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ABSTRACT

Low-resolution global ocean models display hysteresis behaviour when forced with an anomalous freshwater input into

the northern North Atlantic. Of central importance in this hysteresis behaviour is the existence of so-called saddle-node

bifurcations. In this paper, focus is on the physical characterization of the multiple equilibrium regime using a fully

implicit global ocean model for which bifurcation diagrams can be explicitly computed. The physics of the position of

the relevant saddle-node bifurcation in parameter space is clarified and a modification of an earlier suggested diagnostic

of the presence of the multiple equilibrium regime is proposed. The relevance of this indicator for coupled climate

models is shown by studying the sensitivity of the multiple equilibria regime to changes in the horizontal and vertical

diffusivities of the model.

1. Introduction

Major transitions in the ocean circulation have not been docu-

mented in the instrumental record (Bryden et al., 2005). There

is a real possibility, however that more than one time-mean flow

pattern of the global ocean circulation, and in particular of the At-

lantic Meridional Overturning Circulation (AMOC), may exist

under the present forcing conditions. Reconstructions of ocean

deep temperatures during the last glacial period have provided

ample evidence that rapid climate changes were associated with

major changes in the deep current structure in the Atlantic (Clark

et al., 2002). The existence of at least one additional state of the

global ocean circulation, with a substantially different merid-

ional heat transport, would have important consequences for cli-

mate variability and global climate change over the next century

(McAvaney, 2001). It is therefore of central importance to de-

termine whether the present time-mean ocean circulation state

is unique or in a multiple equilibria regime.

After the early work of Stommel (1961), the interest in the

multiple equilibria regime revived when Bryan (1986) showed

that such a regime is in principle consistent with the governing

equations of the three-dimensional ocean circulation. Since then,

many studies have demonstrated that multiple equilibria exist in

a hierarchy of global ocean models and ocean–atmosphere mod-

els (Stocker et al., 1992; Rahmstorf, 1995; Manabe and Stouffer,

1999). These studies can be divided into three classes: (i) those
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that focus on the behaviour of the time-mean circulation under

(controlled) changes in the freshwater flux pattern and amplitude

(also called ‘hosing experiments’); (ii) those that focus on the

temporal evolution of the meridional overturning circulation due

to specified changes in the (initial) salinity field under otherwise

fixed parameter values and forcing conditions and (iii) studies

with coupled ocean–atmosphere models where the climate re-

sponse due to the increase of atmospheric greenhouse gases is

considered.

The sensitivity of the AMOC to anomalous freshwater input

into the northern North Atlantic has been investigated by adding

freshwater at a very slow rate such that quasi-steady states are

monitored in time (Rahmstorf, 2000). In this way, a first im-

pression of the stable equilibria of the global ocean circulation

can be obtained. In several global ocean models it was found

that the present day AMOC collapses when the freshwater in-

put is large enough. When the freshwater forcing is reversed

from the collapsed state, hysteresis behaviour occurs because

the collapsed state can be maintained under substantial positive

freshwater-flux anomalies. This hysteresis behaviour has been

found in many low-resolution ocean models and Earth system

Models of Intermediate Complexity (EMICs). The position of

the unperturbed state (no anomalous freshwater input) is in the

multiple equilibrium regime for some models but for others it is

in the unique regime (Rahmstorf et al., 2005).

A typical example of the second class of studies is the one by

Vellinga et al. (2002) that investigated the response of a coupled

ocean–atmosphere model (HadCM3) to a sudden decrease in

surface salinity in the northern North Atlantic. The overturning

circulation first reduced substantially but it recovered after about
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120 yr. The salt transport by the subtropical gyre appeared a

crucial factor in the recovery process since it is able to restore

the salt deficit caused by the initial perturbation.

In studies where the atmospheric CO2 is increased, some mod-

els predict a collapse of the Atlantic meridional overturning

whereas others show only a modest change (McAvaney, 2001).

In the work of Manabe and Stouffer (1994, 1999), the increase

of CO2 leads to a significant weakening of the Atlantic merid-

ional overturning circulation; at the time of CO2 doubling, it

has decreased by 80%. If the CO2 level is then held fixed, the

overturning recovers on a century timescale. However, when

the CO2 concentration is again doubled over the next 70 yr,

the Atlantic meridional overturning completely collapses and

does not recover. In contrast, other transient climate simulation

studies with increasing CO2 find only a relatively modest reduc-

tion (Wood et al., 1999) or no reduction at all (Latif et al., 2000)

in the Atlantic overturning. The mechanisms for this behaviour

have been analysed for some cases (Thorpe et al., 2001) and are

related to a stabilizing salt transport by the ocean flow.

For all these type of studies there is a wide spread in the be-

haviour of the different models around (Schmittner et al., 2005;

Stouffer et al., 2006). A prominent example illustrating the sen-

sitivity of models to small variations in parameters are the hosing

experiments by Manabe and Stouffer (1999). In the GFDL cli-

mate model they first consider the standard case of a vertically

dependent mixing coefficient (with slightly larger values at depth

than near the surface) of heat and salt (Bryan and Lewis, 1979),

indicated here by KV . When the equilibrium state obtained af-

ter spinup is perturbed with a large anomalous freshwater per-

turbation, the AMOC collapses and the collapsed state appears

stable when the freshwater forcing is removed. In a second case,

the value of KV is taken constant but relatively large. When

the equilibrium state obtained after spinup is perturbed with a

similar freshwater perturbation, the AMOC also collapses but it

recovers when the anomalous freshwater forcing is released. Al-

though these are results of only a few simulations they illustrate

that apparently a small change in a parameter, such as the verti-

cal diffusivity, may already move the unperturbed state from the

multiple equilibrium regime to the unique regime.

In this paper, we focus on the physical processes that charac-

terize the multiple equilibrium regime in a global ocean model.

In a recent paper, De Vries and Weber (2005) have provided re-

sults of an EMIC study that indicate that the freshwater budget

over the North Atlantic is a key factor for the existence of the

multiple equilibrium regime. This was also already mentioned

in Rahmstorf (1996) but the precise relation between the At-

lantic freshwater budget and the different flow regimes has not

been considered in an ocean General Circulation Model (GCM),

EMIC or coupled GCM. A systematic investigation can be per-

formed by using numerical techniques, so-called continuation

methods, which compute the regime boundaries explicitly. Re-

cently, a bifurcation analysis was performed using a model of

the global ocean circulation that is coupled to an energy-balance

model of the atmosphere (Weijer et al., 2003; Dijkstra and

Weijer, 2005). With continuation techniques, one can efficiently

calculate the steady states of this model versus model parameters

(Dijkstra, 2005).

Although this fully implicit ocean model has to be improved

in several aspects, the present model and the numerical tech-

niques are in a stage that a more systematic determination of

the sensitivity of the different regimes (unique versus multiple

equilibrium) to parameter variations can be made. In this paper,

bifurcation diagrams for different horizontal and vertical dif-

fusivities are presented. Using the Atlantic freshwater budget,

the position of the saddle-node bifurcations bounding the multi-

ple equilibrium regime in parameter space is characterized. This

characterization is subsequently used to study the physics of the

sensitivity of the multiple equilibrium regime to changes in the

horizontal and vertical diffusivities.

2. Formulation

In this section, we will shortly recall the model used (Section 2.1)

and summarize the continuation approach (Section 2.2) which

is applied to this model to compute the bifurcation diagrams.

2.1. Model

The description of the fully implicit global ocean model used

in this study is presented in Weijer et al. (2003) and Dijkstra

and Weijer (2005) to which the reader is referred for full details.

The governing equations of the ocean model are the hydrostatic,

primitive equations in spherical coordinates on a global domain

which includes full continental geometry as well as bottom to-

pography. The ocean velocities in eastward and northward direc-

tions are indicated by u and v, the vertical velocity is indicated

by w, the pressure by p and the temperature and salinity by T and

S, respectively. The horizontal resolution of the model is about

4◦ (a 96 × 38 Arakawa C-grid on a domain [180◦ W, 180◦ E] ×
[85.5◦S, 85.5◦N]) and the grid has 12 levels in the vertical. The

vertical grid is non-equidistant with the most upper (lowest) layer

having a thickness of 50 m (1000 m), respectively.

Vertical and horizontal mixing of momentum and heat/salt are

represented by a Laplacian formulation with prescribed eddy

viscosities AH and AV and eddy diffusivities KH and KV , re-

spectively. To look at the effect of varying diffusivities, we will

consider both constant values of K̄V and K̄ H (as were used in

Dijkstra and Weijer, 2005) and depth dependent values according

to (Bryan and Lewis, 1979; England, 1993)

KV (z) = κV

[
K 0

V − As arctan λ(z − z∗)
]
, (1a)

K H (z) = K 0
H + (

Ar − K 0
H

)
e

z
500 , (1b)

with z ∈ [− 5000, 0] m. Here, K0
H = 0.5 × 103 m2 s−1, Ar = 1.0 ×

103 m2 s−1, K0
V = 8.0 × 10−5 m2 s−1, As = 3.3 × 10−5 m2 s−1,
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Fig. 1. Spatial distribution of the mixing coefficients KV (z) (solid,

lower x-axis) and KH (z) (dashed, upper x-axis) in (1) for κV = 1.0.

λ = 4.5 × 10−3 m−1, z∗ = − 2.5 × 103 m; κV is a parameter

which will be specified later on.

The spatial patterns of both KV (z) and KH (z) are shown for

κV = 1 in Fig. 1. The vertical diffusivity KV increases from

3.1 × 10−5 m2 s−1 at the surface to 1.3 × 10−4 m2 s−1 near

the bottom of the flow domain. The horizontal diffusivity KH

increases monotonically from 5.0 × 102 m2 s−1 at the bottom of

the ocean to about 1.0 × 103 m2 s−1 near the surface.

The ocean flow is forced by the annual-mean wind stress as

given in Trenberth et al. (1989). The upper ocean is coupled to

a simple energy-balance atmospheric model (see appendix in

Dijkstra and Weijer, 2005) in which only the heat transport is

modelled (no moisture transport). The freshwater flux will be

prescribed in each of the results below. The model has no sea-

ice component. As in low-resolution ocean GCMs, the surface

forcing is represented as a body forcing over the upper layer.

On the continental boundaries, no-slip conditions are prescribed

and the heat and salt fluxes are zero. At the bottom of the

ocean, both the heat and salt fluxes vanish and slip conditions are

assumed.

2.2. Methods

We determine steady-state solutions of the model as described

in Section 2.1 versus parameters using continuation methods

(Dijkstra, 2005). The discretized steady equations can be written

as a non-linear algebraic system of equations of the form

F(x, λ) = 0, (2)

where x is the state vector and λ is one of the parameters (or

the control parameter). For the global ocean model (with a 4◦

horizontal resolution and 12 layers in the vertical) the dimension

of the state space (and of x) is 284 544.

As in Dijkstra and Weijer (2005), the procedure to compute

bifurcation diagrams of the model is:

(i) Under restoring conditions for the surface salinity field

(Levitus, 1994), a steady solution is determined for ‘most real-

istic’ values of the parameters of the model.

(ii) From this steady solution the freshwater flux, say Fe
S, is

diagnosed.

(iii) An anomalous freshwater flux Fp
S over a region near

New Foundland with domain (φ, θ ) ∈ [60◦W, 24◦W] × [54◦N,

66◦ N] is prescribed in addition to Fe
S with strength γ p Sv. With

Fp
S = 1 in this domain and zero outside, then the total freshwater

flux is prescribed as

FS = Fe
S + γp F p

S − Q, (3)

where the quantity Q is determined such that

∫
Soa

FS r 2
0 cos θ dθdφ = 0, (4)

and Soa is the total ocean surface.

(iv) A branch of steady solutions versus γ p is calculated under

the freshwater forcing (3), starting from the solution determined

under (i) for γ p = 0.

For clarity, we illustrate the connection between the hystere-

sis behaviour in ocean models (or EMICs) on one hand and

bifurcation diagrams on the other hand with help of Fig. 2. In the

bifurcation diagram in Dijkstra and Weijer (2005), schematically

shown in Fig. 2a, the strength of the AMOC (ψ) of each steady

state is plotted versus γ p; one branch of solutions was found. A

solid linestyle along the branch indicates that steady solutions

are stable while steady states are unstable on the dashed part of

the branch. There are two saddle-node bifurcations, indicated by

L− and L+, respectively which separate the stable and unstable

parts of the branch.

In quasi-equilibrium simulations, γ p is extremely slowly var-

ied in time and the following is observed (Fig. 2b). Starting at

the reference solution for γ p = 0, the upper solution branch in

Fig. 2a is followed until the value of L+ where no nearby steady-

state solution exists anymore. Hence, the solution changes

rapidly (‘collapse’ in Fig. 2b) to that on the lower branch and

follows that branch with increasing γ p . If from a large value of

γ p , the solution is followed with decreasing γ p then the lower

branch is followed up to the value of γ p at L−, where a transition

(‘recovery’ in Fig. 2b) occurs to the solution on the upper branch.

Let the value of γ p at the L± be indicated by γ ±
p , respectively,

then the width of the hysteresis, say �H , is given by

�H = γ +
p − γ −

p . (5)
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Fig. 2. (a) Sketch of the bifurcation diagram with two saddle-node

bifurcations labeled L− and L+. Solid parts of the branch indicate

stable steady solutions and steady states are unstable along the dashed

part of the branch. (b) Typical hysteresis behaviour when γ p is

increased slowly in time from zero up to large values and back. Near

the saddle-node bifurcations in (a) the solution jumps from one stable

steady state to another. The direction of these transient jumps are

indicated with an arrow.

In typical ocean model studies, where γ p is varied with about

0.05 Sv/1000 yr, one finds approximations of the value of �H

because the jumps are not really ‘vertical’ as in Fig. 2b. The

typical hysteresis diagrams that were computed in Rahmstorf

et al. (2005) show that it is not easy to define �H accurately

from these simulations. With continuation methods, one is able

to determine the hysteresis width very accurately as the values

of γ p at L± are computed explicitly.

3. Results

In the first subsection below (Section 3.1), we consider the sen-

sitivity of the bifurcation diagram of the global ocean model (as

presented in Section 2.1) versus horizontal and vertical diffusivi-

ties in the model. It will turn out that the saddle-node bifurcations

shift with different choices of the diffusivities. In Section 3.2, we

study the physics of the saddle-node bifurcations using integral

balances of the steady flows. This characterization will be used

in Section 3.3 to study the physics of the shift in the saddle-node

bifurcations with changes in the diffusivities.

3.1. Bifurcation diagrams for different diffusivities

If we take κV = 1.0 in eq. (1a), then we find an AMOC strength

of about 9 Sv for the reference (unperturbed) solution at γ p =
0.0. As this is quite small, we increased κV to a value of κV =
4.1 such that the AMOC strength at γ p = 0.0 is 14.2 Sv. For this

case, the vertical diffusivity KV increases from 1.2 × 10−4 m2 s−1

at the surface to 5.3 × 10−4 m2 s−1 near the bottom of the flow

domain. The horizontal diffusivity is as in eq. (1b). The bifur-

cation diagram for this case is plotted as the curve d in Fig. 3a.
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Fig. 3. Bifurcation diagrams where the strength of the AMOC (ψatl) is

plotted versus the strength of the anomalous freshwater forcing (γ p).

(a) Cases d and c, with d: KV and KH as in eq. (1) with κV = 4.1; c:

KV as in eq. (1a) with κV = 4.1 and constant K̄ H = 5 × 102m2s−1. (b)

Cases c and b, with c as in (a) and b: constant K̄V = 3.4 × 10−4m2s−1

and constant K̄ H = 5 × 102m2s−1.
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To study the effect of the shape of the horizontal diffusivity, we

also determined the bifurcation diagram for the same distribu-

tion of KV (z), but with a constant K̄ H = 500 m2 s−1; this curve

is plotted as c in Fig. 3a. Note that for each case, the reference

solution is computed under restoring conditions, such that at γ p

= 0 the freshwater flux is able to maintain the surface Levitus

salinity field. Along the curves c and d, the surface freshwater

flux is therefore slightly different.

Clearly, for the case of a vertically increasing KH (case d), the

saddle-node bifurcations have shifted to the right with respect to

those of constant K̄ H (case c). Values of γ p at L− and L+ for case

c are given by γ p = 0.054 Sv and γ p = 0.195 Sv, respectively,

giving a �H = 0.141 Sv. For case d, values of γ p at L− and L+
are given by γ p = 0.120 Sv and γ p = 0.232 Sv with a �H =
0.112 Sv. An increasing horizontal diffusivity in the upper ocean

therefore decreases the hysteresis width.

To determine the effect of the vertical shape of the ver-

tical diffusivity we consider the case b with constant K̄V =
3.4 × 10−4m2s−1 and K̄ H = 5 × 102m2s−1. Motivation for the

value of K̄V is that it is about the vertical mean of the profile

used in d. Using much larger values of K̄V leads to significantly

different freshwater fluxes in the reference solution at γ p = 0

which troubles the comparison between the different cases. The

bifurcation diagram for case b is plotted in Fig. 3b together with

that of case c. The reference (unperturbed) solution at γ p =
0.0 has a stronger AMOC in case b than in case c. This is eas-

ily explained as there is stronger vertical mixing in the upper

ocean which is responsible for a deeper thermocline and hence

a stronger overturning. For case b, values of γ p at L− and L+
are given by γ p = 0.066 Sv and γ p = 0.22 Sv with a �H =

(a) (b)

(c) (d)

Fig. 4. Contour plot of the AMOC for

several values of γ p along curve d in Fig. 3a.

Contour values are in Sv: (a) γ p = 0.042 Sv,

ψatl = 13.5 Sv; (b) γ p = 0.23 Sv, ψatl = 7.3

Sv; (c) γ p = 0.12 Sv, ψatl = 4.9 Sv and (d)

γ p = 0.23 Sv, ψatl = 4.2 Sv.

0.154 Sv. An increased vertical diffusivity in the upper ocean

hence gives a slightly increased hysteresis width and a shift of

the saddle-node bifurcations to larger values of γ p .

Solutions of the AMOC along several points of the curve d
in Fig. 3a are plotted in Fig. 4. For small γ p , the solution of

the AMOC is near to the unperturbed state with strong north-

ern sinking and no bottom water of southern origin (Fig. 4a).

Along the bifurcation diagram, the strength of the AMOC de-

creases for increasing γ p until the saddle-node bifurcation at

L+ (Fig. 3a). In the pattern of the AMOC, the return flow shal-

lows (Fig. 4b) and the deep flow from the south strengthens.

Once on the unstable branch of steady states from L+ to L−, this

southern sinking component increases (Fig. 4c) leading eventu-

ally to the stable collapsed state (Fig. 4d) for values of γ p on the

lower (drawn) branch in Fig. 3a.

From these bifurcation diagrams, we can qualitatively explain

the results in Manabe and Stouffer (1999) in terms of the shift of

the saddle-node bifurcations (as in Fig. 3b). In their first simu-

lation with a vertically dependent KV (as our case c), they find a

transition to a stable collapsed state and hence for this simulation

the system is in the multiple equilibrium regime. This implies

that their reference state has a freshwater flux comparable to a

value of γ p (here in our model) which is located between L− and

L+ for case c in Fig. 3b, that is, for 0.054 < γ p < 0.195 Sv. In

their second simulation, they use enhanced but constant verti-

cal diffusivity (as our case b) and do not find a collapsed stable

equilibrium state. Hence, their freshwater flux in the unperturbed

state then corresponds to a value of γ p in our model located left

of L− for case b in Fig. 3b. The only possible situation consis-

tent with both results is when γ p is located within the interval
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0.054 < γ p < 0.066 Sv, hence between both saddle-node bifur-

cations L− in Fig. 3b.

Note that this is only a small interval over the whole domain

but the importance here is that with increasing upper ocean verti-

cal mixing, the bifurcation diagram shifts to the right and hence

such an interval always exists. The effect is even larger when

the horizontal diffusivity is increased (Fig. 3a). As a conse-

quence the range of γ p of the multiple equilibria regime shifts to

larger values and hence becomes less likely (as the freshwater

flux becomes more and more unrealistic). This does not yet ex-

plain the physics of the results in Manabe and Stouffer (1999).

The problem can, however, be formulated much sharper now:

what physics characterizes the value of γ p at L−?

3.2. Characterization of the saddle-node bifurcation L−

Using a simple box model, it was already pointed out by

Rahmstorf (1996) that the multiple equilibrium regime was re-

lated to the net freshwater budget over the Atlantic basin. This

issue was revisited by De Vries and Weber (2005) who showed

(using an EMIC) that the sign of the net freshwater import by

the AMOC near 35◦S in the Atlantic is very likely controlling

whether a stable collapsed state exists or not.

As the saddle-node bifurcations only exist because of the salt-

advection feedback (Dijkstra, 2005), this motivates to consider

the integral balance of salt (fresh water) over the Atlantic domain,

say V, bounded by the latitudes θs and θn . When the stationary

salinity equation is integrated over V, we obtain

∫
Soa

S0(P − E) r 2
0 cos θ dφ dθ = 	(θn) − 	(θs), (6)

where the left-hand side is the freshwater volume (in Sv) going

through the ocean–atmosphere surface Soa and the right-hand

side is the net freshwater transport (in Sv) through the lateral

boundaries at θn and θs . The freshwater flux 	 is defined as

	(θ ) = −
∫

Sθ

(
v S − K H

r0

∂S

∂θ

)
r0 cos θ dφ dz, (7)

where Sθ is the zonal ocean section at latitude θ .

As we computed exact steady states (up to discretization er-

ror), the balance (eq. 6) is satisfied accurately. In Fig. 5, the

different terms are plotted along the bifurcation diagram of case

d in Fig. 3a. The integral of E − P (emp) is linear in γ p by

construction as fresh water is put into the northern North At-

lantic and this flux decreases with γ p . All terms (diffusive and

advective) are of the same order of magnitude and balance up

to an accuracy of about 0.1% of the magnitude of the largest

individual term. The balances are of the same accuracy for the

other cases b and c in Fig. 3.

If we introduce v̄, S̄, 〈v〉 and 〈S〉 through

v̄ =
∫

v cos θ dφ; 〈v〉 = v̄∫
cos θ dφ

, (8a)
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Fig. 5. Terms in the freshwater balance (eq. 6) for case d in Fig. 3a,

where advn is the integral of vS over the section at θ = 60N, advs is

the integral of vS over the section at θ = 35S, diffn is the integral of

(KH /r0) ∂ S/∂ θ over the section at θ = 60N, diffs is the integral of

(KH /r0) ∂ S/∂ θ over the section at θ = 30S, and emp is the surface

integral of S0(E − P). In this case advn – difn – (advs - difs) – emp =
check is zero up to a relative accuracy of 0.1%. All units are in

Sverdrup.

S̄ =
∫

S cos θ dφ; 〈S〉 = S̄∫
cos θ dφ

, (8b)

then we have the identities∫
(v − 〈v〉) cos θ dφ = 0;

∫
(S − 〈S〉) cos θ dφ = 0. (9)

With v′ = v − 〈v〉 and S′ = S − 〈S〉, we can write∫
Sθ

v S cos θ dφ dz =
∫

Sθ

〈v〉〈S〉 cos θ dφ dz

+
∫

Sθ

v ′S′ cos θ dφ dz. (10)

If we integrate the continuity equation over the volume, we get∫
Sθ

v cos θ dφ dz = 0 →
∫

v̄ dz =
∫

〈v〉 dz = 0. (11)

Following De Vries and Weber (2005), we define Mov (the over-

turning component) and Maz (the azonal component) as

Mov(θ ) = − r0

S0

∫
Sθ

v̄(〈S〉 − S0) dz; Maz(θ ) = − r0

S0

∫
Sθ

v ′S′ dz.

(12)

The expression (10) can then be written as

− 1

S0

∫
Sθ

v S r0 cos θ dφ dz = Mov(θ ) + Maz(θ ). (13)
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De Vries and Weber (2005) have indicated that the sign of

Mov(θs), with θs = 35S, may be a good indicator for the presence

of the multiple equilibrium regime.

As the positions of the saddle-node bifurcations are accurately

known here this hypothesis can be tested. We consider Mov(θs)

for case d together with a more general indicator

�(θs, θn) = Mov(θs) − Mov(θn). (14)

Here θs and θn indicate the latitudes of the northern and southern

section, respectively, where the advective freshwater transport by

the meridional overturning circulation is computed.

In Fig. 6a, the indicator Mov(θs) is plotted for four differ-

ent values of θs . The locations of the saddle-node bifurcations

(L±) can be seen from the curve but they are also indicated by

the vertical dotted lines. Indeed, for the values of θs chosen,

Mov(θs) is close to zero and the best value of θs would be be-

tween 25S and 30S. The indicator �(θs , θn) is plotted for case d in

Fig. 6b for θn = 60N and four different values of θs . For this case,

the indicator � with θs = 35S exactly passes through zero at the

first saddle-node bifurcation. This at first sight provides an at-

tractive indicator, because 60N is exactly in the sinking region

(Fig. 4a) and 35S is at the southern tip of Africa. There is, how-

ever, also a slight sensitivity to the northern boundary as can

be seen in Fig. 6c. It appears that a southward shift in southern

boundary shifts the first zero of the curve to smaller values of γ p .

A northward extension of the northern boundary has the same

effect.

In spite of this small sensitivity to the precise latitudes of the

section, � as well as Mov are adequate indicators of the multi-

ple equilibrium regime. Although Mov(θn) is small compared to

Mov(θs), it is not negligible and physically it is the net advec-

tive freshwater flux by the AMOC which determines whether

multiple states exist or not. In the multiple equilibria regime,

the AMOC is exporting freshwater [�(θs , θn) < 0 while still the

evaporation exceeds precipitation as emp > 0 in Fig. 5]; the

excess salt is exported out of the basin by the wind-driven

gyres.

It is interesting that the indicator � is determined by prop-

erties just over the region in the Atlantic where the dynamics

associated with the salt-advection feedback is active. Indeed, if

� < 0 and the northern North Atlantic sea surface is subjected

to a perturbation freshwater flux, then the AMOC weakens. As

a consequence, the freshwater export by the AMOC decreases

which makes the basin even fresher and hence the original in-

stability is amplified. On the other hand when � > 0, such a

freshwater perturbation also weakens the AMOC but now the

export of salt is decreased which effectively opposes the original

perturbation. Although these arguments are far from a detailed

result on conditional stability in the multiple equilibrium regime,

they provide an intuitive notion why the sign of � is likely to be

important.
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Fig. 6. Indicator functions along the bifurcation diagram of case d in

Fig. 3a. The vertical lines indicate the positions of L− and L+. The part

of the branch going from L+ to L− represents unstable steady states. (a)

Mov(θs ) for several values of θs . (b) �(θs , θn) for θn = 60N for several

values of θs . (c) �(θs , θn) for θs = 35S for several values of θn .

3.3. The physics of the shift in the saddle-node L−

It was shown in Section 3.1 that a shift in L− to larger values

of γ p occurred when the vertical diffusivity was changed from

the vertical profile in case c to the constant value in case b. In

Section 3.2, it was shown that a sign change in � provides a

good indicator for the position of the saddle-node bifurcation

L−. To determine the physics of the shift in L−, we have to

investigate the changes in the freshwater budget contributions to
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Fig. 7. (a) Comparison of �(θs , θn) with θs = 35S and θn = 60N

along the upper branch of the bifurcation diagram in Fig. 3a for both

cases c and d. (b) Contour plot of the Atlantic meridional overturning

streamfunction for γ p = 0.042 Sv (ψatl = 12.2 Sv) for case c.

� due to the changes in the vertical diffusivity. The same holds

for the changes in horizontal diffusivity where also L− shifts to

large values of γ p from the constant value used in case c to the

vertical profile in case d. Since the change in L− is much larger

between the cases c and d (Fig. 3a), we analyse these in more

detail.

We choose θs = 35S, θn = 60N and show � for both cases c
and d (Fig. 7a) along the upper branch of the bifurcation diagram

in Fig. 3a. The value of � for case c is still slightly positive in

L− (actually � is approximately zero at L− for θn = 70N) but it

is still a good indicator of the multiple equilibrium regime. The

curve for case c is below that of case d which is in agreement

with the shift in L− to the right in going from c to d. The merid-

ional overturning streamfunction for case c is for γ p = 0.042 Sv

(Fig. 7b) only slightly weaker than that of case d (Fig. 4a) but

the pattern is similar.

To diagnose the cause of the change in � in case d, the zonal

mean values of the meridional velocity 〈v〉 and salinity 〈S〉 are

shown in Fig. 8 for four values of γ p . Both salinity (Fig. 8a) and

velocity profiles (Fig. 8c) hardly change with γ p at the northern

boundary 60N. At 35S, however, the solutions become less saline

at the bottom and more saline at the top (Fig. 8b) due to the

decrease in meridional overturning (Fig. 8d). This indicates that

the sign of � is linked to the strength of the overturning. When

the overturning is decreased, less salt is transported out of the

basin, and hence � decreases and eventually becomes negative.

The cause of the different � values between the cases c and

d is shown for γ p = 0.042 Sv in Fig. 9. For the same value

of γ p , the overturning is larger is case d (Fig. 9b) due to the

larger horizontal diffusivity (and in this z-coordinate model also

a slightly larger vertical diffusivity due to the Veronis effect). The

zonal mean meridional velocity 〈v〉 is more negative in deeper

layers in case d while the salinity is larger (Fig. 9a). This causes

a larger outflow of salt in case d and hence a larger positive value

of � (Fig. 9c). The same holds for the differences between the

cases b and c, as due to the upper ocean increase in KV also

the AMOC increases, but the differences in � are smaller than

those between the cases c and d.

4. Summary and discussion

Using a fully implicit global ocean model, we revisited the prob-

lem of the characterization of the multiple equilibrium (ME)

regime of the AMOC. Our main motivation was to explain the

climate model results on the apparent sensitivity of the ME

regime to the vertical dependence and amplitude of the hori-

zontal and vertical diffusivities (Manabe and Stouffer, 1999).

Although our ocean model certainly has deficiencies (Dijkstra

and Weijer, 2005), the main advantages are that (i) full bifur-

cation diagrams can be computed versus the freshwater input

γ p and (ii) the sensitivity of these diagrams to changes in the

diffusivities can be efficiently calculated.

First main point is that changes in KV and KH lead only to

quantitative changes in the position of the saddle-node bifurca-

tions. There is no qualitative change in the bifurcation diagram

in that the ME regime disappears. Hence, although the results in

Manabe and Stouffer (1999) suggest an enormous sensitivity

to the shape and amplitude of KV , this sensitivity is actually

quite modest. The bifurcation diagram moves slightly to the

right (larger values of γ p) which indicates that one needs a

larger anomalous freshwater flux in the northern North Atlantic

to maintain both stable overturning states. Of course, qualitative

changes may occur when larger changes in shape and amplitude

of KV are considered.

To understand the physics of this shift in the bifurcation di-

agram, we followed up on earlier ideas (Rahmstorf, 1996; De

Vries and Weber, 2005) to find a scalar indicator � whose

sign determines whether a solution is in the ME regime or

not. Because we can compute the position of the saddle-node

bifurcations accurately, we slightly improve on the indicator sug-

gested by De Vries and Weber (2005) and show that it is better
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Fig. 8. Profiles of the zonal mean salinity and the meridional velocity along the upper branch of the bifurcation diagram Fig. 3a for case d. (a) 〈S〉 at

θn = 60N, (b) 〈S〉 at θs = 35S, (c) 〈v〉 at θn = 60N, (d) 〈v〉 at θs = 35S. The linestyle indicates successive values of γ p with (solid) γ p = 0.042 Sv,

(dashed) γ p = 0.083 Sv, (dash-dotted) γ p = 0.125 Sv and (dotted) γ p = 0.166 Sv.

to include the freshwater transport by the AMOC at the northern

boundary into �. It was shown that if � < 0, that is, net fresh-

water output by the AMOC, then the global ocean flow is in the

ME regime.

A plausible physical argument why � may be a good indicator

was given in Section 3.2. There likely is a more fundamental

reason why the boundaries at 35◦S and 60◦N are the appropriate

latitudes in this indicator. It is, however, not easy to address this

conditional stability problem as it is highly non-linear. One has to

demonstrate that, under conditions of � < 0 there exists a finite

amplitude perturbation which, when applied to one stable state,

gives a transition to the other stable state (Straughan, 2004). This

difficult issue is left for further study.

It is interesting that � is influenced by both northern input

(Bering Strait) and southern input (Agulhas, Drake Passage) of

fresh water. If the global ocean state is close to that with � =
0, small changes in the salinity of the inflow of this water may

be responsible for a transition to the ME regime. For example,

additional salt input from the Agulhas Leakage will increase the

salt content of the Atlantic basin. Hence, the AMOC is expected

to become stronger but it depends on the profile of the lateral

inflow (Weijer et al., 1999, 2001) whether this will lead to a

decrease or increase in �.

To study the physics of the shift of the saddle-node bifurcation

L− we analysed the contributions of the zonal mean profiles of

S and v to the value of �. It turns out that upper ocean increases

in diffusivity lead to changes in the AMOC leading to a larger

salinity export and therefore to more positive values in � (more

salt export by the AMOC). Hence, the saddle-node bifurcation

L− shifts to larger values of γ p .

In many of the currently state-of-the-art coupled GCMs, it

turns out to be difficult to find a collapsed state of the AMOC.

This has lead some to the view that the ME regime is no longer

present in these GCMs. From the results of this study we can con-

clude that there are basically two possibilities explaining these

GCM results.

(i) The ME regime has indeed disappeared. This would re-

quire a qualitative change in the bifurcation diagram in which the

saddle-node bifurcations have disappeared. In this case, there has

to be a physical mechanism which counteracts the salt-advection

feedback and such a mechanism yet has to be identified.
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Fig. 9. Vertical profile at θs = 35S of (a) 〈S〉, (b) 〈v〉 and (c) − 〈v〉 〈S〉 for both cases c (dashed) and d (solid) for γ p = 0.042 Sv.

Apparently such a mechanism is not present in the Manabe and

Stouffer (1999) (older) coupled GCM.

(ii) The ME regime is still present but ocean–atmosphere in-

teraction has moved the bifurcation diagram to the right (outside

the realistic freshwater flux regime). In this case, values of �

must have increased due to the interaction with the atmosphere.

There are several processes, for example the dependence of evap-

oration on temperature and the atmospheric heat transport, which

may induce this change in � (Weber et al., 2007).

It is at the moment difficult to determine values of � from

observations. In Weijer et al. (1999), a rough estimate of

Mov(θs) = −0.2 Sv (θs = 30S) is given which provides an in-

dication that the AMOC is indeed in the ME regime. It would

be a very worthwhile attempt to base a value of � not only on

available hydrographic data but also on satellite data such that

the effect of high-frequency variability is taken into account.

Maybe the results in this paper will further motivate such an

attempt.
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