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ABSTRACT
A modified ensemble Kalman filter (KF) is proposed which can enhance performance for highly non-linear prognostic
models. The algorithm differs from the traditional ensemble KF by the addition of an expectation maximization step,
which estimates the parameters of a Gaussian mixture model for the ensemble of forecast states. The algorithm is tested
in twin experiments using a simple phytoplankton–zooplankton model.

1. Background and motivation

The Kalman filter (KF) is a maximum likelihood estimator if the
model error and measurement error distribution are Gaussian.
For non-linear dynamical models the Gaussian assumption is
not generally valid, and the KF update will not give a maximum
likelihood update. The degree to which the forecast distribution
strays from a Gaussian distribution depends on the model dynam-
ics as well as the length of the forecast. The ensemble Kalman
filter (EnKF) is an approximate KF in which the forecast of the
model error covariance matrix is accomplished by a finite set of
Monte Carlo model solutions.

In addition to the EnKF other Monte Carlo data assimila-
tion methods such as sequential importance resampling filter
(SIRF) have been applied to high resolution ocean models (van
Leeuwen, 2003). The SIRF overcomes the assumption of Gaus-
sian error statistics made in the KF and EnKF by resampling the
forecast ensemble based only on the likelihood of each ensem-
ble member. The method is appropriate for all non-linear models
however in its usual formulation the SIRF requires larger ensem-
bles than the EnKF. Here, I present a filtering method that is ap-
propriate for stochastically forced non-linear models with error
distributions that can be reasonably approximated by a Gaus-
sian mixture model (GMM). A GMM is a model of a random
process who’s probability density function (pdf) is a weighted
sum of a finite number, nc, Gaussian pdfs. That is, if X is a ran-
dom variable drawn from a GMM and A is some region in �n

then

P(X ∈ A) =
∫

A

nc∑
k=1

τk
exp

[− 1
2 (x − μk)T Σk

−1(x − μk)
]

√
(2π )n|Σk |

dx,

(1)
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where τ k is the probability that X is drawn from the kth com-
ponent distribution and μk and Σk are the mean and covariance
of the k{th} component distribution. I propose a new sequen-
tial data assimilation scheme, the cluster ensemble Kalman filter
(CEnKF), in which the analysis step is proceeded by a cluster
analysis (CA) step. In the cluster analysis step a GMM is esti-
mated from the forecast ensemble of states. In the analysis step
a Kalman gain matrix is computed for each component distri-
bution in the GMM. The analysis ensemble is then remapped
according to the likelihoods of the component distributions, and
their relative association with each ensemble member.

The CEnKF is demonstrated using a stochastically forced
version of the phytoplankton–zooplankton model of Steele and
Henderson (Steele and Henderson, 1992, hereafter SH92). This
model was chosen because the covariance between the phyto-
plankton and zooplankton variables change drastically over state
space. This characteristic is common to many non-linear stochas-
tic differential equations, however the SH92 model has only two
dimensions so it is relatively easy to visualize.

1.1. Kalman filter

The KF is a sequential application of a minimum error variance
linear estimator. When data are available the forecast state is
updated to obtain the analysis state by

ψa = ψ f + PfH
T

(HPfH
T + R)−1(d − Hψ f ). (2)

The analysis covariance is thus,

Pa = Pf − PfH
T

(HPfH
T + R)−1HPf. (3)

A summary of notation used here is found in Table 1. Between
observation times the model and error covariance are advanced
forward in time by a linear dynamical model

ψ f = Fψa, (4)
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Table 1. Notation used throughout this document

ψ model state
ψ f forecast model state
ψa analysis model state

ψ t true state of the system
H linear measurement operator
d measured data, d = Hψ t + e

e measurement error, assumed to have mean 0 and covariance R
F prognostic model operator, ψ(t + s) = F (t , s)ψ(t)

P = E[(ψ − ψ t )(ψ − ψ t )T ] is the model error covariance
Pf = E[(ψ f − ψ t )(ψ f − ψ t )T ] is the forecast error covariance

Pf = FPaFT + Q, (5)

where Q = E[qqT ] and q is the stochastic forcing associated with
F. By construction there is no way to directly apply the KF to a
general non-linear model f , ψ f = f (ψa , q). Additionally, the
advancement of the full error covariance matrix, F PaFT, is pro-
hibitive for realistic ocean and atmospheric circulation models
for which the dimension of the state space is very large.

1.2. Ensemble Kalman filter

The EnKF was proposed by Evensen (Evensen, 1994). It has been
applied to state estimation problems in oceanography, meteorol-
ogy and ecology (Eknes and Evensen, 2002; Evensen, 2003).
The EnKF’s utility, in data assimilation with non-linear models
is owed to its mathematical elegance, ease of implementation,
computational efficiency and the absence of the need for deriva-
tive calculation (Evensen, 2003, 2006).

A finite number of model states, ne, are simulated from a
stochastically forced dynamic model to create an ensemble fore-
cast of states {ψ f

i }= {F (ψ i (t0)) + qi}, where the qi are Monte
Carlo simulations of the stochastic forcing. The ensemble predic-
tion is run forward until a time when observations are available.

At the times when data are available the error covariance ma-
trix P f is approximated by the covariance of the forecast en-
semble,

Pf
e = (ψ f − ψ f )(ψ f − ψ f )T , (6)

where x = 1
n

∑n
i=1 xi denotes the ensemble average of the vari-

able x. In practice only the terms that are actually needed for the
Kalman gain matrix are calculated,

HPf
eH

T = (Hψ f − Hψ f)(Hψ f − Hψ f )T , (7)

and

Pf
eH

T = (ψ f − ψ f )(Hψ f − Hψ f )T . (8)

For each ensemble state a measurement noise vector is sim-
ulated from the measurement error model, e j ∼ G(0, R) where
G(0, R) is the Gaussian distribution with mean 0 and covariance

R. The forecast ensemble is then updated:

ψa
i = ψ

f
i + Pf

eH
T(HPf

eH
T + R)−1

(
d − Hψ

f
i − e j

)
. (9)

The ensemble of analysis model states can then be integrated
forward in time until the time of the next observations.

Although the EnKF can be applied in a straightforward way to
non-linear models the error estimate will not be optimal, because
of the non-Gaussian error distribution, regardless of ensemble
size.

1.3. Cluster analysis

Cluster analysis is, broadly, the automatic search for subgroups
of a data set (Fraley and Raftery, 2002). Cluster analysis has
been applied widely in biology, data mining and other fields.
Approaches to CA vary from ad hoc procedures to the more for-
mal expectation maximization approach taken here. I use cluster
analysis to identify a GMM describing the forecast ensemble.
Note that this is carried out before the acquisition of the data be-
ing assimilated. Expectation maximization (EM) is chosen here
for the CA algorithm because it is flexible and consistent with
the assumption of a GMM.

2. Cluster ensemble Kalman filter

2.1. Cluster analysis and expectation maximization

Gaussian mixture models. In the CEnKF I assume the prior model
at the analysis step is a GMM. For any forecast state ψ ,

p(ψ |μ1, μ2, . . . , μnc ,Σ1, �2, . . . , �nc , τ1, τ2, . . . , τnc )

=
nc∑

k=1

τk p(ψ |μk,Σk), (10)

=
nc∑

k=1

τk
exp

[− 1
2 (ψ − μk)T Σ−1

k (ψ − μk)
]

√
(2π )nd |Σk |

, (11)

where nc is the number of component distributions, nd is the
dimension of the state space, τ k is the probability of component
distribution k, μk and Σk are the mean and covariance of the
kth component distribution. The central idea behind the CEnKF
is the addition of a cluster analysis step preceding the analysis
scheme of the KF. In this implementation the cluster analysis is
responsible for estimating the parameters of the GMM, τ k , μk

and Σk from the ensemble of forecast states.
Expectation maximization. The EM algorithm produces a fuzzy
classification, meaning that a particular state in the forecast en-
semble is not necessarily associated with a single Gaussian dis-
tribution. Let ne denote the number of ensemble states and nc the
number of component distributions. Define the ne by nc matrix,
w, [w j,k = p(ψ j |μk,Σk)/

∑nc
l=1 p(ψ j |μl ,Σl )] this is the prob-

ability that the jth member of the forecast ensemble is drawn
from the kth component distribution.
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The EM is a two step algorithm with an expectation step and
a maximization step. In the expectation step the likelihood of
each ensemble member under the component distributions is
computed,

w =
{

w j,k = exp
[−1

2 (ψ j − μk)T Σk
−1(ψ j − μk)

]
√

(2π )nd |Σk |

}
(12)

w j,k → w j,k∑nc
l=1 w j,l

. (13)

In the maximization step optimal parameters are chosen for
the current weights. For eack class k,

nk =
ne∑
j=1

w j,k (14)

τk = nk

ne
(15)

μk =
ne∑
j=1

w j,kψ j/nk (16)

Σk =
ne∑
j=1

w j,k(ψ j − μk)(ψ j − μk)T /nk . (17)

To begin the algorithm the covariances are set to the ensemble co-
variance and the means are randomly selected from the ψ j . The
expectation and maximization steps are repeated until conver-
gence of the w, μ and Σ are reached. Because the EM algorithm
monotonically increases the total data likelihood, L({ψ j} | {μk ,
Σk, w j,k}), in each iteration it can be shown to converge under
fairly mild conditions (Fraley and Raftery, 2002).

In fitting a GMM to data points ψ j , the first step is selecting
the number of component distributions, nc. In some problems
nc can be chosen based on prior knowledge of the distribution,
for example, in a ensemble integration of the double well model
(Miller et al., 1999) it is sensible to choose nc = 2 at all times
because the model pdf is known to be bimodal. In settings where
nc can not be determined a priori a computational method is
needed to pick nc based on the forecast ensemble.

One method commonly used to select the number of con-
stituent distributions, is to choose the value of nc which mini-
mizes Akaie’s information criteria (AIC) (Hu and Xu, 2004),

AI C(k) = −2
ne∑

i=1

log p(ψi |θ̂k) + 2Dk (18)

nc = argmin(AIC). (19)

Here Dk is the number of parameters in the GMM with k compo-
nents and θ̂k is the best estimate of the parameters in the GMM
with k components. The optimal parameters, θ̂k , are determined
using the EM algorithm. The AIC(k) are an approximation of the
integrated likelihood of a k component GMM given the forecast

ensemble and a uniform prior over nc(Fraley and Raftery, 2002),
that is,

−2Log
ne∏

i=1

p(ψ f
i |nc = k) 	 AI C(k). (20)

2.2. CEnKF algorithm

The Monte Carlo integration in the CEnKF operates in exactly
the same way as the EnKF. The CEnKF analysis step first esti-
mates a mixture model for the forecast ensemble using EM. Next,
a Kalman gain matrix is computed for each component distri-
bution. The linear KF update is made based on each component
distribution’s Kalman gain matrix, leading to a weighted ensem-
ble of size nenc. Finally, the weighted ensemble is remapped in
an nc → 1 fashion according to the likelihood of the component
distributions given the observed data. Sequentially the analysis
step works as follows:

(i) The first portion of the analysis step in the CEnKF is
determining the number of component distributions, nc using
Akaie’s information criteria (eq. 18). If nc = 1 the CEnKF anal-
ysis step reduces to the standard EnKF analysis.

(ii) Apply the EM algorithm to the ensemble of states, {ψ i}.
This returns, w as well as the estimates of τ k , μk and Σk for each
of the component distributions.

(iii) For each component distribution, k, compute:

P[k] f HT =
ne∑
j=1

w j,k

(
ψ

f
j − μk

)(
Hψ

f
j − Hμk

)T
/nk (21)

HP[k] f HT =
ne∑
j=1

w j,k

(
Hψ

f
j − Hμk

)(
Hψ

f
j − Hμk

)T
/nk (22)

and the Kalman gain matrix for the component distribution

K[k] = P[k] f HT (HP[k] f HT + R)−1. (23)

(iv) Compute the Kalman update for each ensemble member
j under each component distribution k,

ψ
a,k
j = ψ

f
j + K[k]

(
d − Hψ

f
j − e j

)
(24)

producing an ensemble of size nenc.
(v) Calculate the conditional likelihood of each component

distribution based on the observed data d,

τ a
k = p(μk,Σk, R|d) = p(d|R, μk,Σk)nk∑nc

j=1 p(d|R, μ j ,Σ j )n j
, (25)

where

p(d|R, μk,Σk)

= exp
[− 1

2 (d − Hμk)T (H�kHT + R)−1(d − Hμk)
]

√
(2π )m |(H�kHT + R)|

(26)

and m is the number of observations.
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(vi) Define the analysis image of the GMM,

μa
k =

ne∑
j=1

w j,kψ
a,k
j /nk, (27)

P[k]a =
ne∑
j=1

w j,k

(
ψ

a,k
j − μa

k

)(
ψ

a,k
j − μa

k

)T
/nk . (28)

In this step I project each family of analysis ensemble state, ψa,k
n

to a standard normal random variable using the weights from
the step (ii), ψ sn

n → ∑nc
k=1 wn,kSk

−1(ψa,k
n − μa

k ). The normalized
variables are then mapped back to the component distributions
in the GMM with weights depending on the posterior likelihood
of each component distribution, ψa

n → ∑nc
k=1 τ a

k (μa
k + Skψ

sn
n ).

In summary the remapped analysis ensemble is:

ψa
n =

nc∑
j=1

τ a
j

{
μa

j + Sj

[
nc∑

k=1

wn,kSk
−1

(
ψa,k

n − μa
k

)]}
. (29)

2.3. Derivation of the CEnKF algorithm

The CEnKF analysis ensemble is designed to sample a Gaussian
approximation to the posterior distribution under the assumption
that the prior distribution is a GMM. As in the KF the posterior
image of each component distribution is assumed to be linear in
the observations.

The distribution we wish to sample is the Gaussian approxi-
mation to:

p(ψ |d) = p(d|ψ)p(ψ)

B
=

nc∑
k=1

τk
p(d|ψ)p(ψ |μk,Σk)

B
, (30)

where B is the Bayes factor, B = ∫
p(d|ψ)p(ψ)dψ . Let Bk =∫

p(d|ψ)p(ψ |μk,Σk)dψ denote the Bayes factor for the kth
component distribution. Applying Bayes theorem to the kth com-
ponent distribution,

p(ψ |d) =
nc∑

k=1

τk
p(ψ |d, μk, �k)Bk

B
∝

nc∑
k=1

τ a
k p(ψ |d, μk, �k).

(31)

Now it is established that the posterior pdf is a nc component
mixture model. The probability of the kth component distribu-
tion is τ a

k of step (vi) and the component distributions are the
posterior images of the prior component distributions. To sam-
ple the component distribution posteriors, p(ψ |d, μk, �k) we
use the EnKF update on the prior image of the kth component
distribution. The prior image of the kth component distribution
is represented by the weighted ensemble {ψ j }ne

j=1 with weights,
w j,k = p(ψ j | μk , Σk). The posterior image of the kth compo-
nent distribution is assumed to be the local Kalman update of
this weighted ensemble,

{ψa,k
j }ne

j=1 (32)

again with weights w j,k .

After computing the weighted ensembles ψ
a,k
j , I choose to

return to an ensemble of size ne with uniform weights drawn
from the single Gaussian distribution with mean

μa =
nc∑

k=1

τ a
k μa

k (33)

and covariance

Σa =
nc∑

k=1

τ a
k Σa

k (34)

which is the best Gaussian approximation to the posterior GMM.
The advantages of this approach are that ensemble bifurcation is
limited at analysis times and a uniformly weighted ensemble is
created in the posterior without resampling.1

2.4. Approximation for high dimensional models

Because steps (i), (ii) and (vi) of the CEnKF algorithm rely on
computing, inverting, and finding the Cholsky decomposition of
full nd by nd matrices the CEnKF algorithm is not practical for
high dimensional models as presented. Here an approximation
to the CEnKF algorithm is introduced which assumes the model
covariances, Σk and Pa[k], are diagonal in steps (i), (ii) and step
(vi), respectively. In steps (iii) through (v) the full covariance
is used in computing the Kalman gains. This approximation is
appropriate for large-scale applications, and requires no more
storage than nc times the storage requirements of the EnKF.
Throughout the rest of the the paper this approximation will be
referred to as the CDEnKF algorithm (D for diagonal).

3. Steele–Henderson P–Z model

As a representative non-linear stochastic model I use the Steele–
Henderson phytoplankton–zooplankton model (SH92). This is
the 2-D model with state space ψ = (P , Z ) and dynamics given
by the stochastic differential equation,

dP = β P

(
1 − P

γ

)
− λPν

μν + Pν
Z dt (35)

dZ = α
λPν

μν + Pν
Z − αδZm dt + σZξ. (36)

I use the normalized equations, α = β = λ = μ = 1, γ =
10 and δ = 3

4 .γ is the carrying capacity for the phytoplankton
population. μ is the half saturation population. I use the linear
closure with ν = 1 and m = 1.

1Another reasonable choice for step (vi) would be to sample an analysis
ensemble from the weighted ensembles (eq. 32), avoiding the approx-
imation of the posterior distribution with a Gaussian distribution. This
could be accomplished by standard importance resampling as described
in van Leeuwen (2003). The testing of the algorithm with resampling is
beyond the scope of this paper.
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Fig. 1. Trajectory of the SH92 model without stochastic forcing term
+σ Z ξ1. The upper frame shows the state-space P versus Z trajectory.
The lower frame shows the time series of the two populations.

Here the model is stochastically forced in the zooplankton
term. The ξ is a Wiener process (i.e. one-dimensional diffusion)
and σZ = 1

10 . The initial populations are assumed to be known
perfectly, P = 10 and Z = 1. The unforced model exhibits a
classical predator-prey limit cycle (Fig. 1). With the stochastic
forcing of the zooplankton population the model takes signifi-
cant departures from the unforced trajectory, as the point of time
in which predation overcomes growth for the zooplankton be-
comes random. In the forced model the cycle is still discernible
(Fig. 2).

The system of stochastic equations is solved with Eulerian
time stepping with �t = 0.02 d. The measurement operator
records only the phytoplankton variable, P, every 500 model
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Fig. 2. Same as Fig. 1 except with stochastic forcing of the
zooplankton population.

time steps (10 d). The measurement has a standard error of 0.01.
This model is chosen for the way in which the covariance be-
tween the phytoplankton and zooplankton populations changes
at different points in state space. The highly non-Gaussian pdf
over state space at 10 d (Fig. 3) exhibits two types of covari-
ance behaviour. If the phytoplankton population is high (P >

3) then the zooplankton population is negatively correlated with
the phytoplankton. If the phytoplankton population is low (P <

3) they are positively correlated. Overall the correlation coeffi-
cient between P and Z is σ PZ = −0.42, in the region where P >

3 σ PZ = −0.94, and in the region where P < 3 σ PZ = 0.74.
A GMM is capable of approximating this distribution because
within each region (P < 3, P > 3) the distribution is approx-
imately Gaussian. Of course the biological model has strictly
positive populations so the negative tails of the component dis-
tributions are inconsistent with the model, however this error
is less important for the component distributions in the GMM
which have smaller variances than the overall Gaussian approx-
imation to the distribution.

3.1. Twin experiments

Twin experiments were carried out to test the CEnKF and
CDEnKF accuracy versus the EnKF accuracy. Five hundred ex-
periments were conducted. In each experiment a ‘true’ state is
created by simulating the stochastically forced SH92 model (eqs
35–36). Ensembles of size 100 were used for each of the filters
and the analysis states were compared with the same ‘true’ state.
A maximum of nc = 4 component distributions is imposed in
the AIC search. The CEnKF ensemble both narrows the range
of the zooplankton prediction and also the ensemble mean of the
CEnKF makes a more accurate prediction of the truth (Figs. 4 and
5, Table 2). This in turn leads to a more accurate forecast of the
zooplankton population (Fig. 6). I test the ensemble statistics
by checking the frequency with which the prediction (ensem-
ble mean) is more than one ensemble standard deviation from
the truth (Fig. 7). Overall both the EnKF, CEnKF and CDEnKF
give reasonable one standard deviation confidence intervals,
given the non-linear dynamics at play. The CEnKF produces
confidence intervals no worse than the EnKF (Fig. 7, Table 2).

To assess the effect of non-Gaussian contributions to the per-
formance of the EnKF and CEnKF a set of experiments were
conducted with increasing time between observations. At short
times the ensemble of particles will not spread far enough to
exhibit significant non-Gaussian structure, such as multimodal
behaviour or covariance which changes structure across the en-
semble. At longer times the ensemble spreads to form a highly
non-Gaussian pdf (e.g. Fig. 3). As has been demonstrated before,
(Miller et al., 1999; Evensen, 2006), the EnKF performs well if
the time between the observations is short and the ensemble
does not become excessively non-Gaussian. The time between
observations in the experiment runs from t = 1, 2, . . . , 10. For
each sampling interval 50 twin experiments are conducted to
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Fig. 3. Two-dimensional histogram of the
SH92 model after 10 d with initial condition
P = 10 and Z = 1. An ensemble of size 105

is used to approximate the pdf. The
ensemble is generated by simulating the
stochastic differential, equations 35 and 36,
independently. Each state is run forward to
t = 500 d with a time step of � t = 0.02 d.
The colour scale is the probability that the
model is in a particular bin at the end of the
simulation.
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Fig. 4. Example of the analysis step in the
CEnKF algorithm. Each ensemble member
is plotted with a square, +, �, or x depending
on which of the four component distributions
it is most associated with. The blue dots are
the EnKF analysis ensemble and the red dots
are the CEnKF analysis ensemble based on
the full forecast ensemble.

determine the mean behaviour of the filters. As expected the er-
ror statistics for the EnKF and CEnKF agree at short sampling
intervals (Fig. 8). However, as the time between observations
becomes larger (evident for sampling intervals greater than 5 d)
the EnKF is no longer able to accurately estimate the zooplank-
ton population, and so the forecast skill suffers relative to the
CEnKF and CDEnKF filters.

For the SH92 model the difference in the forecast error be-
tween the CEnKF and CDEnKF filters is negligible (Fig. 8).
However the CDEnKF algorithm uses more clusters than the
CEnKF, especially at short sampling intervals. This is due to the

approximation of tilted ensembles by a set of covariances ori-
ented with the axes, rather than a single ellipse tilted to match
the ensemble orientation.

4. Considerations and conclusions

I have demonstrated that the CEnKF can achieve both higher
accuracy and precision than the traditional EnKF when applied to
the SH92 P–Z model. This can be achieved while maintaining the
accuracy of the ensemble forecast statistics. These conclusions
are dependent on the partial measurement operators used here,

Tellus 59A (2007), 5
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Fig. 5. Time series plot from the experiment
depicted in Fig. 6. The upper frame is the
phytoplankton time series. The lower frame
is the time series of zooplankton population.
The solid blue line is the ensemble mean of
the EnKF ensemble. The dashed blue lines
are the ensemble mean ± the ensemble
standard deviation. The red lines are the
same for the CEnKF ensemble. The black
lines represent the truth. The EnKF and
CEnKF analysis are carried out at t = 10,
20, 30 and 40.
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Fig. 6. Ensemble of states for one twin experiment. The blue dots are the states in the EnKF ensemble, the red dots are the states in the CEnKF
ensemble. The red circles are the CEnKF ensemble mean and the blue circles are the EnKF ensemble mean. The black circles denotes the true value.
The black line shows the state space trajectory of the true state. The phytoplankton axis runs from 0 to 10 and the zooplankton axis runs from 0 to 7.
The ensemble correction occurs at t = 10, 20 and 30, at which time I show the analysis ensemble. Because the measurement of the phytoplankton is
accurate relative to the forecast variance, at update times the ensembles from both methods appear like vertical lines.
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Table 2. Summary of the results for the EnKF, CEnKF and CDEnKF
in the twin experiments with the SH92 model. All time averages are
computed for the period after the first observation is made

Statistic EnKF CEnKF CEnKFD√
E[(P − Pt )2] 1.81 1.19 1.22√
E[(Z − Zt )2] 1.05 0.79 0.80√

(P − P)2 1.46 0.79 0.88√
(Z − Z )2 0.82 0.53 0.60

(P − Pt )2 > (P − P)2 0.74 0.65 0.65

(Z − Zt )2 > (Z − Z )2 0.68 0.63 0.64
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Fig 7. The left column is the average error as a function of time for P
(upper left frame) and Z (lower left frame). The EnKF ensemble is
shown with the solid line, the CEnKF with the dashed line. The right
column is the probability that the ensemble average is within one
ensemble standard deviation of the truth. If the error distribution is
Gaussian and correct, this should be about 0.68, the dotted line.

as well as the length of the forecasts between measurements. In
tests with shorter forecasts the AIC usually selected a one or two
component GMM, leading to results equivalent to the EnKF.

Though not examined in the experiments presented here, the
ensemble size required for the CEnKF analysis should be closely
related to the ensemble size needed for the EnKF. It is reasonable
to expect that if the nk (eq. 14) are all as large as the requisite
ensemble size for the EnKF, then an adequate representation
of the local means and covariances is present to estimate the
Kalman gains, K[k]. In the application tested here the nk were
rarely less than 1

4 ne when nc = 2, hence one would expect that
no more than an ensemble four times larger than required for
the EnKF would be necessary for the CEnKF. The procedure
for selecting nc, step (i), could also be amended to guarantee
adequately large nk to estimate the mean and covariance of each
constituent distribution.
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Fig 8. The top frame is the rms error of P as a function of time
between observations, the middle frame is the same for the Z variable.
The bottom frame is the average number of component distributions
selected for each method.

In addition to the application to the SH92 model, the CEnKF
was also tested with the stochastic Lorenz equations (Lorenz,
1963; Miller et al., 1999). The performance of the CEnKF rela-
tive to the EnKF was quite similar to the results presented here. In
higher dimensional models, such as realistic numerical weather
or ocean circulation models, the state space has a dimension
much higher than the two dimensions of the model examined
here. It is generally assumed that nd is large enough that one
will need to avoid inverting full nd by nd matrices for such mod-
els. This imposes restrictions on the form of covariance used
in the cluster analysis step (steps i and ii). One option is the
restriction to a diagonal covariance matrix, implemented in the
CDEnKF algorithm. No decrease in accuracy occurred when us-
ing the diagonal covariance matrix in the cluster analysis step.
Alternatively, the state space could be projected onto a lower di-
mensional space depicting some relevant phenomenon, and the
full covariance matrix in this state space could be used.

Though the EM algorithm guarantees convergence to a local
minimum of the likelihood function under general conditions, the
rate of convergence is problem dependent (Fraley and Raftery,
2002). In addition to the number of parameters being estimated
and the number of data points (ne), the convergence speed de-
pends on how well separated the ensemble states are. The EM
algorithm is amenable to parallelization, so application of the al-
gorithm to high dimensional models should not be problematic,
provided the covariances are approximated by diagonal matrices,
as in the CDEnKF, with nd parameters, rather than full covariance
matrices with nd (nd + 1)/2 parameters.

Lastly the remapping step (step vi) will need to be simplified in
high dimensional problems, as the remapping requires Cholsky
decomposition of the covariance matrix and subsequent inver-
sion of full nd by nd matrices. One could use a simple resampling
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of the weighted posterior ensemble (eq. 32), instead of the map-
ping used here. This approach also avoids the approximation of
the posterior distribution with a Gaussian distribution. Approxi-
mation of the covariance matrix with a diagonal matrix can also
be used in the remapping step as well. This approach was used
in the CDEnKF algorithm and shown to be as effective as the
remapping based on the full covariance matrix and is entirely
suitable for high dimensional models.

The implementation and testing of this procedure with realistic
numerical models and real data is left for future work.
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