 ensemble
member experiments, respectively.

dashed) with 50 ensemble members and no localization; that is,
the analysis at each grid point uses all of the observations. In
this case, the average analysis error is 5–10% better than for the
smaller (15 member) ensemble with localization.

To further compare the analysis of 4D-VAR and 4D-LETKF,
we compare their average forecast errors as a function of fore-
cast time in Fig. 2. The average forecast error at initial time 0
is the average analysis error. For 4D-VAR we forecast from the
96 hr window analysis (dashed), while for 4D-LETKF we run
the forecast from the 24 hr window analysis. For each method,
the analysis window we use yields near optimal results (for that
method) according to Fig. 1. Because 4D-LETKF provides ini-
tial conditions for an ensemble forecast, consider both the mean
of an ensemble forecast (solid) and a forecast from the mean
analysis state (dot–dashed) to compare with the 4D-VAR fore-
cast. We observe that the 4D-VAR and 4D-LETKF forecasts
from the analysis mean have comparable mean RMS errors.
The advantage of the ensemble forecast becomes apparent after
2.5 d.

4. Summary

In assimilating the asynchronous observations considered here,
4D-VAR and 4D-LETKF yield comparable average analysis and
forecast errors when 4D-VAR is performed with a long enough
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Fig. 2. Mean forecast errors as function of forecast time for 4D-VAR
with 96 hr (dashed) and for a 4D-LETKF with 24 hr analysis window
using an ensemble forecast (solid) and forecast from the mean analysis
state (dot–dashed). The mean analysis error of each scheme is at time 0.

analysis time window and when 4D-LETKF is performed suf-
ficiently frequently. In an operational setting, the time between
analyses (and thus the time window for 4D-LETKF) may not be
adjustable, while the 4D-VAR analysis window can be chosen as
large as computational constraints allow. For the scenario of this
paper, our results indicate that if the desired time between anal-
yses is 24 hr or less, the mean analysis from 4D-LETKF with 15
ensemble members is of similar quality to the 4D-VAR analysis
with a 96 hr time window. Our results for a 50 member ensemble,
shown in Fig. 1, indicate that the loss of accuracy in 4D-LETKF
due to a limited ensemble size does not depend significantly on
the time between analyses. Since this large ensemble allows for
full rank covariances and a global analysis, we presume that the
loss of accuracy as the time between analyses increases is due
primarily to model non-linearity. While 4D-VAR is not strongly
affected by non-linearity, in practice model error will affect both
methods. Its effect will increase the errors as the analysis time
window grows.

The introduction of model error could further distinguish the
two 4D data assimilation schemes. 4D-VAR generally accounts
for model error by using the ‘weak constraint formulation’,
which adds additional terms of the cost function. In an Ensemble
Kalman Filter, additional amounts or different types of variance
inflation are generally used to counteract model error. While this
is the simplest approach to take in 4D-LETKF, it is also possible
to minimize a modified cost function in the space spanned by
the ensemble trajectories.

As implemented in this paper, both 4D-VAR and 4D-LETKF
assimilate the asynchronous observations at comparable compu-
tational cost. However, the implementation of 4D-LETKF can
be dramatically sped up by computing the analysis for each
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grid point in parallel (Szunoygh et al., 2005). Furthermore, like
other Ensemble Kalman Filters, the 4D-LETKF data assimila-
tion scheme is model independent and thus can easily be adapted
to new and evolving models without the human cost involved in
determining the adjoint of the model for 4D-VAR.
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