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ABSTRACT

We present a statistical model of North Atlantic tropical cyclone tracks from genesis site through lysis. To propagate

tracks we use the means and variances of latitudinal and longitudinal displacements and model the remaining anomalies

as autoregressive. Coefficients are determined by averaging near-neighbour historical track data, with ‘near’ determined

optimally by using jackknife out-of-sample validation to maximize the likelihood of the observations. The number of

cyclones in a simulated year is sampled randomly from the historical record, and the cyclone genesis sites are simulated

with a spatial probability density function using kernels with optimized bandwidths. Simulated cyclones suffer lysis

with a probability again determined from optimal averaging of historical lysis rates. We evaluate the track model by

comparing an ensemble of 1950–2003 simulations to the historical record using several diagnostics, including landfall

rates. In most regions, but not all, the observations fall within the variability across the ensemble members, indicating that

the simulations and observations are statistically indistinguishable. An intensity component to the TC model, necessary

for risk assessment applications, is currently under development.

1. Introduction

Powerful tropical cyclones (TCs) are among the most devas-

tating natural phenomena, and there has been great interest in

estimating and forecasting the risk of wind, rainfall and flood-

ing damage. Numerical weather forecast models, which integrate

the fundamental equations of motion from observed initial condi-

tions, form the basis for predicting the evolution of particular TCs

days in advance. At seasonal and longer time scales, however,

weather is unpredictable, and TCs must be treated stochastically,

although ensemble simulations with numerical weather models

may still be useful. Various approaches to statistical TC risk as-

sessment have been developed over the past 20 yr by private

sector and academic researchers. Generally, detailed descrip-

tions of private-sector models are not publicly available, with

only broad outlines published in conference abstracts. The mod-

els published with more detailed descriptions include Darling

(1991), Chu and Wang (1998), Vickery et al. (2000), Casson and

Coles (2000), James and Mason (2005), Emanuel et al. (2006)

and Rumpf et al. (2007).

The characteristics of TCs at landfall are of primary interest

in risk assessment, and a natural approach to modelling landfall
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statistically is to use historical data on TCs exclusively at land-

fall (e.g. Jagger et al., 2001). However, in many coastal regions

there are few or no historical events, making assessment of the

risk difficult. One way to overcome this limitation is to make use

of entire historical TCs, from genesis to lysis, thereby enhanc-

ing by roughly two orders of magnitude the amount of data on

which to construct a statistical model. Of course, the majority of

the data is less relevant to landfall. Historical TC behaviour in

the central Atlantic contains less information useful for assess-

ing landfall rates than does TC behaviour at or near a coastal

region. Nonetheless, in regions of rare landfall, historical TCs

that merely pass within 100 s of kilometres of landfall provide

constraints for risk assessment.

A crucial component of basin-wide TC modelling is the TC

track, the geographic trajectory from genesis to lysis, and it is the

modelling of this component that we focus on here. Basin-wide

approaches have been taken by several researchers, for tracks

as well as intensity. Vickery et al. (2000) use an autoregressive

model for increments in track speed and direction, with a random

error term acting as the innovation. Separate regression coeffi-

cients are fit and gridded for eastward and westward heading

TCs. James and Mason (2005) also fit an autoregressive model

for TCs in the Coral Sea near northeastern Australia, but they

model the latitudinal and longitudinal increments, rather than the

velocity increment. Their coefficients do not vary spatially, and

an ad hoc term is added to the latitude model to inhibit tracks

from propagating too near the equator. Emanuel et al. (2006)
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propagate tracks (in one of their two approaches) by sampling a

transition matrix, populated from historical analysis, that relates

prior track speed and direction to the new speed and direction.

Casson and Coles (2000) simply draw from the set of complete

historical tracks, translating the tracks by small random displace-

ments. Rumpf et al. (2007) separate TCs into independent classes

based on geographic characteristics, then sample kernel proba-

bility density functions (pdfs) build from historical speed and

direction increments to propagate the simulated TCs.

Simulated TC genesis in these studies is performed in several

ways. Emanuel et al. (2006) sample from a time- and space-

dependent pdf constructed by binning historical genesis events

and smoothing. James and Mason (2005) apply a scheme that

interpolates historical genesis. Vickery et al. (2000) simply sam-

ple directly the historical genesis sites. Rumpf et al. (2007) use a

near-neighbour approach similar to ours to develop and sample

a genesis kernel pdf.

We also take a basin-wide approach to North-Atlantic TC

track modelling. Our model is non-parametric, in the sense that

simulations are derived by spatially averaging historical data,

rather than fitting parametric forms to the data. We have strived

to make maximal use of historical data, without over-fitting the

model, by using out-of-sample validation to optimize data aver-

aging. In contrast to many other studies, we document explicitly

this objective procedure to average historical data. At a given

location r, we base the genesis, propagation, and lysis (death)

of TCs on data near r. For the tracks, mean six-hourly displace-

ment increments are computed, as are variances about the mean

and autocorrelations of the anomalies of track displacements.

The magnitude of the random noise forcing (the ‘innovation’)

depends on the variance and the autocorrelation, and is ulti-

mately drawn from model residuals. Genesis and lysis rates are

modelled by sampling pdfs built from historical events using

kernel techniques. For all elements, the length scales over which

historical data are averaged (the definition of ‘near’) are cho-

sen to maximize the jackknife out-of-sample likelihood of the

observations.

This paper summarizes are present state of model develop-

ment. In contrast to many other published work on stochastic

TC modelling no intensity is simulated here, nor is any inten-

sity information used in the track modelling. Intensity mod-

elling is clearly indispensable for TC risk assessment, and we

are presently developing an intensity model to complement the

track model. However, we believe it worthwhile first to de-

scribe and evaluate the TC track component of the model in

detail.

After reviewing the historical data we outline our modelling

procedure. We then describe in detail each of the modelling ele-

ments: mean displacements, variance, and autocorrelation for the

propagation; and genesis and lysis. Subsequently, we compare

simulated TCs to historical TCs using the large-scale diagnostics

of track-point density, latitude and longitude crossing rates, and

landfall rates.

2. Data

Following other North Atlantic TC modelling efforts (Vick-

ery et al., 2000; Emanuel et al., 2006) we use the HUR-

DAT ‘best track’ historical tropical cyclone data set compiled

by NOAA’s National Hurricane Center (Javinen et al., 1984;

www.aoml.noaa.gov/hrd/hurdat). HURDAT provides date, time,

longitude, latitude, central pressure and maximum wind speed

every 6 h for TCs rated tropical disturbance and higher back to

the 1800s. However, only from 1950 was aircraft reconnaissance

used routinely to monitor TCs. Information on earlier cyclones is

less reliable. In this study we use 524 HURDAT TCs from 1950

to 2003, inclusive. This represent all TCs in this period, except

for a small number (order 10) that had spurious six-hourly dis-

placements (e.g. 10s of degrees latitude or longitude).

Figure 1 shows these 524 historical TCs. Most North At-

lantic TCs are born in the subtropical middle Atlantic and the

Caribbean. Their trajectories follow a general sweep northwest-

ward in the subtropics, then veer northeastward at mid-latitudes.

Superposed on this average behaviour is considerable pseudo-

randomness; many TCs move in directions opposing the average

trajectory. The randomness makes a stochastic approach to sim-

ulation necessary.

3. Outline of the tropical cyclone track model

Our simulation of a TC track can be summarized by the following

steps.

(i) Generate the first point on the track from the genesis

model. This is the first ‘current point’ of the simulation.

(ii) Compute mean latitude and longitude displacements

from the current point by averaging historical displacements with

a weight that declines with distance from the current point.

(iii) Compute variances about the mean in directions parallel

and perpendicular to the mean, again weighting historical data

inversely with distance from the current point.

(iv) Simulate a displacement as u = u + εuurms for the direc-

tion parallel to the mean track and v = εvvrms for the direction

perpendicular, where overline indicates mean quantities and the

subscript ‘rms’ indicates root-mean-squared variances. The ε are

innovations, that is, random forcing drawn from a standard nor-

mal distribution of zero mean and unit variance (or, subsequently,

from model residuals).

(v) Use u and v to propagate the TC to the second point. For

the second point onward the simulation is summarized by the

following steps.

(vi) Find the local mean and variances as above and store.

(vii) Find autocorrelation coefficients in the parallel direction

(φu) and perpendicular direction (φv) by regressing all historical

displacements against their previous displacements. The histor-

ical elements in the regression are weighed inversely with dis-

tance from the current point.
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Fig. 1. The 524 HURDAT historical tropical

cyclone tracks from 1950 to 2003.

(viii) Compute the magnitudes su and sv of noise forcing using

s2 = 1 − φ2. (This is the statement that the total variance is

equal to the variance correlated with the previous step plus the

variance of the noise.)

(xi) Compute the parallel anomalies ũn+1 = φu ũn + suεu and

perpendicular anomalies ṽn+1 = φvṽn + svεv , where tilde indi-

cates a regularized anomaly quantity (zero mean and unit vari-

ance).

(x) Multiply anomalies by the rms variance and add the

mean: urmsũ + u and vrmsṽ.

(xi) Rotate the displacements to the zonal-meridional orien-

tation.

(xii) Update the current point with these displacements.

(xiii) Apply the lysis model, and terminate the TC if lysis

occurs.

The mean, variance and autocorrelation coefficients, as well

as elements of the genesis and lysis models, are computed from

spatial averages of historical data. The form of the averaging

is built on the premise that historical TC displacements closer

to the current point should carry more weight. Climatological

conditions vary spatially, and nearby historical displacements

carry information most relevant to the local climate. On the other

hand, the more restrictive is the weight about the current point the

less historical information is used, and the averages suffer from

sampling error. Thus, there is an optimal averaging length scale

that balances the requirements of having local information but

avoiding sampling error. This optimal length scale is computed

using jackkife out-of-sample validation, as described in more

detail in the sections below.

4. Model components

We now describe in detail the elements of the TC modelling. In

the process analysis of the historical data is presented.

4.1. Means

Thex (zonal) and y (meridional) components of the mean 6-h

displacement vector are computed by averaging historical dis-

placements:

x(r) = �i xi e−d2
i /2L2

�i e−d2
i /2L2

, (1)

where di is the great-circle distance between the location r of the

current point and the location ri of the ith historical TC point,

and similarly for y. The length scale L is optimized using an out-

of-sample jackknife procedure. Consider a six-hourly point r of

a historical TC in calendar year j. Select a scale L and sweep over

all six-hourly displacements over all historical TCs for all years

k �=j, forming x and y. The average displacement vector so com-

puted differs from the historical displacement vector emanating

from r, and the magnitude of the difference is the forecast error.

We compute the average forecast error over all points for all TCs

in all years j in the range 1950–2003. The averaged forecast error

is minimized in L, within some tolerance.

Figure 2 shows the mean forecast error as a function of L.

There is a minimum at 300 ± 10 km. Figure 3 illustrates the im-

pact of the averaging scale on mean tracks. Ten mean tracks

of equal duration are shown originating from evenly spaced

longitudes along a line of constant latitude. For the case of L
= 100 km the tracks display irregularities caused by excessive

sensitivity to individual TCs. For L = 1000 km the tracks have

very little structure, as regions of different climatological prop-

erties are averaged together. The optimal case, L = 300 km, is

intermediate.

Typical scatter of the displacement components about their

means can be seen in Fig. 4, which shows the historical dis-

placements vectors within 300 km of two sample locations. Also

shown are the pdfs of zonal displacements. The pdfs look rea-
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Fig. 2. Mean-track average forecast error versus averaging

length-scale.

sonably normal, encouraging the use of a normal distribution to

compute variances and their likelihoods, as described next.

4.2. Variance

The next step of the TC model construction is the computation

of the variance of 6-h displacements about the mean. The pdf of

Fig. 3. Eight mean tracks originating from evenly spaced longitudes and having equal durations. The averaging scales are 100 km (left), 300 km

(centre), and 1000 km (right). The optimal scale is 300 km (centre).

Fig. 4. Distribution of historical longitude

(X) and latitude (Y) displacements at two

locations, as labeled (left column, black line

segments). Also shown are the mean

displacements (thick grey). Shown in the

right column are the corresponding

distributions of longitude displacements

(solid) and a fitted normal distribution (dash).

the general multivariate normal distribution can be written

f (z) = 1

(2π )p/2
√

D
exp

[
−1

2
(z − μ)T �−1(z − μ)

]
, (2)

where p is the dimensionality, � is the p × p covariance matrix,

D is the determinant of �, superscript T indicates transpose and

z and μ are p-length vectors, with μ being the mean. Here, p = 2

and μ = (0, 0) because the means are removed before modelling

the variances of the two-component vector, z.

We have found that an anisotropic model, in which the vari-

ances in the u and v directions are distinct, has higher likelihood

than an isotropic model. We consider z = (u, v), where u and v are

deviations from the mean in directions parallel and perpendicular

to the mean. The covariance matrix is

� =
⎛⎝ σ 2

u 0

0 σ 2
v

⎞⎠ , (3)

so that (2) becomes

f = 1

2πσuσv

exp

(
−u2σ 2

v + v2σu

2σ 2
u σ 2

v

)
. (4)
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We have also examined an anisotropic correlated variance model,

which, turns out to have a higher likelihood than the uncorrelated

model. However, for simplicity of analysis of autocorrelation

(next section) we retain the uncorrelated model for all subsequent

analysis.

The coefficients σu and σv must be computed. This is done

using weighted averages of deviations of historical TC dis-

placements about the optimal mean displacement. That is, at

location r

σu(r) =
(

�i u2
i e−d2

i /2L2

�i e−d2
i /2L2

)1/2

(5)

and similarly for σv(r), where L is the length scale to be opti-

mized, di is the great-circle distance between r and ri , and the

summations are over historical storm points.

The scale L is optimized in a similar fashion similar to the

mean-displacement averaging scale, but now by maximizing the

likelihood rather than minimizing the forecast error. The like-

lihood of a historical deviation (ui , vi ) in year j at position r is

the distribution f evaluated at ui and vi . The summation in the

coefficients (5) is taken over all storm points in years k �=j. The

log-likelihoods are summed over all historical points r in all

years j, forming the total log-likelihood for a particular scale L
for the variance model. Figure 5 shows the total log-likelihood

as a function of L, as well as the analogous log-likelihood func-

tion for the isotropic variance model. The optimal scales for the

anisotropic model is 300 km, identical to the scale for the mean

track. Figure 6 shows the spatial distributions of the anisotropic

variance components in kilometres. The variances are largest in

the northern Atlantic, with values of 100–150 km. This is also

the region where the mean-track propagation speed is greatest.

4.3. Autocorrelation

We now turn to the analysis and modelling of the autocorrela-

tion, or ‘memory’, of the anomalies from the mean track. We

first analyse the historical data to determine the nature of the

Fig. 5. Log likelihood of the variance versus spatial averaging scale for

the isotropic model (dash) and the anisotropic model (solid). Values

listed on the vertical axis are divided by 105.

autocorrelations. We then select an autocorrelation model and

evaluate it by analysing its residuals.

4.3.1. Historical autocorrelations. We examine the autocorre-

lation of historical TC displacement anomalies. First, optimal

means are subtracted from the historical track data, and the re-

mainders are divided by optimal variances of the anisotropic

variance model, leaving standardized anomalies. Figure 7 shows

scatter plots among u and v anomalies (denoted ũ and ṽ) and their

values at the previous 6-h step. The anomalies ũ and ṽ are each

strongly correlated with their values at the previous time step.

On the other hand, no structure is apparent between contempora-

neous ũ and ṽ, or between ũ and ṽ with either lagged, suggesting

that independent modelling of the ũ and ṽ anomalies is appro-

priate. A similar conclusion was reached about Coral Sea TCs

by James and Mason (2005), although these authors considered

correlations among raw track increments, rather than regularized

anomalies.

Our variance model assumes that the deviations about the

mean are normally distributed. The ‘quantile–quantile’ (QQ) plot

of Fig. 8 reveals the degree to which normality is maintained

by the anomalies. Both ũ and ṽ are normal within ±2 standard

deviations, while outside this range they exhibit ‘fat tails;’ that is,

anomalies greater than ±2 standard deviations are more common

than would be expected normally.

In order to decide how many 6-h lags to consider in the au-

tocorrelation modelling we regress all ũ and ṽ against a range

of lagged values. Figure 9 shows the resulting regression coef-

ficients for 10 lags. The lag-one coefficients are 0.75–0.8 for ũ
and ṽ, while the coefficients for all greater lags have magnitudes

less than 0.05. This indicates that consideration of just one lag

is sufficient to model the anomalies.

A lag-one autocorrelation function has the form f (t) = e−t/τ ,

where t is the lag and τ is the decorrelation time scale. The ũ
and ṽ time scales τ are plotted spatially in Fig. 10, using an

averaging length scale of 900 km to compute the autocorrelation

coefficients (justified below). There is spatial structure, with τ

for ũ peaking at about 2.25 d in mid-latitudes and τ for ṽ peaking

at about 1.75 d in the subtropics.

4.3.2. Autocorrelation model. The analysis of the autocorrela-

tions suggests the modelling of the u and v anomalies as inde-

pendent lag-one autoregressive processes, denoted AR(1). Given

anomalies at step n − 1, the anomalies at step n are

ũn = φu
n ũn + su

n εu

ṽn = φv
n ṽn + sv

n εv,
(6)

where φ are the autocorrelation coefficients, s the magnitude of

the innovations, and ε the innovation, drawn from a normal dis-

tribution of zero mean and unit variance (and, subsequently, from

model residuals). Autoregressive models are also used by Vick-

ery et al. (2000) and James and Mason (2005), though applied

to the raw track increments, rather than the anomalies. Note that

in (6) s and φ are not independent. Squaring and averaging both
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Fig. 6. The spatial distributions of the rms displacement variances parallel (a) and perpendicular (b) to the mean displacement vector. Units are

kilometres. The averaging scale is the optimal value of 300 km.

Fig. 7. Scatter plots of anomalies. u refers to

direction parallel to mean displacements and

v to direction perpendicular to mean

displacement. (a) u(t) versus u(t − �t),
where �t is one 6-h time step; (b) v(t) versus

v(t − �t); (c) u(t) versus v(t); and (d) u(t)
versus v(t − �t). Points are a random subset

of the historical data set. One-to-one line is

plotted for reference.

Fig. 8. Quantile–quantile plots of (a)

displacement anomalies parallel and (b)

perpendicular to mean displacement vectors.

The anomalies would be distributed

normally if the scatter fell on the straight

lines. This is the case within ±2 standard

deviations. Outside this, the anomalies

exhibit ‘fat tails.’ That is, large anomalies

are more probable than normal.

sides of eq. (6) and using the fact that the regularized anomalies

have unit variance, one finds that s2 = 1 − φ2.

The coefficients φu and φv at a current point r are computed

by weighted spatial averaging of historical autocorrelations.

We regress all ũn against all ũn−1 anomalies (n > 1), using a

weight e−d2
i /2L2 for each historical (ũn, ũn−1) pair, where di is

the great-circle distance between r and the position ri of the his-

torical pair. (An identical calculation is performed for v.) Once

again the optimal averaging scale, L = 900 km, is obtained by

maximizing the jackknife out-of-sample likelihood. To compute

the likelihood, the multivariate normal distribution (2) is used to

represent the probability of the entire series of ũ or ṽ along a TC
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Fig. 9. Coefficients obtained regressing anomalies against themselves

at 10 successive six-hourly lags in the direction parallel (solid) and

perpendicular (dash) to mean displacements. In this case all historical

data are used with equal weight. Only lag one is significantly different

than zero, supporting the use of the AR(1) model.

Fig. 10. Autocorrelation timescale τ for anomalies parallel (a) and perpendicular (b) to mean displacements. Units are days. For a perfect AR(1)

model the autocorrelation function (ACF) is f (t) = e−t/τ . The timescales plotted here are τ = 0.25 day/ln [f (0.25 day)], where f(t) is the empirical

ACF computed locally from the historical data using the optimal averaging scale of 900 km.

Fig. 11. As in Fig. 7, but now for the

residuals of the lag-one autocorrelation

model. No structure is apparent, indicating

that the lag-one model captures well the u
and v correlations and autocorrelations.

track. The symmetric covariance matrix has dimensions m × m,

where m is the number of steps in the track. It can be written

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 φ1 φ1φ2 φ1φ2φ3 ...

. 1 φ1 φ1φ2 ...

. . 1 φ1 ...

. . . 1 ...

. . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where the subscripts on φ refer to the step number along the

track. (The diagonal elements are all 1, because the anomalies

have been standardized to unit variance.)

4.3.3. Residuals. To evaluate how well AR(1) models the

anomalies we examine the residuals; that is, the difference of

an AR(1) predicted anomaly from a historical TC point and the

Tellus 59A (2007), 4
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Fig. 12. (a) Historical genesis sites from

1950 to 2003. (b) Kernel genesis pdf with

length-scale 100 km, (c) 210 km and (d) 500

km. The case of 210 km is optimal. The pdfs

are each normalized to unit maximum.

actual historical anomaly. Figure 11 contains scatter plots anal-

ogous to Fig. 7, but now for the residuals. The residual scatter

displays no structure, indicating that the relationships have been

captured well by the AR(1) model. A QQ analysis of the resid-

uals (not shown) shows behaviour similar to the QQ analysis

of the anomalies (Fig. 8): normal behaviour within ±2 standard

deviations, and ‘fat tails’ outside.

To accommodate the effects of the fat tails in track simulations

we proceed as follows: At each historical TC point we simulate

the ũ and ṽ using the optimized AR(1) model with standard nor-

mal innovations. The residuals of these simulations are stored in

a table. In all subsequent TC simulations the innovations con-

sist of sampling randomly from the residual table. In this way

anomalies in simulations will have larger than normal magnitude

outside ±2 standard deviations. Using residuals for innovations

turns out to provide a small increase in the realism of the simu-

lated tracks, as diagnosed by the model-observation comparisons

shown in Section 5, below.

4.4. Genesis.

The TC genesis model consists of two separate components:

(1) simulating the number of TCs in a year, and (2) simulating

the geographical sites of these TCs. Substantial effort has been

spent developing forecasts for TC number at seasonal and longer

leads (e.g. Gray et al., 1992), with much interest generated by

increased Atlantic hurricane frequency and intensity in recent

years (Webster et al., 2005). These issues are not addressed here

for TC number, and we have chosen a simple expedient: random

sampling from the historical number of TCs per year in the 1950–

2003 period. For comparison, Vickery et al. (2000) sample a

fitted negative binomial distribution. Whether or not annual TC

number simulation is necessary depends on the nature of model

evaluation against historical TCs. Some studies do not simulate

TC number, simply generating an large arbitrary number of TCs

for comparisons to historical TCs (e.g. James and Mason, 2005;

Emanuel et al., 2006).

Given the number of TCs in a year, we model the genesis

sites using a two-dimensional (latitude, longitude) pdf comprised

of sums of kernels about out-of-sample historical genesis sites.

The kernels are Gaussian, with isotropic variance length scale

L, which is referred to as the bandwidth of the genesis pdf. (By

contrast, Rumpf et al., 2007 use Epanichnikov kernels.) Thus,

the pdf for genesis at position r is

f (r) = 1

2π Nσ 2

N∑
i=1

e−d2
i /2L2

, (8)

where di is great-circle distance between r and the location of the

ith genesis site. The optimal bandwidth L = 210 km is obtained

from the jackknife out-of-sample likelihood maximization. Fig-

ure 12 shows the 524 historical genesis sites, along with the pdf

f(r) computed using values L = 100 km, 210 km (optimal) and

500 km. For L = 100 km the pdf has detailed structure and many

local maxima. For L = 500 km the pdf is much smoother and

has just three maxima. The optimal case, L = 210 km, is inter-

mediate.

To simulate genesis the pdf is normalized to unit maximum.

A random value of r is chosen from a uniform distribution over

a region that encompasses the entire domain. Genesis occurs

at r randomly with a probability given by the normalized f. The

procedure is continued until the desired number of genesis events

is realized. Fig.13 shows the historical genesis sites from 1950 to

2003 (524 events) and three simulations of genesis sites over the
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Fig. 13. (a) The 524 historical genesis sites

from 1950 to 2003 used in this analysis, as in

Fig. 12a. (b), (c) and (d) Three simulations

of genesis for the same period. The number

of simulated TCs are 516, 510 and 554,

respectively.

Fig. 14. (a) Historical TC tracks from 1950

to 2003 (as in Fig. 1). (b), (c) and (d) Three

simulations of TC tracks over the same

period.

same period (516, 510 and 554 events). The simulations capture

the historical genesis pattern well. The simulated genesis events

scatter over a latitude band in the eastern subtropical Atlantic

that is somewhat broader than the historical distribution.

4.5. Lysis.

Ultimately the lysis of a TC should be linked to the simulated

evolution of its intensity. A stochastic intensity model is currently

being developed. In the meantime, we construct a lysis model

from historical lysis rates. The probability pL (r) of suffering lysis

at a current point r is modelled as

pL (r) = �i	i e−d2
i /2L2

�i e−d2
i /2L2

, (9)

and the probability of not suffering lysis is pN L = 1 − pL (r),

where 	i = 1 if the storm point i is the last point of a TC,

and 	i = 0 otherwise. The optimal averaging scale is LL =
360 km, obtained again by jackknife out-of-sample likelihood

maximization.

5. Simulations and diagnostics

We now present simulated TCs and compare diagnostics of the

simulations to analysis of historical TCs. Figure 14 shows the

historical track from 1950 to 2003 and three sets of simulations

of this period. The general features of the historical storms are

well captured by the model, including the northwestward motion

at low latitudes, the northeastward motion at mid-latitudes, the

degree of penetration into the continent, and the degree of ran-
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Fig. 15. TC track-point density, defined as

the number of six-hourly TC positions

(‘points’) per area accumulated over the

period 1950–2003. (a) Mean density over

50-member ensemble of simulations of the

1950–2003 period. (b) Historical density

over same period. (c) Root-mean-squared

variance of density over 50-member

ensemble. (d) ‘Z score;’ that is, historical

minus simulated ensemble mean divided by

historical. Units in (a), (b) and (c) are track

points per 100 × 100 km box, while the

Z-score in (d) is dimensionless.

domness in the tracks. However, there is a higher historical track

concentration off the mid Atlantic coast than is simulated, and

the simulated TCs tend to sweep too far east at mid-latitudes.

Emanuel et al. (2006) also show examples of simulated tracks,

which have features qualitatively similar to ours. However, they

report no further large-scale diagnostics, making quantitative

comparison difficult. Vickery et al. (2000) do not show their

simulated tracks, although they evaluate the landfall character-

istics of the simulated TCs.

5.1. Density.

In order to evaluate the model performance quantitatively we

have devised several diagnostics. The first is the spatial density

of ‘storm points’ (six-hourly longitude–latitude positions) com-

puted over the 54-yr 1950–2003 period. We have simulated 50

such periods, forming an ensemble, whose average density is

shown in Fig. 15a. Figure 15b shows the density for the histor-

ical TCs. Figure 15c shows the distribution of rms variance of

density, computed across the ensemble. Finally, Fig. 15d shows

the model’s ‘Z score,’ the historical distribution minus the en-

semble mean divided by the rms variance. The Z score is a simple

test of the statistical significance of the historical-model differ-

ences. If the model were unbiased then the historical TC tracks

would simply be one sample of the distribution of the simu-

lated ensemble, and the Z score magnitude would surpass unity

only infrequently. More sophisticated significance tests would

be worthwhile, such as asymptotic distribution-free goodness of

fit, which do not depend on normality assumptions in certain

limits (e.g. Bishop and Chakraborti, 1989), but we do not pursue

them here.

The basic features of the historical density are replicated by

the simulations. The largest difference occurs off the US eastern

seaboard just south of Cape Hatteras, where the historical den-

sity reaches a sharp maximum. The simulated TCs also have a

maximum here, but it is not quite as sharp and is located fur-

ther off shore. Figure 15d shows this difference to be above one

standard deviation (about 1.6). Apparently, the simulations do

not sufficiently ‘focus’ TC trajectories into the region adjacent

to the mid-Atlantic eastern US coast, a discrepancy that can be

seen in the tracks themselves (Fig. 14). By contrast, the simu-

lated density is too high by more than one standard deviation in

the eastern subtropical Atlantic and the American interior north-

east, although both these regions have few historical or simulated

TCs.

5.2. Latitude and longitude crossing.

Our second diagnostic is the number of storms crossing various

latitude and longitude lines. Figure 16 shows the count of TCs

crossing five latitude lines as a function of longitude. North-

ward and southward crossings are tallied separately. The general

northward sweep of TCs can be seen, with the maximum north-

ward penetration occurring at 30◦N and about 75◦E. Very few

storms cross north to south. The simulated crossings are shown

as the ensemble-mean rate ± one standard deviation. The spread

in simulated crossing rates bounds the historical rates in most

places.
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Fig. 16. Number of historical (dash) and simulated (solid) TCs over

1950–2003 period crossing latitude lines as a function of longitude.

Counts are made in 5◦ longitude bins. The latitudes are 10◦, 20◦, 30◦,

40◦ and 50◦N. Northward crossings (left column) and southward

crossings (right column) are tallied separately. Simulated crossings are

shown as the 50-member ensemble mean ±1 standard deviation. In

most regions the historical crossings fall within the variability of the

simulations. Units on the vertical axis are 10-count increments, and

should be taken to start at zero for each latitude.

Figure 17 shows the westward and eastward longitude cross-

ings. The westward penetration of TCs occurs primarily 5◦N–

25◦N, while the eastward penetration occurs 25◦–50◦. In most

places the simulation spread encompasses the historical cross-

ings. In the western Atlantic, however, the simulations underes-

timate the westward penetration at 15◦N–20◦N and 25◦N–30◦N.

This is consistent with the underestimate in TC-point density off

the southern part of the US eastern seaboard (Fig. 15).

5.3. Landfall.

Landfall rates are of major interest for risk assessment. To be

useful in this regard a TC model needs an intensity component,

which we have not yet developed, to separate potentially catas-

trophic storms from minor storms. Nonetheless, for evaluating

our track model, landfall rates for all named TCs taken together,

is still a valuable diagnostic. Figure 18 shows historical and sim-

ulated landfall rates along the North American east coast and

Gulf coast. A coarse model of the coastline is constructed using

39 line segments (‘gates’) of various lengths, and the number

of TC displacement vectors crossing the segments from ocean

to land is counted. For this tallying we treat displacement vec-

tors independently; a single TC can make multiple landfalls.

The landfall rates are plotted as a function of distance along the

coarse-grained coastline from northeast to southwest. The rates

are stated in units of TC crossings per year per 100 km of coast-

line. Shown in Fig. 18 are the coastline map and its gates, the

historical landfall rate, the simulated landfall rates for the 50 en-

semble members, the mean simulated rate across the ensemble

and its standard deviation, and the Z score.

The historical coastal landfall-rate profile is highly structured.

It is highest just south of Cape Hatteras, where it reaches 0.2 per

Fig. 17. Number of historical (dash) and simulated (solid) TCs over

1950–2003 period crossing longitude lines as a function of latitude.

Counts are made in 5◦ latitude bins. The longitudes are 280◦, 290◦,

300◦, 310◦, 320◦, 330◦ and 340◦. Westward crossings (bottom) and

eastward crossings (top) are tallied separately. Simulated crossings are

shown as the 50-member ensemble mean ±1 standard deviation. The

simulations slightly underestimate the westward crossing rate in the

subtropics. Units on the horizontal axis are 10-count increments, and

should be taken to start at zero for each longitude.

100 km per year, but there are several other local maxima. The

landfall rate on a particular coast segment is highly sensitive

to the segment’s orientation, with a maximum rate occurring

when the segment’s normal vector is parallel to the local mean

track and a minimum occurring when it is perpendicular to the

mean track. Thus, the landfall-rate profile depends sensitively

on the definition of the coastline gates, which are somewhat

arbitrary. Nonetheless, historical regional landfall rates along

the US coast shown Vickery et al. (2006) for intense hurricanes

display similarly located minimums and maximums.

The simulated TC landfall rates capture much of the struc-

ture of the historical rates. The simulated peak occurs near Cape

Hatteras, and the locations of the other maxima and minima

match the historical profile. Because simulations are stochastic

the landfall-rate profile of one 54-yr simulation differs from an-

other. In this light, the historical profile can be viewed as only

one possibility among many. The 54-yr periods prior to and fol-

lowing the 1950–2003 period would exhibit different landfall

profiles, even in the absence of climate variability or secular

change. Taken together the simulated profiles provide a sense of

the range of possible landfall rates. Were the simulations unbi-

ased, the range of simulated profiles would bound the historical
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Fig. 18. Top: historical landfall rate over

1950–2003 period (thick black) and 50

simulations over same period (thin grey),

both plotted as a function of distance along

the coast from northeast to southwest. Rates

are expressed as counts per year per 100 km

of coastline, as computed over the 39 gates

shown at left. Letters are shown for

reference. Middle: Historical rates (thick

black) and mean over 50-member simulation

ensemble (thin black). The grey region

represents ±1 standard deviation about the

ensemble mean. Bottom: ‘Z score,’ that is,

the simulation mean minus historical rate

divided by historical rate.

profile. However, while the simulation profiles of Fig. 18 have

shapes very similar to the historical, there is a negative bias in

many places, which is most pronounced near Cape Hatteras, the

west coast of Florida and the north Gulf Coast (Z ≈ −2).

These landfall rates are not categorized by TC intensity, as

intensity has not been simulated, and no intensity information

has gone into the tracks beyond inclusion in HURDAT. Con-

sequently, the successes and limitations of our track model to

simulate landfall realistically cannot, at this point, be taken as a

complete evaluation of a TC risk assessment model. When we

have finished development of an intensity model (including TC

wind speed) to complement the track model we will re-evaluate

landfall rates at different intensity thresholds.

6. Summary

We have developed a basin-wide statistical model of North

Atlantic TC tracks. The model is non-parametric, using near-

neighbour historical information to propagate TCs from one 6-h

time step to the next and to simulate their genesis and lysis. ‘Near’

is defined optimally, by maximizing the likelihood in an out-of-

sample jack-knife procedure. The propagation consists of com-

puting mean 6-h displacement increments, variances about the

mean, and lag-one autocorrelations. Innovations are drawn from

model residuals. The genesis model consists of sampling a ker-

nel pdf build from historical genesis whose bandwidth (210 km)

is selected to optimize the likelihood of the historical genesis.

Ultimately the lysis of the simulated TCs should be based on in-

tensity, the modelling of which is under development. At present

the probability of lysis is determined from local historical lysis

events.

We have used the statistical model to perform multiple sim-

ulations of the 54-yr historical period on which the model is

based (1950–2003). Because the processes are stochastic, one

simulation differs in detail from another. The ensemble-mean

simulation exhibits large-scale features, such as track-point den-

sity, crossing rates of lines of constant latitude and longitude,

and landfall rates, that match their historical counterparts rea-

sonably well. For most diagnostics in most regions the historical

quantity falls within one standard deviation of the ensemble-

mean simulation, indicating that the simulations are statistically

indistinguishable from the historical record. There are, however,

regions of bias in the model, such as an underestimate in the track

density and landfall rate in the central mid-Atlantic US coast.

There are several approaches that could be taken to further im-

prove the realism of the tracks. We have neglected a weak corre-

lation between anomalies perpendicular and parallel to the mean

TC displacements. More generally, one should use a vector-

autoregressive model to relate (ũ, ṽ) anomaly vectors at steps

n and n − 1 by a 2 × 2 matrix. We have neglected any time-

of-year dependence. The genesis and the track formation could

be conditioned on date, for example, forming averages with a

weight that declines from the date of the current point. Gene-

sis kernels could be made one sided near coastlines to reduce

negative bias from inland regions where no genesis occurs.

Finally, we emphasize that at present we have neither modelled

TC intensity, nor included any track dependence on intensity.

The model evaluation described here should not be considered

as an evaluation of a TC risk assessment model, since risk assess-

ments clearly require TC wind speed. Development of a statisti-

cal TC model is presently underway using non-parametric tech-

niques similar to those described here. Our strategy is to develop
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components individually, thoroughly documenting and testing

each separately. We have reported on the track component in

this paper.
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