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ABSTRACT
We present a four-dimensional ensemble Kalman filter (4D-LETKF) that approximately and efficiently solves a varia-

tional problem similar to that solved by 4D-VAR, and report numerical results with the Simplified-Parametrized primitive
Equation Dynamics model, a simplified global atmospheric model. We discuss the relationship of 4D-LETKF to other
ensemble Kalman filters and, in our simulations, compare it with two simpler approaches to assimilating asynchronous

observations.

We find that 4D-LETKEF significantly improves on the approach of treating asynchronous observations as if they
occur at the analysis time. For a sufficiently short analysis time interval, the approach of computing innovations from

the background state at the observation times and treating those innovations as if they occur at the analysis time is
comparable to 4D-LETKEF, but for longer analysis intervals, we find that 4D-LETKEF is superior to this approach.

1. Introduction

This paper presents an efficient method of implementing a four-
dimensional ensemble Kalman filter, which we call the Four-
Dimensional Local Ensemble Transform Kalman Filter (4D-
LETKEF) for assimilating asynchronous observations. Through
a change of coordinates, three-dimensional LETKF (Hunt et al.,
2007) is equivalent to the Local Ensemble Kalman Filter (LEKF)
of Ottet al. (2004), and locally its analysis is equivalent to the En-
semble Transform Kalman Filter (ETKF) of Bishop et al. (2001)
and Wang et al. (2004). Unlike variational-based data assimila-
tion schemes, ensemble Kalman filter (EnKF) schemes represent
the forecast uncertainty with an ensemble of forecasts. Ensem-
ble based data assimilation is a natural approach since numerical
weather prediction centres, such as NCEP, Meteorological Ser-
vice of Canada (MSC) and ECMWE, already employ ensemble
forecasting operationally to assess the uncertainty in their fore-
casts. Using this information in the data assimilation procedure
has the potential to provide better initial conditions, for both the
main forecast and the ensemble forecast. The goal of an EnKF
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is to generate at regular time intervals an analysis ensemble.
This analysis ensemble of model states should reflect both an
estimate of the true atmospheric state (through its mean) and
the uncertainty of this estimate (through its spread). If success-
ful, then applying the forecast model to the analysis ensemble
from one time yields a background ensemble at the next time.
In this case, the background ensemble represents a probabilis-
tic estimate of the atmospheric state before new observations
are assimilated. The analysis cycle is completed by adjusting
the background ensemble to better fit the new observations. In
particular, the analysis ensemble mean is a weighted average of
the background ensemble mean and the observations, with the
weights determined from the background and observation un-
certainties. More precisely, the analysis ensemble mean is the
model state that best fits the given background and observation
probability distributions.

In a Kalman filter, these distributions are assumed to be Gaus-
sian and the uncertainties are thus characterized by covariance
matrices. The background and observation covariances deter-
mine, via Bayes’ rule, the analysis covariance. In ensemble-
based schemes, the background covariance is computed as the
sample covariance of the background ensemble, and thus to
be consistent one must choose an analysis ensemble whose
sample covariance matches the analysis covariance determined
by the Kalman filter. Early versions of EnKF (Evensen, 1994;
Burgers et al., 1998; Houtekamer and Mitchell, 1998) do this
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Fig. 1. Average analysis errors as functions of pressure (in hPa) for
12-h analysis cycle with 4D-LETKF (solid), FGAT-LETKF (dashes)
and 3D-LETKF (dash—dotted line). Errors are averaged over period of
January 1982 (on all left subfigures) and over period of February 1982
(right subfigures). Variables U-wind (first row) are in metres per
second, temperature (second row) are in Kelvin and height (third row)
are in metres.

stochastically, in the sense that they perturb the observations
randomly and independently when generating each ensemble
member. Another approach is to add the columns of a square
root of the analysis error covariance matrix to the analysis en-
semble mean. This approach is deterministic, provided that a
specific choice of the matrix square root is specified, though
many different choices for the square root are possible (Tippett
etal., 2003). Examples of a deterministic EnKF include the En-
semble Adjustment Kalman Filter (EAKF) of Anderson (2001),
ETKF of Bishop et al. (2001), Ensemble Square Root Filter of
Whitaker and Hamill (2002) and LEKF of Ott et al. (2004).

In an operational setting, the analyses are typically gener-
ated every 6 h, though many observations are available more
frequently. Limited computational time is allowed for each anal-
ysis (less than 10 min at NCEP). Given such constraints, an
efficient algorithm to assimilate asynchronous observations be-
comes important. One approach is the 4D-EnKF of Hunt et al.
(2004). This four-dimensional extension of EnKF finds the anal-
ysis ensemble mean by fitting the linear combinations of the
trajectories of the background ensemble to the asynchronous
observations. This scheme may be thought of as an approxima-
tion to 4D-VAR (Fertig et al., 2007), the four-dimensional data
assimilation technique used operationally by ECMWEF (see for
example, Le Dimet and Talagrand, 1986; Courtier et al., 1994;
Rabier etal., 1998, 2000). The main advantages of 4D-EnKF
over 4D-VAR are that, as with other ensemble Kalman filters, it
does not require computing the linear adjoint model for the (non-
linear) forecast model, and it propagates background covariance
information from one analysis cycle to the next.

Fertig etal. (2007) show that 4D-LETKF is comparable
with 4D-VAR in a perfect model simulations with Lorenz-96
model (Lorenz, 1996). Here, we describe 4D-LETKF in more
detail and present results of simulations with the Simplified-
Parametrized primitive Equation Dynamics (SPEEDY) model
(Molteni, 2003). In Section 2, we derive 4D-LETKF from the
variational point of view, and describe how we apply the anal-
ysis locally and incorporate variance inflation. In Appendix A,
we show that when the observation operator is linear, the analy-
sis of 4D-LETKEF is equivalent to that of 4D-EnKF (Hunt et al.,
2004) and, in case of synchronous observations, LEKF (Ottet al.,
2004). For an ensemble of size k, LEKF and 4D-EnKF perform
the analysis in a (k — 1)-dimensional space E, using an orthonor-
mal basis consisting of eigenvectors of the background covari-
ance matrix. Here, we show that performing the analysis in a
k-dimensional space S with the background ensemble perturba-
tions as the ‘basis’, each analysis becomes computationally more
efficient. This choice of coordinates is equivalent to that used in
the analysis of ETKF (Bishop et al., 2001). While our choice
of matrix square root is different than in Bishop et al. (2001), it
agrees with the square root used by Wang et al. (2004). A step-
by-step pseudo-algorithm for implementing 4D-LETKF is given
in Appendix B.

Simpler approaches for dealing with asynchronous observa-
tions are to treat the observations as if they occur at the analysis
time (Gustafsson et al., 2001; Lindskog et al., 2001) or use First
Guess at the Appropriate Time (FGAT) of Huang et al. (2002).
FGAT computes the innovations, the differences between the
observations and the model state, at the asynchronous times and
treats these innovations as if they occur at the analysis time. Both
approaches were implemented with 3D-VAR (Courtier et al.,
1998) in a High Resolution Limited Area Model (HIRLAM). In
Section 3, we adapt these approaches to the LETKF formulation
and compare both schemes with 4D-LETKF in perfect model
simulations with the SPEEDY model (Molteni, 2003). Our

Tellus 59A (2007), 5
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Fig. 2. Average analysis errors of
temperature (in Kelvin) at 500 hPa for 12-h
analysis cycle with 4D-LETKF (top) and
FGAT-LETKEF (bottom) during February

1982. In each analysis, the local region size
is 3 x 3 grid points and the observations
frequency is 3 h.

numerical results show that 4D-LETKF produces better anal-
yses than these two simpler approaches when the analysis time
interval is sufficiently long, while the results are similar to FGAT
approach over shorter analysis intervals. We conclude this paper
with a short summary in Section 4.

2. Formulations

The goal of data assimilation is to estimate the true state x/, of
a system, such as the atmosphere, at current time #, given noisy
observations

¥l = Hi(x) + ¢, M

where H; and €] are the observation operator and observation
error, respectively, at times {7,;: [ = 1, 2,..., n}, where #; <
t141. Typically, the true state X/, and its underlying dynamics are
unknown. We assume that the evolution of x/, is modelled by a
chaotic dynamical system:

X, = M(x.), @

Tellus 59A (2007), 5
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where M denotes a non-linear operator. In the derivations below,
we assume that M is invertible. Indeed this is always the case
if M is the evolution operator for a system of ordinary differ-
ential equations. However, M~! may be difficult to compute in
practice because integrating the model backward in time can be
highly unstable, for example, in atmospheric models where the
underlying system of partial differential equations is irreversible.
We emphasize that we use M~! only from a theoretical point
of view below, and that the filter we develop in Section 2.1 does
not require M~! to be computed.

From a probabilistic point of view, we want not just a specific
estimate of X/, but a probability distribution p(x,) representing
the likelihood that a particular model state x,, is equal to X/,. As-
suming that observations prior to times #, have yielded a back-
ground distribution p(x,), the goal of data assimilation is to find
the analysis probability distribution p(X, | y{, ¥5, ..., Yo) given
observations {y/:/ = 1,..., n} in addition to the background
information. The analysis state X is typically chosen to be the
mode of this distribution, that is, the most likely state. If the
distribution of observation errors is known, then applying Bayes
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rule gives to minimizing the cost function:
J(x) = J(x) + J°(x)
0 0 0 0 0 0
P(Xa ¥, ¥5: - ¥0) X p)P(Y]. Y5, - Yo |Xn)- ©) _ % (50— %) B (3, — %)
Hereafter, we denote y° = [(¥)', 39)7,..., D17, x = + %[y” —HX)|"R [y’ — HX)1,
[xT, x7,..., xI']” and define operator H(x) = [H(x;), 1 ,
Hy(x))T,. .., H,(x,)"]7. Kalman filters generally assume Gaus- =3 (x, —x})" B! (x, — X))
sian background and observation error distributions: p(x,) ~ 1
N, B)and p(y°|x,) ~ N(H(x), R), respectively. Here, com- + 3 HI(XI) R [y) — H(x)]. )

ponents of x depend on x, through the relation x,,_; = M™x,
and x’ is the background state at time f,, obtained by feeding
the prior analysis state X{ at time #, into (2) and iterating. B is
the background error covariance matrix and R is the observation
error covariance matrix. We assume that the observation errors at
different times {#,:/=1,...
R is block diagonal where each block is an s; X s; covariance

, n} are uncorrelated, so the matrix

matrix £ [ef(e;’)r] = R,. Here, s; denotes number of observations
at time 7,. With these assumptions, maximizing (3) is equivalent

=1

with constraints defined by the dependence of x; at times {#; : [ =
1,...,n — 1} onx, via the inverse of M.

The cost function (4) is the same as for 4D-VAR, except that
in 4D-VAR the background term and the vector x are expressed
in term of model state x; at the beginning of the analysis time
interval. (This distinction will become irrelevant for the approxi-
mate cost function we minimize in the next section.) Operational
implementations of 4D-VAR (e.g. at ECMWF) generally use the

Tellus 59A (2007), 5
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Fig. 4. Average analysis errors of 3051
temperature (in Kelvin) at 500 hPa for 12-h 4051
analysis cycle with 4D-LETKF (top) and Zgz
FGAT-LETKF (bottom) during February 7054
1982. In each analysis, the local region size 0

is 3 x 5 grid points and the observations
frequency is 3 h.

same B for each analysis. However, the background uncertainty
can vary considerably from time to time, so it is desirable to
allow B to vary from one analysis to the next.

Kalman filters take the covariance from the analysis probabil-
ity function p(x, | y{,..., y2) and use it to determine the back-
ground covariance for the next analysis cycle. In an ensemble
Kalman filter, an ensemble of initial conditions distributed ac-
cording to the analysis probability distribution is propagated by
the model to produce an ensemble of background states whose
sample mean and covariance determine the background proba-
bility distribution for the next analysis. In the next section, we use
this approach to derive our four-dimensional ensemble Kalman
filter. Like other Kalman filters, we will make a linear approx-
imation that makes the cost function quadratic; allowing us to
minimize the cost function exactly. In this four-dimensional set-
ting, our approximation also turns the constrained minimization
problem described in this section into an unconstrained problem.

2.1. Filter derivation through variational approach

Ensemble Kalman Filters estimate the true state X;, with an en-
semble whose mean represents an estimate of X/, and covariance

Tellus 59A (2007), 5
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represents the uncertainty in the estimate. Starting with a back-
ground ensemble {x’@ i = 1,..., k}, the analysis step assim-
ilates the observations to produce an analysis ensemble {x¢®,
i =1,..., k} (which is used to provide the background for the
next analysis cycle, as described above). In the cost function (4),
we replace the background state x? with the sample mean x? of
the background ensemble, and the background error covariance
matrix B with the sample covariance matrix

Pr=(k—1)'X(X), )
where k is the number of ensemble members and

b by _ ob b2 _ b by _ <b
X =[xV -x x®—x L xO—% (6)
is the m x k matrix of background ensemble perturbations. Note
that this approximation is problematic for k < m since P? is
not a full rank matrix, and hence is not invertible. However,
(P?)~! is well defined on the ‘ensemble subspace’ spanned by

the columns of X2. Thus, an ensemble Kalman filter minimizes
b

the cost function J over all model states x, such that x, — X is

in this ensemble subspace, so that J is well defined.
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As we discussed earlier, computing the cost function J as a

function of the model state x,, at time ¢, would require using M -1
which may be impractical. However, by storing the background

ensemble {x/*), i

1,..., k} at the observation times #, as

the model is integrated from the previous analysis time, we can

approximate M~ as follows. To each x, for which J is well
defined, we will associate a corresponding model state x; in the
space spanned by the background ensemble at time #;, using
the same linear combination of the ensemble members as for

X;.

The background distribution of x; will have mean equal to

Xf’, the sample mean of the ensemble at time 7,, and covariance

P/ = (k — 1)"' X (XI)T, where

b b(1)  ob b2 < k) o
X =[x %P -, Y - %] )
In this sense, at each time #, we will use the Gaussian background

distribution associated with the ensemble at that time.

To make this approach more precise, we employ a pre-

condition (or a coordinate change) by expressing the deviation

of

a state x; from the background mean state X as a linear com-

(bottom) during February 1982. In each
analysis, the local region size is 3 x 5 grid
points and the observations frequency is 3 h.

bination of the background ensemble of perturbations, that is,

x,:)‘(,b—kaw, I1=1,2,... (8)

, 1,
where the weight w € R¥ is to be determined. Here w does not
depend on /, so the sequence Xy, Xy, . .
of the ensemble trajectories. The resulting trajectory represents

., X, 1s a linear combination

an approximate model trajectory, rather than an exact trajectory
of (2) as described earlier. By making this approximation, we
can consider the unconstrained problem of minimizing J as a
function of w.

Next, we approximate the observation vector corresponding
to the model state x; at time ¢, by:
H(x)) = H)(X] + X{w) ~ H(X]) + Y] w. )
Here the ith column vector of the s; x k matrix Y? is the deviation
of H, (xf(’)) from its ensemble average. That is,

)

Y, = [Hx) -y H(x?) -, ... H(x") - §]. (10)

Tellus 59A (2007), 5



FOUR-DIMENSIONAL LOCAL ENSEMBLE TRANSFORM KALMAN FILTER 737

Abs Ps Tendency: Jan 16 Precipitation rate: Jan 16

— true
3by3

®

)

<IdPs/dtl> (Pa/hr)
\
Prec. rate (mm/hr)
»

)

)
3

)
N
3
N
°
)
N
B
R

—~173 —
< £
3 £
o Es
A )
= 2z
° [
%) - 1.4
o S
o o
\% a 12
1
0 6 12 18 24
Precipitation rate: Feb 15
= Ere
3 £
a E1s
A o)
5 S =
B - 14
o S
o o
v o 12
155 1
6 12 18 24 0 6 12 18 24
Time (hour) Time (hour)

Fig. 6. The left figures show the average absolute value of surface
pressure tendency (in Pa h~!) as a function of time for forecasts
initiated at time O on three arbitrarily chosen dates (January 16,
February 1 and February 15) in our assimilation period. The right
figures show the average of the precipitation rate (in mm h~') as a
function of time. In each figure, the solid line represents the
corresponding quantity for the true trajectory, the dashes for the
analysis with a 3 x 3 local region, and the dash—dotted line for the
analysis with a 3 x 5 local region.

with §7 = % Zle Hl(xf("))‘1 Replacing x? with x? and B with
Pﬁ, and using (5), (8) and (9), reduce the cost function (4) to:

1 1< v _ T
KM=§@—DWW+§ZHh—m@ﬂ_Wﬂ

xR [y} — H(X) = Y)w]. (11

That is, we reduce the (n x m)-dimensional constrained mini-
mization problem to a k-dimensional unconstrained minimiza-
tion problem. Note that in the w coordinate system, the back-
ground error covariance matrix becomes the identity and hence
we do not have to invert it. This choice of coordinates is analo-
gous to a preconditioning step that often done in variational meth-
ods, whereby the cost function is expressed in terms of a vec-
tor whose background covariance is the identity matrix. Lorenc

f H; is linear, then yj’ = H ()‘(ﬁ’ ). For non-linear H;, these quantities are
different.

Tellus 59A (2007), 5

(2003) suggests using cost function similar to (11), but without
the linear approximation (9), to incorporate an ensemble-based
background covariance into 3D-VAR or 4D-VAR, and Zupanski
(2005) uses the same cost function in an ensemble filter. A simi-
lar cost function has also been used in hybrid ensemble/3D-VAR
methods (Buehner, 2005; Wang et al., 2007).
The minimum of (11) is obtained by setting
VI(w) = (k= Dw =Y (Y!) R [y — Hi(¥) - Yw] = 0.

=1

The solution of this equation is the analysis weight vector

W= P {Z (%) R [y - Hz<»-<f>]} , (12)

I=1

where
—1
W=%—M+ZWW&WG- (13)
=1

The analysis error covariance matrix P* in the ensemble space
is the inverse of the Hessian of the cost function (11) (Fisher and
Courtier, 1995; Zupanski, 2005). The analysis state is obtained
by substituting (12) into (8):

ca _ gb b =.a
X, =X, + X/W

R DT R
=1

In the case that H, is linear, eqs (13) and (14) are equivalent to
the standard Kalman filter equations, which minimize J in closed
form.

To complete the analysis, we generate an analysis ensemble
of model states whose mean is X* and whose error covariance
matrix in the model space is P* = X?P*(X?)7. To satisfy these
constraints, we update the ensemble using

X0 =g+ XPWO = &0+ XD (W 4 W), (15)

where W@ is the ith column of matrix W¢ = [(k — 1)P?]2 2
where M2 denotes the symmetric square root of a symmetric
matrix M (We compute M 2 using its eigenvalues and eigenvec-
tors; since M = UXUT where U is an (orthogonal) matrix of
eigenvectors of M and X is a diagonal matrix of its eigenvalues,
M} =US:U T where © 2 is the diagonal matrix of the square
roots of the eigenvalues).

As we will show in Appendix A, this four-dimensional filter
is equivalent to 4D-EnKF of Hunt et al. (2004). The main differ-
ence is in the choice of coordinate (8). Next let us describe the
localization and a way to do variance inflation.

2In order that the mean of the analysis ensemble be X{, we need that
X% 1 =X° W1 to be zero, where 1 = (1, 1,..., 1)7. Since X? 1 =0, it
suffices that 1 be an eigenvector of W¢. This is also true for the symmetric
square root W¢,
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2.2. Localization

To perform ensemble data assimilation for a global atmospheric
model with an ensemble of moderate size, some form of local-
ization is necessary. As pointed out in Anderson (2001), Hamill
etal. (2001) and Houtekamer and Mitchell (2001), the localiza-
tion suppresses spurious long-range correlations produced by a
limited ensemble size. On the other hand, it also improves the
efficiency of the scheme because each local analysis involves
much less data than a global analysis. Our localization is similar
to that of Keppenne (2000) and Ott et al. (2004), in that the anal-
ysis is done separately and, if desired, in parallel for different
local regions that cover the globe. In our formulation, the local-
ization is relatively simple; for each grid point of the model, we
choose a local subset of the global observations and apply the
equations of Section 2.1 using only the local observations. To be
more precise, see step (ii) of Appendix B.

In order to use the analysis ensemble members as initial con-
ditions for the forecast model, it is essential that the results of
the analysis be similar at nearby grid points. This can be ensured
by choosing similar sets of observations for neighbouring grid
points. As long as the observation sets overlap heavily, the analy-

1982. In each analysis, the local region size
is 3 x 3 grid points and the observations
frequency is 6 h.

ses will be similar. In practice, we find that such heavy overlap is
not always necessary. However, our choice of the matrix square
root is important in achieving consistency of nearby local anal-
ysis; the symmetric square root ensures that W* depends con-
tinuously on P¢. Indeed, with localization, other choices of the
matrix square root can cause our filter to diverge (Harlim, 2006).

2.3. Variance inflation

In order to compensate for the tendency of a small ensemble
to underestimate uncertainty, it may be desirable to artificially
inflate the background error covariance matrix P? before each
analysis. (Or, one could instead inflate the analysis error covari-
ance matrix P“ after each analysis.) A common approach is mul-
tiplicative variance inflation (Anderson and Anderson, 1999):
multiply the background ensemble perturbations X” by a con-
stant factor /1 + 7 with r > 0, which effectively multiplies P
by (1 + r). A similar result can be achieved more efficiently by
leaving X? alone and replacing (13) by

i| -1

P = [ (16)
Tellus 59A (2007), 5

k= DI/A+r+ Y (Y) RY!

=1



FOUR-DIMENSIONAL LOCAL ENSEMBLE TRANSFORM KALMAN FILTER 739

4D—-LETKF PS BbyB obs—6h/analysis—12h

=55 “P

O

70N
60N r

20N
10N

EQ
108
20S
30S

. . 408
Fig. 8. Average analysis errors of surface oos

pressure (in Pa) for 12-h analysis cycle with 60S
4D-LETKEF (top) and FGAT-LETKF 70S

u,'/

60F 120E 180 120W 60w 0

20 25 30 35 40

FGAT Ps 3by3 obs— 6h/0n0\ysws 12h

> - ,_q:_

?m

O

(bottom) during February 1982. In each
analysis, the local region size is 3 x 3 grid
points and the observations frequency is 6 h.

Here (k — 1) I represents the inverse of the background covari-
ance matrix in the w coordinate system, and in (16) we have
multiplied this covariance matrix by (1 + r).

2.4. Relationship with other filters

Now, suppose that there are no observations at time {¢,:/ = 1,
2,...,n — 1} and that all observations at time 7, are used (i.e.
no localization is done). Equation (14) is reduced to the analysis
mean update in a standard three-dimensional ensemble Kalman
filter. The analysis ensemble update (15) is different from the
ETKF of Bishop et al. (2001) because the choice of matrix square
root is different. Our choice of the symmetric square root is the
same as the Spherical-Simplex Ensemble Transform Kalman
Filter (Wang et al., 2004). That is, our matrix W is equivalent
to Wang et al. (2004) transform matrix T€" (eqs 5 and C1).

In the three-dimensional setting, the analysis used in the 4D-
EnKF (Hunt et al., 2004) is the same as that in LEKF (Ott et al.,
2004). We show in Appendix A that LETKF is identical to LEKF
except in the coordinate representations of each analysis; LETKF
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is more efficient since it requires no computations of the eigenval-
ues of the background error covariance matrix P”. In numerical
experiments with the Lorenz-96 model (Lorenz, 1996), we are
able to reproduce the results of Ott et al. (2004) with significant
computational savings (Harlim, 2006).

3. Numerical experiments with SPEEDY model

3.1. SPEEDY model

In this paper, we apply our four-dimensional filter to a primitive-
equation Global Circulation Model (GCM). This spectral model
(nicknamed SPEEDY, for Simplified Parametrizations primitive-
Equation Dynamics; see Molteni, 2003, for details) has 7
vertical levels (with sigma level 0.950, 0.835, 0.685, 0.510,
0.340, 0.200 and 0.080) and a horizontal resolution correspond-
ing to a triangular spectral truncation at total wave number
30 (this yields 96 x 48 grid points in a standard Gaussian
grid). There are five basic prognostic variables: vorticity, diver-
gence, absolute temperature, specific humidity and logarithm of
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Fig. 9. Average analysis errors as functions of pressure (in hPa) for
24-h analysis cycle with 4D-LETKF (solid) and FGAT-LETKF
(dashes). Errors are averaged over period of January 1982 (on all left
subfigures) and over period of February 1982 (right subfigures).
Variables U-wind (first row) are in metres per second, temperature
(second row) are in Kelvin and height (third row) are in metres.

surface pressure. In addition to these variables, the model in-
cludes some diagnostic variables (such as saturation specific hu-
midity, relative humidity, dry and moist static energy and satu-
ration moist static energy) whose dynamics follow some simple
models of physical processes (such as convection, large-scale
condensation, clouds, short-wave and long-wave radiations and
diffusion). With these simplified parametrizations, the model is
designed to be (at least) an order of magnitude faster (in CPU
time) than an operational GCM with similar horizontal resolu-
tions.

The model dissipation and external forcing are determined
by winter-time climatological fields sea-surface temperature,
surface temperature and moisture in the top soil layer, snow

depth, bare-surface albedo, fraction of the sea-ice, land-ice and
land-surface covered by vegetation. The model forcing are up-
dated daily with no diurnal variations. The prognostic variables
are post-processed into zonal and meridional wind components
(U- and V-wind), absolute temperature (T), specific humidity
(Q), geopotential heights (Z) on pressure levels (925, 850, 700,
500, 300, 200 and 100 hPa) and surface pressure (Ps).

Theoretically, the forecasts produced by SPEEDY model are
less realistic than a more sophisticated model with higher reso-
lution such as the NCEP GFS. However, this model serves our
purpose in this paper since it is computationally inexpensive and
it describes the atmospheric variability in the Northern Hemi-
sphere during winter-time reasonably well.

3.2. Experimental design

In this paper, we compare 4D-LETKF to two approaches for
handling asynchronous observations (implemented to LETKF).
As we mentioned ealier, both approaches were formerly imple-
mented in a 3D-VAR scheme.

The first approach (Gustafsson et al., 2001; Lindskog et al.,
2001) is to treat all observations as if they occur at analysis
time. In our variational formulation, this approach corresponds
to replacing x.” with x2@ in (10) and ®? by %© in (11). In all of
our experiments, we observe the same variables at each time ¢/,
so H; = H, for all L In this case, we replace Y’ by Y® and the
cost function (11) becomes

1 1 &, _ T
JwW) = Sk = W'+ > ; [y — Hi(%) — Y,w]

xR [y) — H/(X)) — Yow]. an

Note that in the second term of (17), all model dependent vari-
ables are at time t,. Here after, we refer to this approach as
3D-LETKF where asynchronous observations are treated as ob-
servations at analysis time.

The second approach is to treat each observation innovation
(the difference between the observation and the background
model state at observation time) as if it occurs at the analysis
time. In our variational formulation, this corresponds to replac-
ing X" by x? in (10) but keeping X/ in (11). In our scenario
where H, = H,, for all /, the cost function then becomes

1 1y, _ T
JwW) = Stk —w'w+ 2 ; [¥ — H&) = Y w]
18
xR [y} — H(X)) — Yow]. (18)
Huang et al. (2002) call this way of handling observations as the
First Guess at the Appropriate Time (FGAT). Hereafter, we refer
it as FGAT-LETKF.

For each of the cost function (17) and (18), we perform the
analysis using equations analogous to eqs (14)—(16) that we use
for cost function (11). Specifically, for FGAT-LETKF we change
Y? to Y® whenever it appears in these equations. For 3D-LETKF,

Tellus 59A (2007), 5
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4D—LETKF T 500hPa 3by3 obs—6h/analysis—24h

70N 1.8

Fig. 10. Average analysis errors of
temperature (in Kelvin) at 500 hPa for 24-h
analysis cycle with 4D-LETKF (top) and
FGAT-LETKEF (bottom) during February
1982. In each analysis, the local region size
is 3 x 3 grid points and the observations
frequency is 6 h.

we additionally change X! to X? in (14). Thus, 3D-LETKF uses
the background ensemble only at the analysis time, while both
FGAT-LETKF and 4D-LETKF use the background ensemble
states at each observation time, though FGAT-LETKF uses only
the background mean at times ¢, < t,,.

We compare these three schemes with a 12-h analysis cycle
and a 24-h analysis cycle. A true trajectory is created by running
the SPEEDY model for 2 months starting from NCEP reanaly-
sis January 01 1982. Then, we generate simulated observations
by adding a normally distributed noise with zero mean to the
true states every 3 h for a 12-h analysis cycle and every 6 h
for a 24-h analysis cycle. Here the observations errors for each
variables are: 1 ms~' for (both zonal, U-wind and meridional,
V-wind) wind speed, 1 K for temperature, 0.0001 kgkg~" for
specific humidity, and 100 Pa for surface pressure, which are
small compared to the model natural variability (standard de-
viation from its temporal mean without data assimilation). For
pressure level 500 hPa, the natural variabilities are 6.78 ms~! for
U-wind, 6.84 ms~! for V-wind, 2.92 K for temperature, 0.0005
kg kg™ for specific humidity, 69.41 m for the geopotential height
and 695.05 Pa for the surface pressure. At each (sigma) level, we
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observe about 22% of the grid points (1008 locations) with ob-
servations uniformly distributed between 75°N and 75°S.

In each data assimilation experiment, we use an ensemble of
size 20. The initial ensemble consists of states from a long in-
tegration of the SPEEDY model at 20 randomly chosen times.
For each analysis, we use observations from a two-dimensional
local region of size 3 x 3 grid points; that is, we use all obser-
vations from the same vertical level (recall that there are seven
vertical levels in the model) and up to one grid spacing away in
both latitude and longitude. For the analysis at each grid point,
the number of observation locations varies among 1, 2 and 4
in each local region. For the 12-h analysis cycle, we also add
results assimilated with a two-dimensional local region of size
3 x 5 grid points (3 grid points in latitude and 5 in longitude), so
that in each local analysis the number of observation locations
varies among 2, 3, 4 and 6. Other local region sizes we tried yield
similar or worse results in all the cases we show.

Note that for every pair of horizontally neighbouring grid
points, their local regions share a set of observations that con-
stitute all of the observations for one region but only half or 2/3
of the observations for the other region. Furthermore, the local
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regions do not overlap vertically. While this makes it possible to

have incompatible analysis at neighbouring grid points, below
we do not find the analysis fields to be imbalanced.

In the 12-h analysis cycle, we show simulations with variance
inflation coefficient r = 20% in the case of 3 x 3 local region af-
ter comparing simulations withr =5, 15, ..., 30%. In the case of
3 X 5 local region simulations, we use variance inflation coef-
ficient r = 30% after comparing simulations with r = 20, 25,
30,..., 40%. For the 24-h analysis cycle, we compared simu-
lations with variance inflation coefficient r = 30, 35,..., 60%
and show results with r = 40%. In each case, the chosen value
of r yielded the best results for 4D-LETKF and FGAT-LETKEF,
and the results did not improve substantially with other values
of r for 3D-LETKF.

3.3. Results

In the results below, we measure the quality of each analysis
by calculating the root mean square (rms) difference between
the true state and the analysis ensemble mean at analysis time

Fig. 11. Average analysis errors of surface
pressure (in Pa) for 24-h analysis cycle with
4D-LETKEF (top) and FGAT-LETKF
(bottom) during February 1982. In each
analysis, the local region size is 3 x 3 grid
points and the observations frequency is 6 h.

t,. Here after, we refer to this quantity as the analysis error.
The temporal average analysis error is calculated in the rms
sense.

In Fig. 1, we show average analysis errors with a 12-h anal-
ysis cycle as functions of pressure (in hPa). We see that on av-
erage (during January and February 1982), the analysis errors
of both 4D-LETKEF (solid) and FGAT-LETKEF (dashes) are very
similar and significantly outperform 3D-LETKF (dash—dotted)
on all shown variables (U-wind, temperature and geopotential
height). In Fig. 2, we show for 4D-LETKF and FGAT-LETKF
the geographical dependence of the average analysis tempera-
ture error for February 1982. While the FGAT-LETKF errors
are smaller in some areas, the 4D-LETKF errors are notably
better in the tropical regions where the errors are the largest
(greater than 0.15). In Fig. 3, where the average analysis errors
for surface pressure (in Pa) are shown, we see a similar pat-
tern. That is, the errors of FGAT-LETKF are generally larger
than those of 4D-LETKF in regions where both errors are large
(greater than 25), mainly in the tropics but also near southern
Greenland.

Tellus 59A (2007), 5
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In Figs. 4 and 5, we show the analysis errors of assimila-
tions with local region of size 3 x 5. Note that the experiments
with larger local region require more variance inflation (as noted
earlier, r = 30% for this choice, and 20% for those assimilated
with local region of size 3 x 3) because the ratio of the ensemble
size and the number of model variables in each local analysis de-
creases as a function of local region size. Secondly, the larger the
window of local region suggests more observations are included
in each local analysis. Thus, the larger the uncertainties are re-
duced which implies that each ensemble members are more alike
the other members. In fact, we observed a worse errors when the
window size is larger.

Note also that there are significant small-scale fluctuations in
the surface pressure analysis error in Figs. 3 and 5. This is an
artefact of our observation network, which provides observations
only at every other model grid point, so that as noted above the
number of observations assimilated varies significantly from one
grid point to the next. The analysis ensemble fields do not seem
to be imbalanced, however. To check the balance, in Fig. 6, we
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Fig. 12. The average 12-h growth of the
ensemble spread (as defined in the text)

during February 1982. The top figure shows
0 the growth for temperature at pressure level
500 hPa. The bottom figure shows the
growth for surface pressure.

show the average absolute value of the surface pressure tendency
and the precipitation rate, both plotted as functions of forecast
time. Here, both quantities are averaged over the globe excluding
the polar regions above 75° latitude. In Fig. 6, we choose three
different times (January 16, February 1 and February 15) from
our assimilation period and compute a 24-h forecasts of both
quantities with initial conditions from the true state (solid), from
the analysis with local region of size 3 x 3 (dashes) and from
the analysis with local region of size 3 x 5 (dash—dotted line).
In these results we see no sign of imbalance at the analysis time
for either local region size.

Below, we will show results of a 24-h analysis interval with
local region of size 3 x 3. First, we include results (Figs. 7 and
8) that show the effect of using less frequent observations (every
6 hrather than 3 h) in a 12-h analysis cycle. For these figures, we
use variance inflation r = 20%. Comparing with Figs. 2 and 3,
we see that using fewer observations increases the analysis errors
significantly in the mid-latitudes but not in the tropics. We use
the same observations (every 6 h) for the 24-h analysis interval
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results below. In Fig. 9, we see an identical representation of
results as in Fig. 1, but all simulations are run with 24-h analysis
cycle. We note that 4D-LETKEF (solid), on average, yields a bet-
ter analysis compared to FGAT-LETKF (dashes). For the 24-h
analysis cycle, 3D-LETKEF fails to bring the analysis errors to
be at least comparable to observation errors even after cycling
through 2 months of assimilations (results are not shown). Fig-
ures 10 and 11 show the average analysis errors of temperature
at 500 hPa and surface pressure with 24-h analysis cycle dur-
ing February 1982, respectively. These numerical results clearly
suggest advantages of 4D-LETKF over FGAT-LETKF when the
analysis time is longer.

To understand further the circumstances that cause 4D-
LETKF and FGAT-LETKEF to differ, consider (for the sake of
exposition) a scenario where observations are available at a sin-
gle time 7, < t,. Then eq. (14) for the 4D-LETKF analysis mean
becomes (substituting from eq. 16)

Xt =X+ X0[(k — DI/(1+7)
+(Y0) "RV (V) "R [y — Hi(%)].

24h growth of ensemble spread (T 500hPa)

Fig. 13. The average 24-h growth of the
ensemble spread (as defined in the text)
during February 1982. The top figure shows
the growth for temperature at pressure level
500 hPa. The bottom figure shows the
growth for surface pressure.

If in addition H; is linear, H;(x) =H, x, then Yf’ = H,X;’ , and
using the matrix identity

I+ Y'R'YT'Y'R!'=YT[cR+YYT]!

we can write

x4 = %0+ X2 (X0) HI [(k — DR;/(1 +7)
FHX (X)) H ] (v — H).

In FGAT-LETKF we replace X? by X?, which affects the analy-
sis in two ways. Changing X?(X2)7 to X2(X?)T overestimates the
cross-covariance between the background ensemble at the ob-
servation time # and at the analysis time #,. Changing X?(X%)”
to X°(X®)T ignores the change in the spread of the background
ensemble between times #; and ¢,. Below we find in fact that
the amount of change in ensemble spread over the analysis time
window is a reasonable predictor of the size of the difference
between the 4D-LETKF and FGAT-LETKEF analysis error.
Figures 12 and 13 show the geographical distribution of re-
spectively the 12- and 24-h growth of the ensemble spread. We
compute this growth factor as the ratio of the average amplitude
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of the ensemble perturbations X’ at analysis time #, and the av-
erage amplitude of X} at the start ¢, of each analysis window,
where each (rms) average is taken over February 1982. This
averaged ratio simply reflects the growth in forecast uncertain-
ties. For temperature field, the largest growth occurs mostly in
the tropics after 12 h (Fig. 12). After 24 h, however, the largest
growth is in the extratropics (see Fig. 13). In both figures, we
see the largest growth for the surface pressure in similar regions
as for temperature, but the amount of growth is much higher
in the extratropics. These higher growth factors, especially for
the temperature, are geographically correlated with those regions
with larger analysis errors produced by FGAT-LETKF (compare
Fig. 12 with Figs. 2 and 3 for the 12-h analysis cycle or Fig. 13
with Figs. 10 and 11 for 24-h analysis cycle). This result sug-
gests that the regions where the FGAT-LETKF analysis is worst
compared to 4D-LETKEF are those regions with the most rapid
growth in the ensemble spread.

4. Summary

In this paper, we describe a four-dimensional ensemble Kalman
filter. In our derivations, we show how our four-dimensional
filter differs from related approaches (Bishop et al., 2001; Hunt
etal., 2004; Ott et al., 2004; Wang et al., 2004). In addition to the
mathematical formulation, we also prescribe a pseudo-algorithm
for practical implementation.

In Section 3, we showed some results, simulated on a rela-
tively low resolution global weather model (SPEEDY model).
In our simulations, we compared three different approaches for
handling asynchronous observations with LETKF. We conclude
that 4D-LETKEF is in general a better approach than 3D-LETKF
and FGAT-LETKEF, though with a short enough analysis time
interval (12 h in this case), FGAT-LETKF and 4D-LETKEF yield
comparable results. In this scenario, we also found that our re-
sults are not sensitive to the size of local regions used; however,
the larger the local regions is used, the more variance inflation is
needed. Even with a relatively small local region, we do not find
any problem with the balance of the analysis fields produced by
4D-LETKF.

As we increase the analysis interval to 24 h, we see the advan-
tage of 4D-LETKF over FGAT-LETKEF. We conclude that this is
due to the fact that FGAT-LETKEF ignores changes both in size
of the background covariance over the analysis time interval and
in the correlation between the background ensembles at the anal-
ysis time and the observation times, while 4D-LETKEF accounts
for these changes. In particular, we found that 4D-LETKF out-
performed FGAT-LETKEF significantly in the regions where the
ensemble spread grows the fastest.

In other scenarios, we expect one would see similar re-
sults; 3D-LETKEF as a very crude approximation to 4D-LETKEF,
while FGAT-LETKF should provide a much better approxi-
mation. How long the analysis time must be to see a sig-
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nificant difference between 4D-LETKF and FGAT-LETKF
will depend on the model and the time distribution of the
observations. Within the LETKF framework, both methods
have similar computational complexity, though FGAT-LETKF
requires applying the observation operator only to the en-
semble mean at the intermediate observation times whereas
4D-LETKF requires applying it to each of the ensemble
members.
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6. Appendix A: Variational derivation of
4D-EnKF

In this section, we show that 4D-LETKF and 4D-EnkF (Hunt
et al., 2004) are equivalent for linear observation operators Hy,
which is assumed to be the case in the latter paper. Consider
H;(x) = H;x where H; is an s; x m matrix. In this case, 4D-
LETKEF is a more efficient way to compute the same analysis as
4D-EnKF. To see this, let us derive 4D-EnKF like in Section 2.1.
The fundamental difference between these two schemes is that
in 4D-EnKF, (8) is replaced by:

x, = X2 + Uy, (A1)

where U is an m x (k — 1) matrix whose columns are the eigen-
vectors of P’ corresponding to nonzero eigenvalues. In matrix
form

P’ =UszU” (A2)

where the diagonal component of the diagonal matrix 3 is the
eigenvalue of P? corresponding to eigenvector u; (the ith column
of U). Note that unlike w € R¥ in (8), v € R¥!,

The model state in the observation space, H, x,, at time ¢, is:

ann = H'l (iﬁ + UV) = H”iﬁ + I’:Iﬁv’ (AS)

where I:IZ =H,Uisans, x (k— 1) matrix. Attime#;,,[=1,...,
n — 1, we need to represent model state x; as a function of state
X, so that the asynchronous observation operator H;x; can be
approximated in the coordinate system defined by (A1).

Recall that in each analysis, we readjust the background en-
semble state {x’?, i = 1,..., k} with egs (13)~(15) to pro-
duce analysis ensemble state {x*?, i = 1,..., k}, for which
each analysis ensemble member lies in the space spanned by the
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background ensemble state. Thus, we can write a prospective
model state x,, at time #,, as

X, = X, W, (A4)

where column vectors of X,, are the background ensemble states
at time #, and W is a k x 1 weight vector. Note that unlike w of
Section 2.1, which was multiplied by the ensemble perturbations
from their mean, W is multiplied by ensemble states themselves.
At the observation time #;, we associate to X, the model state

X = XIW, (AS)

where column vectors of X; denote the ensemble background
states at time 1;.

The orthogonal projection onto the space spanned by the col-
umn vectors of X, is given by the matrix X,(X,"X,)~'(X,)".
A vector X, in this space is equal to its projection, so (A4) is
satisfied with

W= (XnTXn)il(Xn)Txn . (A6)

Therefore, observations H; x; at time #; can be described as a
function of x, via the matrix H; = H; X;(X” X,,)~! XT:

Hx, = HX,(X,"X,) ' X"x,
= HX,Ww
= Hx. (A7)
Then following (A3), we have
Hx, = Hx, = H)(2, + Uv) = Hx, + Av, (A8)
with H? = H/U.
Substituting (A1), (A2) and (A8) into cost function (4) yields
J(v) = %VTZ’IV + % 12;: (v — Hjx) — I:va)T
xR (y] - Hix; — H}Y). (A9)

Here, term Hﬁ(ﬁ is calculated with (A7); note that H,, = H,, from
(AT). The minimum of (A9) is given by

n

pa A\ - o =
vio=Py () R (y) - HiX) (A10)
=1
with
n -1
R
I=1
The analysis is completed by evaluating
X =% + UV 4 VO), (A11)

where V4O is the ith column vector of matrix V¢ that satisfies
VoVl = P¢. However, as pointed out by Ott et al. (2004),
ensemble generation via the symmetric square root of P* may
create a discontinuity between two adjacent analyses when local
analysis is applied. To eliminate this issue, Ott et al. (2004) and

Hunt et al. (2004) generate ensemble perturbations in a similar
manner to (15), and replace (A11) by

x(0 = (%8 + Uv) + XPWaO

=+ XﬁW“(” (A12)

where WO is the ith column of
N . 12
We = [I + k=7 (x) Us B - Z)E*IUTXZ] .

One can show that W¢ is equal to W used in (15) in the case
that the observation operators H; are linear. In fact, one can also
show that for both methods, the analysis error covariance P* in
the model state can be recovered by

Xope(x) = P = UPU7, (A13)

with the first equality for 4D-LETKF and the second equality for
4D-EnKF.

Note that from the projection onto space spanned by the col-
umn vectors of X,, (see eqs A5 and A6) and the definitions of XZ
in eq. (6) and Xf’ in eq. (7), we have identity

X = X,(X,"X,) " (X)X, (A14)
Using (12), (A10), (A13) and (A14), we deduce
Xow' = X0P ) (X)) HR, ! () — HiX))
=1
= [X0P(X))" )X, (X, X,)
x Y X/H/R(y) —HX))
=1
=Py (H) R (y) - HZ)
I1=1
=UP'U" Yy (H) R (v — HX))
=1
= Uv*. (A15)

That is, the analysis ensemble mean X! is equivalent in both
schemes, 4D-EnKF and 4D-LETKF. Moreover, the ensemble
perturbations are exactly similar since W@ = W®_ Though
mathematically they are equivalent, 4D-LETKF is computation-
ally more efficient since the analysis needs no calculations of the
eigenvectors u;. When n = 1, this derivation reflects the similar-
ities between LETKF and LEKF (Ott et al., 2004).

7. Appendix B: Pseudo-algorithm of 4D-LETKF

We now give a step-by-step description of how to implement
the analysis described in the Section 2.1 together with the local-
ization and variance inflation. Hereafter, we refer to the state at
time #; with a subscript /, where / = 1, ..., n. The inputs to the
steps below are the m-dimensional vectors {Xf(i): i=12,...,
k}, a non-linear operator H; from m variables to s; variables, an
s;-dimensional vector y7 and an s; x s; matrix R;.
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(i) Form {xﬁ’(i)} intoanm x k matrix X;, average the columns
of X, to get an m-dimensional vector ¥ and subtract this vector
from each column of X; to get X?. Apply H; to each column of
X, to form an s; X k matrix Y, average columns of Y, to get the
s;-dimensional vector §?, and subtract this vector from each col-
umn of Y, to get Y?. Apply H; to X/ and to get an s;-dimensional
vector H(X?).

(ii)) From this point, perform the analysis locally at each
model grid point j. For each j, choose the observations to be
used in the local analysis and denote them y7(j) (In this paper,
we chose the observations from within a two-dimensional local
region of size 3 x 3 grid points centered at grid point j). Denote
the components of Y?, Hl(if) and R, corresponding to the lo-
cal observations for grid point j by Y?(j), H/(X*)(j) and R,(j),
respectively.

(iii) Form the & x k matrix

- T - .
(k= DI/(1+r)+ Z (Y (D] R(HYT (), B
=1
where r is the desired amount of multiplicative variance inflation.
Take the inverse of (B1) to get P( J) and calculate

wi(j) = PG) 1 Y Y] RG) T [¥0G) — Hi(R2) (D] ¢ -
=1

(B2)
In this case, we ignore the correlation between observation er-
rors at different times #,. Generally, if one knows this correlation,
then one can form matrix R (j) with diagonal blocks R,(j). The
correlation coefficients are subsequently assigned in the appro-
priate non-block diagonal components. Here, the second term in
(B1) is replaced with [Y*(j)]” R(j)Y*(j) where Y(j) be the ma-
trix formed by stacking the matrices Y2(j) vertically. Equation
(B2) is replaced with

w(j) = PUDIY(DI"RG) Y’ () — HRO()I, (B3)

where y°(j) and H(X")(j) are obtained by (vertically) concate-
nating vectors y7(j) and H,()‘(f’)( J), respectively. In this paper,
since we assume zero correlation between observation errors at
different time, we use (B1) and (B2).

(iv) Compute the k x k matrix W*(j) = [(k — D)P*(j)]"/%.
Add w*(j) to each column of W*(j), forming the k x k matrix
W(j). The analysis ensemble state {x*“(j)} at grid point j is
obtained by adding the background mean state x2(j) at grid point
j to the ith column of Xb(j) W (j), where X%(j) consists of the
rows of X’ with components corresponding to variables at grid
point j.
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