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ABSTRACT

The type of adaptive observation (AO) schemes of interest in this paper are those which make use of an ensemble forecast

generated at a given initial time. The ensemble forecast can be used to quantify the influence of hypothetical observational

networks on forecast error covariances. The ensemble transform kalman filter (ETKF) scheme is an example of such a

scheme and is used operationally at the National Centers for Environmental Prediction (NCEP). A Bayesian framework

for ETKF schemes is developed in this paper. New ETKF AO schemes that make use of covariance localization (CL) are

introduced. CL is a technique used to alleviate problems due to sampling errors when estimating covariances from finite

samples. No previous study has developed ETKF schemes that make use of CL. A series of observing system simulation

experiments (OSSEs) in the non-linear Lorenz 1996 model are used to develop a fundamental understanding of ETKF

methods. The OSSEs simulate the problem of choosing observations in a large data void region, to improve forecasts

in a verification region located within the data void region. The results demonstrate the important role that techniques

for alleviating problems due to sampling errors play in improving the performance of ensemble-based AO techniques.

1. Introduction

Severe storms can have devastating economic and social impacts.

It is often the case that storms are not adequately observed, lead-

ing to poor forecasts by operational centres. To improve this

situation, movable observing platforms can be used. Vertical/

horizontal profiles of various dynamic variables can then be re-

layed to operational centres. This additional information can be

fused with the prediction model in hopes of improving the subse-

quent forecast of the storm. This procedure, known as ‘adaptive

observing’ was originally suggested by Emanuel et al. (1995).

Adaptive observing holds the promise of dramatically improv-

ing Numerical Weather Prediction (NWP). Recently, the use of

adaptive observations (AOs) in mid-latitude weather forecast-

ing has been tested in several field experiments and operational

programs (FASTEX, NORPEX, Winter Storm Reconnaissance

Program) (Bergot, 1999; Langland et al., 1999; Montani et al.,

1999; Pu and Kalnay, 1999; Gelaro et al., 2000; Szunyogh et al.,

2000, 2002; Majumdar et al., 2001, 2002a,b). AOs are also used

in hurricane track forecasting (Aberson, 2003). AOs are one

of the key focus areas of THORPEX, a current international

predictability research campaign (THORPEX International Sci-
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ence Plan, Version III, Shapiro and Thorpe, 2004; see Web

site www.mmm.ucar.edu/uswrp/programs/thorpex.html) (here-

after ST04). While the various field programs over the last decade

indicate that positive benefits are obtainable from AOs, further

fundamental understanding is required before the full benefits of

AOs can be realized (ST04).

The optimal placement of AOs in space and time is depen-

dent on several factors that include the system dynamics, model

errors, the data assimilation (DA) scheme, background errors

and the configuration and accuracy of the present day observ-

ing network. Effective AO methodologies must be able to ac-

count for the subtle interplay between such factors. Given the

complexity of the problem, it is not surprising that a number

of different approaches have been developed. Singular vector

techniques (Palmer et al., 1998) and model adjoint sensitivity-

based techniques (Bergot et al., 1999) have been developed and

tested. Baker and Daley (2000) develop and test an observa-

tion/background adjoint sensitivity technique that can be used

to assess the influence of hypothetical observations. Leutbecher

(2003) develops and tests a technique based on Hessian singular

vectors. Monte Carlo (ensemble)-based techniques can be used

in an attempt to quantify the impact of hypothetical observa-

tions on the uncertainty of the system state. A number of studies

have explored the use of ensemble-based methods (Lorenz and

Emanuel, 1998; Bishop and Toth, 1999; Hansen and Smith, 2000;

Bishop et al., 2001; Hamill and Snyder, 2002; Khare, 2004).

Tellus 58A (2006), 2 179



180 S . P. KHARE AND J. L . ANDERSON

With the growing availability of ensemble forecasting systems,

further exploration of ensemble-based methods is well moti-

vated. Ensemble-based AO methodologies are the subject of

concern in this paper.

To illustrate the type of ensemble filter-based method of pri-

mary concern in this paper, consider the following example prob-

lem. Let the initial (present) time be ti. Suppose one wants to

determine the optimal location to place an AO at a future time

ta > ti (‘a’ for adaptive), to improve the forecast at t v > ta

(‘v’ for verification), for a forecast to be initialized at ta.

Geophysical systems of interest are characterized by many de-

grees of freedom and high-dimensional state spaces. AO method-

ologies that require repeated integrations of the prediction model

equations may not be suitable for real-time applications due

to prohibitive computational expense. Therefore, the types of
ensemble-based algorithms of interest in this study are those
which make use of an ensemble forecast initialized at ti and
valid up to t v , without requiring any additional forecast model
integrations. In Section 3.2, AO algorithms based on Bayes rule

are described. These Bayesian algorithms consider the ensemble

forecast generated at ti as a sample of a prior probability density

function (pdf). The prior ensemble is updated using an ensemble

Kalman filter (EnKF)-based algorithm. When a deterministic

ensemble square root Kalman filter (DEnSRF) (Tippett et al.,

2003) update algorithm is used without covariance localization,

the method is equivalent to the ETKF AO methodology derived

and tested by Bishop et al. (2001) (hereafter B01) (shown in

Section 3.2.2). For realistic applications of EnKF, the number

of ensemble members is typically far less than the number of

degrees of freedom in the model. As a result sample statistics

may be contaminated by sampling error. A type of methodology

for handling sampling error is commonly referred to as ‘covari-

ance localization’ in the EnKF literature. Given this equivalence,

the algorithms described in Section 3.2 will be referred to as

‘ETKF-type’ methodologies. The importance of the ETKF AO

method is reflected by the fact that it is currently used to deter-

mine flight paths of airplanes equipped with global positioning

system dropwindsondes in the Winter Storm Reconnaissance

Program (WSR) at NCEP. Results from the WSR demonstrate

that the AOs generally improve the forecasts of targeted weather

events (Szunyogh et al., 2002). Majumdar et al. (2001, 2002a,b)

describe a series of studies exploring the operational use of the

ETKF. Given the operational importance of the ETKF, develop-

ing a deeper understanding of such algorithms is well motivated.

In this paper, a series of observing system simulation exper-

iments (OSSEs) in a low-order dynamical system are used to

address two broad questions: What problems might be asso-

ciated with the use of ETKF-type schemes? What is the sta-

tistical/physical nature of any problems and how can they be

overcome? More specifically, the following questions are ad-

dressed: How is the performance of ETKF-type schemes af-

fected by the ensemble size? How do the impacts of ensemble

size vary with the inherent time scale (t v − ti) of the problem?

The OSSEs are performed in a Lorenz 1996 model (hereafter

L96) (Lorenz, 1995). While the L96 model equations cannot be

derived from some truncation the geophysical fluid equations,

they have characteristics which are not unlike atmospheric mod-

els (Lorenz and Emanuel, 1998). The L96 model is composed of

non-linear advection terms, linear dissipation terms and a con-

stant forcing. The L96 exhibits sensitive dependence to initial

conditions and small disturbances propagate eastwards. The L96

model can therefore be viewed as a reasonable low-order testing

ground for atmospheric prediction experiments. This is reflected

by the fact that it has been used in several investigations of AOs

(Lorenz and Emanuel, 1998; Berliner et al., 1999; Hansen and

Smith, 2000; Trevisan and Uboldi, 2004). The use of a low-order

model affords a statistically significant examination of the prob-

lem (impractical in a GCM due to computational expense). The

DA is done using the ensemble adjustment Kalman filter (EAKF)

developed by Anderson (2001, 2003). For the L96 experiments

in this paper, it is clearly impossible to mimic the ratio of ensem-

ble size, to state space size encountered in realistic applications

of EnKF. In this paper, the emphasis is placed on results for en-

semble sizes which have been chosen to ensure that sampling

error problems (among others) of similar nature to those en-

countered in realistic applications must be dealt with. Indeed, as

will be demonstrated in this paper, proper handling of sampling

errors through a space- and time-dependent covariance localiza-

tion is critical to realizing the full benefits of ETKF-type AO

algorithms. There are two key issues in AOs, which are beyond

the scope of this paper. The first issue involves finding efficient
strategies for locating the optimal AO locations suggested by a

given method. The second issue involves coping/dealing with

model errors when using ensemble-based AO algorithms. It is

hoped that such issues will be adequately addressed by future

workers in atmospheric data assimilation.

Section 2 provides a statement of the AO problem to be ex-

amined in this study. Section 3 describes the theory behind the

AO algorithms studied in this paper applied to the problem of

Section 2. Section 4 describes the OSSEs and how the data are

collected. Section 5 shows the results of the OSSEs and provides

a discussion. Section 6 provides a summary and conclusions.

2. The adaptive observations problem examined
in this study

2.1. The model

Let the time evolution of the true discrete system state (or atmo-

spheric state) be given by some finite difference solution to,

dxt

dt
= M(xt , t), (1)

where xt is an n-dimensional state at time t and M is an

n-dimensional vector function. For the purposes of this study,

the same finite difference version of eq. (1) also serves as the

forecast model.
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2.2. Problem definition

The formal definition provided here will be necessary to under-

stand the theoretical developments of Section 3. An attempt to

follow the notation suggested by B01 for the AOs problem has

been made throughout this paper wherever possible. The nota-

tion of B01 is a suggested extension of the standard notation in

Ide et al. (1997) to the AOs problem. Again, let the present time

be ti. In general, the observational network at a given time will

consist of both routine and adaptive components. The routine

component of the network corresponds to observations whose

locations are not varied at will (e.g. a network of radiosonde

observations). Let the routine component of the network at ta

be summarized by a possibly non-linear operator Hroutine
ta , which

maps the n-dimensional true state xta onto the expected rou-

tine observations. The adaptive component of the network cor-

responds to observations whose locations can be varied at will.

Let a particular hypothetical spatial configuration of the adap-

tive component be denoted by H∗,adaptive
ta (possibly non-linear).

The superscript ‘∗’ denotes a particular spatial configuration of

the adaptive component. Let the combination of the routine and

adaptive component be given by H∗
ta . The superscript ‘∗’ on the

observation operator H∗
ta emphasizes that its adaptive component

has some hypothetical configuration. Assume that for every con-

figuration of H∗
ta , the statistical characteristics of the instrument

errors are known.

The goal of the AOs problem can now be stated: At time ti,

one wants to determine the spatial configuration of the adaptive

component of the network at ta > ti, which minimizes the fore-

cast uncertainty �tv (H ∗
ta ) for t v > ta, for a forecast that will be

initialized at ta. For simplicity and clarity, a particularly simple

version of the AOs problem has been chosen as a focus. The AOs

problem can be stated with great generality to include multiple

adaptive observation (among other generalities such as multiple

verification times, see B01). The implications of the numerical

results in this paper for the multiple AO time problem will be

discussed in Section 5.

3. Theory: Ensemble filter-based methodologies

3.1. Preliminaries

Various ensemble filter (EF)-based AO methodologies, applied

to the problem of Section 2, will now be discussed. At the ini-

tial time ti, assume that a posterior ensemble of model states,

[xu
ti,k], are available (superscript ‘u’ denotes updated or poste-

rior, k indicates ensemble member where k = 1, . . . , K , K is the

ensemble size, the brackets [] are used to denote a collection of

K ensemble members). The ensemble [xu
ti,k] is thought of as out-

put from an EF DA algorithm (in principle, these methods can

be applied to systems with other ensemble-generation methods).

The posterior ensemble has been updated with all available ob-

servations at ti. Given [xu
ti,k] and the forecast model (1), method-

ologies for estimating �tv (H ∗
ta ) will be discussed in Sections 3.2

and 3.3.

The formulation of �tv (H ∗
ta ) depends on the choice of norm.

A mean squared error (MSE) norm is used in this paper. Let

P f (t v|H ∗
ta ) denote a forecast of the covariance of the state at t v

given H∗
ta at ta. The superscript ‘f’ on P f (t v|H ∗

ta ) denotes that it

is a forecast quantity computed at ti. Using this notation, P f (t v)

(not conditioned on H∗
ta ) is the sample covariance for t v for the

forecast ensemble valid for t v denoted by [x
f
tv ,k] ([x

f
tv ,k] is [xu

ti,k]

evolved under (1) out to t v). In this study, the forecast uncer-

tainty is �tv (H ∗
ta ) = Tr(P f (t v|H ∗

ta )) (which can be localized for

localized verification regions). The goal of the problem is to

determine the configuration of H∗
ta that minimizes �tv (H ∗

ta ) =
Tr(P f (t v|H ∗

ta )). The distinguishing characteristic of the various

AO methods discussed in this Section is how P f (t v|H ∗
ta ) is com-

puted. We stress the difference of computing P f (t v|H ∗
ta ) for the

AO problem as opposed to ordinary data assimilation. The calcu-

lation of P f (t v|H ∗
ta ) is assumed to take place at ti, as opposed to

ordinary data assimilation that computes covariances at times up

to and including the last available data. In general, P f (t v|H ∗
ta )

will depend on specified values of observations at the future

time ta, in contrast to ordinary data assimilation that uses ob-

servation values obtained from a realization of a true random

process.

In Sections 3.2, the non-linear ensemble mean method is de-

scribed. In Section 3.3, a Bayesian framework for ETKF-type

methods is discussed. In Section 3.4, the equivalence between

the non-linear ensemble mean method and ETKF-type methods

under certain circumstances is discussed. All the developments

in Sections 3.2, 3.3 and 3.4 can be easily extended to the case

of multiple AO times (not shown in this paper for brevity and

clarity). The extension to the multiple AO time case is discussed

in Khare (2004).

3.2. The non-linear ensemble mean method
(NONLIN-NOLOC, NONLIN-LOC)

To achieve our goal of understanding computationally efficient

ETKF-type AO schemes, it will be helpful to make comparisons

to an AO scheme that is equivalent to a sequential in-time filtering

process for non-linear dynamics. This scheme, the non-linear en-

semble mean method, computes Pf (tv|H∗
ta ) in the following way.

The posterior ensemble at ti is evolved under the full nonlinear

model (1) to generate [x
f
ta,k]. Let the observation values at the

future time ta be yo
ta

∗ = [H ∗
ta (x f

ta )] (the motivation for doing so

will be discussed in Section 3.4). Given yo
ta

∗, the prior ensem-

ble [x
f
ta,k] is then updated using the EF algorithm, which is then

integrated out to t v using (1). The ensemble valid for t v is then

used to compute P f (t v|H ∗
ta ).

For the remainder of this paper the terminology ‘covariance

localization’ (hereafter CL) will be used frequently. As men-

tioned in Section 1, when applying EnKF methods to realistic

prediction problems, computationally feasible ensemble sizes
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are typically far less than the number of degrees of freedom in

the prediction model. This can lead to prior estimates of co-

variance which are contaminated by sampling error, which can

lead to observations having large impacts on physically unre-

lated state variables. To reduce this unwanted impact, a common

approach is to pre-multiply prior covariances by some function

(valued between 0 and 1) which falls off with physical distance

(Hamill et al., 2001; Houtekamer and Mitchell, 2001). In Sec-

tion 5, this non-linear ensemble mean method is implemented

using an EAKF. The scheme that does not use localization in

updating [x
f
ta,k] is called NONLIN-NOLOC. The scheme which

does use localization in updating [x
f
ta,k] will be called NONLIN-

LOC. The forecast sample covariance for ta is given by P f (ta)

(it is not necessary to compute all the elements of this matrix

in the actual implementation used in this paper). To formalize

the notion of CL, the notation introduced by Houtekamer and

Mitchell (2001) is followed. For the NONLIN-LOC method, lo-

calization amounts to a Schur product of P f (ta) with an n × n
matrix ρ denoted by ρ ◦P f (ta). Element ρ l,m (l, m = 1, . . . , n)

is obtained from a correlation function with compact support

which is a function of the distance between grid points xl and

xm. The Schur product ρ◦P f (ta) is an n × n matrix where

ρ◦P f (ta)l,m = ρ l,mP f (ta)l,m . For the NONLIN-LOC method,

the prior/forecast covariance at ta is taken to be ρ◦P f (ta). The

details of how localization is actually implemented for the results

in this paper is left to Section 5. Unlike the ETKF-type methods,

the non-linear ensemble mean methods require repeated integra-

tions of (1) to test various configurations of H∗
ta . As a result, the

non-linear ensemble mean method may be computationally too

expensive to apply operationally.

3.3. A Bayesian framework for ETKF-type methods

In what follows, algorithms for estimating P f (t v|H ∗
ta ) which

only require one integration of the ensemble [xu
ti,k] from ti to t v

will be discussed. These ETKF-type methods are suitable for

real-time applications in high-dimensional systems due to their

computational efficiency.

3.3.1. Formulating P f (t v|H ∗
ta ) using Bayes rule. Assume that

at ti, [xu
ti,k] has been integrated out to t v using the prediction

model (1). The forecast ensembles for ta and t v are denoted

[x
f
ta,k] and [x

f
tv ,k], respectively. Define an augmented state z =

[xT
ta , xT

tv ]T (2n-dimensional). The forecast ensemble members

are taken to represent a sample of a prior pdf p(z) = p(xta , xtv ).

Bayes rule (Cohn, 1997) can be used to update the prior pdf given

the values of observations at the future AO time ta corresponding

to the trial configuration H∗
ta (the observations values are denoted

by yo
ta

∗),

p
(
xta , xtv

∣∣yo
ta

∗) = p
(
xta , xtv

)
p
(
yo

ta
∗∣∣xta

)
Normalization

. (2)

At the initial time ti, the observation values at the future time

ta, of course, cannot be known. To proceed, some values for

the observations must be specified in a manner consistent with

H∗
ta . Let the total number of hypothetical observations at time ta

(corresponding to H ∗
ta ) be given by [ x

f
tv ,k]. Let the [x

f
tv ,k] vector

of observations be given by yo
ta

∗ = [H ∗
ta (x f

ta )], where x f
ta denotes

the mean of [x
f
ta,k].

To proceed, the distributions in (2) must be specified. Assume

that p(yo
ta

∗|xta ) is Gaussian with known p∗
ta × p∗

ta covariance R∗
ta .

For the purposes of the update, let p(xta , xtv ) be represented by

a Gaussian. The covariance for the joint state z in (2) is then

given by the Kalman filter (KF) updated (posterior) covariance

equation (Cohn, 1997). Using an EnKF update methodology, the

prior ensemble (the sample of p(z)) can be transformed to give

an updated ensemble that is consistent with the Kalman filter

(KF) updated covariance equation. When applying the EnKF

to this problem, the prior sample covariance of p(xta , xtv ) is

computed from the forecast ensembles [x
f
ta,k] and [x

f
tv ,k]. For the

types of EnKFs under consideration, the normalization in (2) is

not required. Note that the KF updated covariance equation is,

formally, independent of the specified observation values given

in yo
ta

∗ (Cohn, 1997). The updated ensemble for the joint state z

can then be used to compute P f (t v|H ∗
ta ). Note that many different

configurations of H∗
ta can be tested without having to repeatedly

integrate the model equations. A wide variety of EnKFs can be

used to implement this strategy. This includes both perturbed

observation EnKFs (Evensen, 1994; Burgers et al., 1998) and

Deterministic Ensemble Square Root Filters (DEnSRFs) (Tip-

pett et al., 2003) (hereafter T03). In this paper, the focus is on

implementations using DEnSRFs.

3.3.2. Computing P f (t v|H ∗
ta ) using a DEnSRF without co-

variance localization (ETKF/NOLOC). Next, the implementa-

tion of the method discussed in Section 3.3.1 will be shown

using a DEnSRF for the case where CL is not used in the update.

The key point is that the expression developed for P f (t v|H ∗
ta )

is equivalent to what is obtained using the ETKF AO method

introduced by B01. When CL is used in the update, the method

is no longer equivalent to the ETKF AO method of B01 (new

methods that make use of CL are discussed in Section 3.3.3).

Using the forecast ensembles, [x
f
ta,k] and [x

f
tv ,k], a sample prior

covariance matrix for the augmented state, z = [xta
T , xtv

T ]T can

be computed. This is given by the outer product of the 2n ×
K matrix of perturbations Zf , whose k th column is given by

[z
f
k − z f ]/

√
K − 1, where [z

f
k ] = [x

f
ta ,k

T , x
f
tv ,k

T ]T and z f is the

mean of [ z
f
k ]. Thus, the input or prior information is the 2n ×

2n sample prior covariance matrix for the augmented state given

by,

P f
aug(ta, tv) = Z f Z f T

. (3)

The subscript aug is used to emphasize that it is for the aug-

mented state. Note that in the actual implementation it is not

necessary to compute all the elements of the covariance matrix.

P f
aug(ta, t v) can now be conditioned on the trial network H∗

ta . H∗
ta

operates on the state at ta. Working in the augmented state, one
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must define the observation operator for the augmented state.

Define H ∗ such that H ∗(z) = H ∗
ta (xta ). Using a DEnSRF, the

updated covariance matrix can be written as P f
aug(t a , t v|H ∗

ta ) =
Z f S∗

ta S∗
ta

T Z f T . Formally, for a given DEnSRF, the K × K
transformation matrix S∗

ta is obtained by solving, S∗
ta S∗

ta
T =

(I − Vta D−1
ta Vta

T ), where Vta = (H ∗(Z f ))T = (H ∗
ta (X

f
ta ))T and

Dta = Vta
T Vta + R∗

ta . X
f
ta is the matrix of perturbations for

time ta generated from [x
f
ta,k]. This is an application of the

formalism developed in T03 to this problem. The different ver-

sions of DEnSRFs discussed in T03 solve for different ver-

sions of S∗
ta . However, the different versions yield numerically

identical values for P f
aug(t a , t v|H ∗

ta ). Finally, the desired output
or posterior information, the n × n matrix P f (t v|H ∗

ta ) can be

formed,

P f
(
tv

∣∣H ∗
ta

) = (
Z f S∗

ta S∗
ta

T Z f T )
n×n

= X
f
tv S∗

ta S∗
ta

T X
f
tv

T
. (4)

The subscript n × n in (4) indicates the n × n submatrix

consisting of rows n + 1 → 2n from columns n + 1 → 2n.

Applying the formalism of B01 to the same problem yields an

equivalent expression for P f (t v|H ∗
ta ). Therefore, when using a

DEnSRF to implement the method described in Section 3.3.1

without covariance localization, this method is equivalent to the

ETKF AO strategy of B01. For the numerical results of Sec-

tion 5, the above methodology will be implemented using the

EAKF (Anderson 2001, 2003), which is a particular version of

a DEnSRF (T03). For the EAKF implementation with no local-

ization, this AO method will hereafter be called ETKF/NOLOC.

The name, ETKF/NOLOC. recognizes that no localization is be-

ing used and the method is equivalent to the ETKF AO strategy

originally derived by B01.

3.3.3. New ETKF-type methods making use of space-time co-
variance localization (ETKF-SPACE, ETKF-SPACETIME). In

applications of interest, a limited number of ensemble mem-

bers are available, and the prediction models have many de-

grees of freedom. As a result, it is important to understand the

impacts of sampling error when implementing the strategy of

Section 3.3.1 with a DEnSRF. Here, we introduce two new strate-

gies that do make use of CL when implementing the strategy in

Section 3.3.1 These methods, which are called ETKF-SPACE

and ETKF-SPACETIME, are therefore not equivalent to the

ETKF AO strategy of B01.

The approach to CL that will be discussed in this paper views

the computation of P f (t v|H ∗
ta ) as an application of an EnKF in

the augmented state space z = [xta
T , xtv

T ]T . When applying the

EnKF to the augmented state space, a CL can be achieved by

applying the same type of distance-dependent functions used

by the EF DA algorithm. Formally, this involves setting the

prior/forecast covariance matrix to ρ̃◦P f
aug(ta, tv) (Schur prod-

uct of eq. 3 with ρ̃ as defined in Section 3.2). Here, ρ̃ is now a

2n × 2n matrix obtained from a correlation function with

compact support, which is a function of ‘distance’ between

state variables zl and zm. When applying distance-dependent

CL functions in the augmented state space, it is crucial to rec-

ognize that distance between state variables at different times

is not a well-defined quantity. Intuitively, proper definition

of distance in the augmented state space will depend on the

dynamics (1).

In Section 5, numerical results will be shown for two new

ETKF-type methods that make use of CL. The first such method

is called ETKF-SPACETIME, which is an implementation of

the AO of Section 3.3.1. using an EAKF with a CL that uses a

characterization of the dynamics in defining distances between

state variables valid at different times. The second method is

called ETKF-SPACE, which is an implementation of the AO of

Section 3.3.1. using an EAKF with a CL that does not use a

characterization of the dynamics in defining distances between

state variables valid at different times. The details of the CL

implementation are left to Section 5.

3.4. Equivalence between the non-linear ensemble
mean and ETKF-type methods

Assume that the model dynamics are linear. For any finite K
member ensemble, the expression for the verification time co-

variance obtained via the ETKF/NOLOC can be re-written as

P f (t v|H∗
ta ) = Mta ,tv , Mti ,ta Xti S

∗
ta S∗

ta
T Xti

T MT
ti ,ta

MT
ta ,tv , where

Mti,ta is the linear dynamics propagator from ti to ta (same for ta to

t v , also if t v − ta = ta − ti then Mti ,ta = Mta ,tv ). This is identical to

what is obtained by applying the NONLIN-NOLOC algorithm to

the linear dynamics case where the specified observations val-

ues at ta are yo
ta

∗ = [H ∗
ta (x f

ta )]. This equivalence motivates the

choice of specified observation values for the non-linear ensem-

ble mean methods. This equivalence was originally derived in

B01. It is in this sense that the ETKF/NOLOC is equivalent to

a sequential in-time filtering process for linear dynamics with

no CL. The non-linear ensemble mean and ETKF-type methods

may not be equivalent when implemented with CL. The reason

is that there is no simple way of relating a CL for covariance

between simultaneous variables in the NONLIN to a CL for co-

variance between variables at different time levels in the ETKF

method.

How do the differences between the ETKF/NOLOC and

NONLIN-NOLOC arise for non-linear dynamics? For non-

linear dynamics, the ensemble perturbations in (4) (i.e. X
f
tv )

are obtained via integration of the full non-linear model equa-

tions from ti to t v . The ensemble perturbations in (4) have been

integrated from ta to t v without being influenced by the ob-

servations as they would in the non-linear ensemble mean im-

plementations. As a result, the non-linear ensemble mean and

ETKF-type methods cannot, in general, be equivalent for non-

linear dynamics.
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4. Description of the observing system
simulation experiments

4.1. Model description, experimental design
and data collection

The L96 model equations are given by, dxi/dt = −x i−1(x i−2 −
x i+1) − xi + F , where i = 1, . . . , 40 and the forcing parameter

F = 8 (this subscript i is not to be confused with the subscript

on the initial time ti). The model is cyclic with x i+40 = xi. The

locations of the state variables can be thought of as equidistant

locations on a latitude circle. The distance between xi and x i+1 is

defined as one zone. Similar to atmospheric systems, L96 has (i)

‘energy’ conservation (ii) nonlinear advection and linear dissipa-

tion (iii) sensitivity to initial conditions and (iv) external forcing.

The energy E = ∑40
i=1x2

i /2 is conserved through a compensa-

tion between the constant forcing term and linear dissipation

term. For F = 8, disturbances propagate from low-to-high in-

dices (‘west’ to ‘east’) (Lorenz and Emanuel, 1998) (hereafter

L98). Following LE98, a fourth-order Runge–Kutta scheme with

a time stepping of 0.05 = �t time units is used. One ‘lead time

unit’ is defined as 0.05 = �t . Numerical experiments yield an

error doubling time of roughly 8 �t (Lorenz, 1995). The times

between assimilation times is set to 0.05 or roughly 1/8 the dou-

bling time, chosen to mimic current operational settings (Bishop

et al., 2003). Assuming that the doubling time in the atmosphere

is roughly 2 d, one lead time unit �t can be thought of as equiv-

alent to 6 h. Analysis of linear perturbations about a steady-state

solution gives a group velocity of the most unstable wavenumber

(8) of roughly +1/2 zone per �t (LE98). A particle moving at the

group velocity of the most unstable wavenumber will travel half

the distance between model grid points in time �t. Wavenumber

8 dominates the power spectrum (LE98). The model climatol-

ogy is xi = 2.3 with σclimate,i = 3.6 (same for all i) (LE98). The

observational standard deviation is set to σ obs = 0.2, giving ac-

curate observations compared to σclimate. These choices of F and

σ obs match LE98.

For simplicity and clarity, a particularly simple version of the

problem described in Section 2 is analyzed in this paper. The

problem is to determine (at ti) the optimal location of exactly

one AO at ta to improve the forecast error for x 1 at t v . No routine

observations are assimilated at ta(Hroutine
ta is empty). The chosen

problem allows for clean comparisons of the various methods to

be tested (see Section 3.4). The differences between the initial

(ti), adaptive (ta) and verification (t v) times is a matter of choice.

Operationally these are constrained by practical considerations.

For simplicity, we choose to set t v − ta = ta − ti = lead�t ,
where lead is an integer representing the number of lead time

units.

Next, the collection of statistics using OSSEs is described.

Assume that an EF is being used for DA. For a given AO scheme
and lead the following procedure is used: An initial true state xt

is sampled from climatology. The state xt is integrated 104 time

steps. An ensemble is then obtained by perturbing around xt to

obtain an initial ensemble [xk]. The ensemble and xt are then

integrated for 104 more time steps up to t i,1 (the second sub-

script indicates the first forecast cycle). Assuming that L96 is

ergodic, the ensemble and xt can be considered random samples

of climatology. The OSSEs can now begin. At t i,1, a decision

regarding where to place the one AO at t a,1 is made. The AO can

be taken at any of the 40 grid points (the chosen location is the

one that minimizes the forecast variance for x 1 at t v,1, accord-

ing to the AO scheme being tested). Since there are no routine

observations, only the AO is assimilated at t a,1. The ensemble

and truth for time t i,1 is then integrated out to t a,1. The obser-

vation is simulated by adding a random error to the truth at the

observation location specified by the AO scheme. The random

error is a sample of a normal distribution with standard devia-

tion σ obs and mean equal to the value of the truth at the observed

location. The prior ensemble for t a,1 (denoted [x
f
ta,1,k]) is then up-

dated using the EF to generate [xu
ta,1,k]. [xu

ta,1,k] is then integrated

out to the verification time (t v,1) along with xt . The absolute

value of the difference between the ensemble mean and truth at

t v,1 for state variable x 1 is taken as the measurement of fore-

cast error. The absolute difference between the ensemble mean

and truth is commonly used to evaluate forecast/analysis errors

in EnKF DA studies (Houtekamer and Mitchell, 1998, 2001;

Anderson, 2001; Whitaker and Hamill, 2002; Snyder and Zhang,

2003). The procedure is repeated cyclically, where the output

of the last OSSE is taken as the input to the next OSSE. For

OSSE number j + 1, the new initial time is given by t i, j+1 =
t a, j . The analysis ensemble for t i, j+1 is given by [xu

ta, j ,k]. The

above procedure is repeated J = 10 200 times where j =
1, . . . , J . The first 200 error statistics are discarded to ensure

that statistics are only collected when the model/assimilation

system is in statistical equilibrium (200 deemed sufficient via

empirical testing). For a given lead time and AO scheme, the

mean absolute forecast error (over the 10 000 cases) for x 1 is

taken as the measure of performance.

4.1.1. Details regarding the data assimilation. The EF DA

scheme used in the experiments is the EAKF developed by An-

derson (2001, 2003). This choice of EF helps to achieve con-

sistency between the DA scheme and the methodology used to

select locations of AOs, an important consideration in the design

of AO networks (Majumdar et al., 2002a). The majority of the

discussion in Section 5 will focus on the case where the ensemble

size is K = 20. When generating results for K = 20, heuristic ad-

justments to the EAKF implementation were required to achieve

stable assimilations, namely CL and covariance inflation (CI).

Here, the CL works in the following way. Suppose, at a given

time, the EAKF is updating state variable x α with an observa-

tion of x β . Suppose that x α is physically unrelated to x β due to

the physical distance between x α and x β . For smaller ensem-

ble sizes, the observation of x β may be strongly correlated to

x α at some instances. Consequently, updating the ensemble of

state variable x α with an observation x β may degrade the quality
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of the analysis (Hamill et al., 2001). To alleviate this problem,

covariances between the prior state variables and observation

variables are multiplied by a correlation function with local sup-

port (originally proposed/tested by Houtekamer and Mitchell,

1998). The correlation function is a fifth-order piecewise ratio-

nal function with compact support characterized by a parameter

c that is the half-width of the correlation function (Gaspari and

Cohn, 1999). For the L96 system, the total distance of one cycle

from grid point xi to xi is defined to be one unit. For c = 0.3,

observations influence state variables which are up to 2 × 0.3

units away from the observation location in both the east and

west direction. In this setup, a given state variable can be at most

be 0.5 units distance away from an observation. This choice of

half-width parameter, therefore, implies that observations have

global impact. Note that for c < 0.25 observations would not

have global impact. CI is used to circumvent filter divergence

(Jazwinski, 1970). CI increases the uncertainty in the prior co-

variance estimates so that the filtering results do not diverge from

the observations (Anderson and Anderson, 1999). For the K =20

results, CI of γ = √
1.04 has been used for all the experiments.

For prior state variable x α , covariance inflation is implemented

by setting the kth ensemble member to xα,k = γ (xα,k − xα) + xα

where xα is the prior ensemble mean. The fixed values of c
and γ were chosen to yield stable assimilations (no filter diver-

gence) while still maintaining small prior covariances. It was

found that small alterations to the prescribed values of c and

γ do not change the qualitative conclusions of the results for

K = 20.

In present day applications of EnKF to realistic prediction

problems, the number of ensemble members that can be run is

typically far less than the degrees of freedom in the prediction

model (due to computational expense). As a result, heuristic

adjustments of similar nature to those discussed here are required

for application of the EnKF to realistic problems. This is the

reason for placing the emphasis on K = 20 in this paper. To

demonstrate certain principles, results will also be shown for

K = 128 (much larger than the model size). For the K = 128

results, CL or CI was not required to achieve stable assimilations

and, therefore, no CL or CI was used.

4.2. Summary of the methods to be examined
and experimental parameters

For all OSSE results with K = 20 both CL and CI are used in

the actual data assimilation. For all results with K = 128 CL and

CI are not used in the actual data assimilation. The performance

of various AO algorithms will be examined for the remainder of

this paper. The methods that make use of CL when selecting the

location of the AO are ETKF-SPACE, ETKF-SPACETIME and

NONLIN-LOC. The methods that do not make use of CL when

selecting the AO locations are ETKF/NOLOC and NONLIN-

NOLOC.

5. Observing system simulation experiments:
Results and discussion

5.1. The non-linear ensemble mean scheme

The objective of the numerical experiments is to develop an

understanding of the various computationally efficient ETKF-

type AO schemes. It will be helpful to first consider results for

the non-linear ensemble mean schemes. Recall that the non-

linear ensemble mean schemes require repeated integrations of

the model equations in testing various hypothetical observing

networks for ta, and, therefore, may not be suitable for opera-

tional applications. Results for a random strategy (RANDOM)

will also be shown. The RANDOM strategy selects the observed

grid point at ta randomly. The RANDOM strategy is useful as a

measure of a reasonable lower bound in the sense that a given

AO scheme is deemed to be of no use if it does not outperform

the RANDOM scheme.

We begin by presenting a detailed analysis of the NONLIN-

NOLOC method’s performance (which does not use CL when

updating the forecast ensemble at ta). Such a detailed analysis is

presented so that the impacts of sampling errors and the perfor-

mance of the scheme with localization (NONLIN-LOC) can be

understood. Fig. 1 depicts the mean absolute forecast errors in the

verification region x 1 over the 104 experiments for the NONLIN-

NOLOC and RANDOM schemes (among others, note that the

ensemble size is K = 20). Note that Fig. 1 depicts results from

8 independent experiments for each scheme (one for each lead
�t = t v − ta = ta − ti). The mean absolute forecast errors are

joined by a straight line for aesthetic purposes only. To set yet

another benchmark for comparison, results for a FIXED strategy

are also shown in Fig. 1. For each lead time, the fixed observation

location that yielded the smallest mean absolute forecast errors

over the entire 104 experiments was determined. For lead times

1 through 4, the optimal fixed location was grid point 1. For lead

times 5 and 6, location 40 was optimal. Locations 39 and 38 were

optimal for lead times 7 and 8, respectively. The values of fore-

cast errors in Fig. 1 are reasonable given σ climate = 3.6. Results

are shown up to lead = 8 since all the AO schemes tested in this

study did not outperform the RANDOM scheme for longer lead
experiments. Assuming that �t represents 6 h, the experiments

cover lead �t from 6 h to 2 d. For all the mean absolute forecast

errors in Fig. 1, standard errors of the mean have been computed.

The standard errors of the mean could have been used to put error

bars of Fig. 1. However, given the large number of experiments

over which averages have been taken, the size of the error bars

are of the order of the thickness of the lines drawn in Fig. 1 and

will not be shown. The magnitudes for the standard errors of the

mean imply that the results of Fig. 1 are statistically significant.

Results were also obtained for the ensemble spread (ES) tech-

nique (LE98; Morss et al., 2001) (not shown on Fig. 1). For a

given ti, the sample forecast standard deviation for all model

grid points for ta can be computed. The ES technique directs the
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Fig. 1. Results for eight independent experiments where the lead time

lead�t = t v − ta = ta − ti has been varied from lead = 1, . . . , 8. For

each method, results for the eight independent experiments have been

joined with a line for aesthetic purposes only. The y-axis is the mean

absolute forecast error in x 1(t v) averaged over 104 consecutive

experiments. The errors are computed by taking the absolute difference

in the ensemble mean forecast for x 1(t v) and the value of the control

run (truth) for x 1 at t v . The ensemble forecast is initialized time ta.

Results are shown for the RANDOM scheme, the non-linear ensemble

mean scheme with (NONLIN-LOC) and without (NONLIN-LOC)

localization, the ETKF/NOLOC, the ETKF-type scheme with spatial

(ETKF-SPACE) and space/time (ETKF-SPACETIME) localization and

the fixed scheme (FIXED).

observation to the location with the largest ES. For lead = 1,

the ES roughly yields a 4 percent improvement in forecast errors

compared to the RANDOM strategy, and less than 1 percent for

the longer lead times.

To develop an understanding of the statistical behaviour of the

NONLIN-NOLOC scheme, histograms of the observed location

are useful. The left-hand column of Fig. 2 plots the histogram of

observed locations for NONLIN-NOLOC lead = 1, 4, 8 exper-

iments with K = 20. Recall that analysis of linear perturbations

about a steady-state solution in L96 reveals that a particle moving

at the group velocity of the most unstable wavenumber travels

1/2 the distance between grid points per unit �t = 0.05. Looking

at the left-hand column of Fig. 2, the upstream shifts in the peak

of the distributions are physically reasonable. However, for the

lead = 4, 8 results, the AO is sometimes directed to locations

far from the verification region (the upper left-hand panel for

lead = 1 has a few observations directed far from the verifica-

tion region, although it is hard to make out on the plot). If one

assumed that disturbances propagate at the group velocity of the

most unstable wavenumber, one could regard this behaviour as

‘physically surprising’.

For the lead = 8 results in the lower left panel of Fig. 2,

the NONLIN-NOLOC scheme observes one of the locations

[x 12, . . . , x 29] 1863 times out of the 104 experiments. The grid

points [x 12, . . . , x 29] were chosen to represent locations far from

the verification region x 1. Given the group velocity of the most

unstable wavenumber, one may speculate that these 1863 ob-

servations led to very little improvement in the forecast errors.

To quantify whether or not the 1863 observations actually im-

proved the forecast errors in x 1(t v), the following calculations

were done. The average forecast error in x 1(t v) over the 1863

cases was 2.903. If the observation was not assimilated at tt, the

mean forecast error in x 1(t v) would have been 2.905. Therefore,

over the 104 experiments, when the observation was directed to

one of the grid points [x 12, . . . , x 29], little improvement in fore-

cast error was achieved. The lower left panel of Fig. 2 shows that

the most frequently observed grid points were x 38, x 39 and x40.

For the 1863 cases being discussed, had the observation been

directed to x38 instead of one of the grid points [x 12, . . . , x 29],

the mean forecast error in x 1(t v) over the 1863 cases would have

been 2.743. This calculation was done retrospectively (i.e. after

the sequence of 104 experiments were completed) by re-running

the 1863 forecasts using observations of x38 instead of one of the

grid points [x 12, . . . , x 29]. Had the observations been directed to

x39 or x40, the mean forecast errors would have been 2.582 and

2.623, respectively.

The NONLIN-NOLOC ensemble size K = 20 results in Fig. 1

and left column Fig. 2, do not make use of CL when deciding

where to place the AO. Is the NONLIN-NOLOC scheme direct-

ing observations to locations far from the verification region due

to sampling errors? In other words, for the forecast ensemble

valid at ta, are sampling errors causing spurious correlations to

arise between state variables nearby and far away from the ver-

ification region, ultimately directing AOs to locations far from

the verification region? This can be determined empirically by

running the analogous experiment for a relatively large ensemble

size of K = 128. For the K = 128 case, the analogous histograms

are in the middle column of Fig. 2 showing that the AO is rarely

directed to far away locations.

The results in the first two columns of Fig. 2 suggest that

the so-called ‘physically surprising’ behaviour of the NONLIN-

NOLOC scheme for the K = 20 case is due to sampling error.

We further test this notion by implementing the non-linear en-

semble mean scheme using CL (the NONLIN-LOC scheme).

For consistency, the NONLIN-LOC scheme updates the fore-

cast ensemble at t a ([x
f
ta ,k]) using the same CL (c = 0.3) as the

DA scheme described in Section 4.1.1 The histograms for the

NONLIN-LOC results are shown in the right-hand column of

Fig. 2. Comparing the left and right columns of Fig. 2 for lead =
4, 8 allows one to see the effect of the CL. For the NONLIN-

LOC scheme, the CL has the effect of diminishing the expected

benefit of far away observations. Fig. 1 shows the results for

the NONLIN-LOC scheme. For the longer lead time experi-

ments, there is a statistically significant improvement in the er-

rors (albeit not dramatic). This is consistent with the empirical

observation that the sampling error problem is more severe

at longer lead times. Note that unlike the NONLIN-NOLOC
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Fig. 2. Histograms of locations selected for the adaptive observation (AO) over the 104 experiments. For the first two columns, the

NONLIN-NOLOC scheme has been used to select the location of the AO at ta. The left-hand column shows results from experiments with ensemble

size K = 20, the middle column is for K = 128. The right-hand column shows results for the NONLIN-LOC scheme for the ensemble size K = 20

results. For all three methods, results from three independent experiments are shown, where the lead = 1, 4, 8 (recall that lead�t = t v − ta = ta − ti).

scheme, the NONLIN-LOC scheme yields smaller mean fore-

cast errors compared to the FIXED results for the lead time 6, 7

and 8 results. The key point is that when working with smaller

ensemble sizes, including a CL in the non-linear ensemble mean

scheme improves the performance of the algorithm. Notice in the

context of the non-linear ensemble mean scheme, the sampling
error that is being handled by the CL is for statistical estimates
between state variables valid at the same time (ta).

Figure 2 suggests that the impacts of ensemble size for the non-

linear ensemble mean scheme are less severe for the shorter lead
experiments. What is the relationship between the lead and the

impacts of ensemble size? For the lead = 1 results, the dynamics

from ta → t v can be thought of as a linear advection process that

nudges uncertainty downstream less than the distance between

grid points (given a group velocity of 1/2 zone per unit lead).

Since observations are assimilated frequently (every �t), we

expect locations nearby x 1 to be strongly correlated with x 1 at

each ta. Therefore, observations of state variables nearby x 1 will

strongly reduce the uncertainty in the verification region x 1. For

lead = 1, the dynamics is simply advecting this uncertainty for a

very brief span of time (t v − ta =�t), therefore it is not surprising

that locations far from the verification are chosen infrequently.

For longer lead times, the dynamics from ta → t v can no longer be

thought of as a simple linear advection process. For the longer

lead experiments, the frequency of data assimilation cycles is

less. Therefore, we expect the absolute correlations (at ta) of state

variables nearby x 1 to be diminished, increasing the likelihood

that spuriously correlated state variables far from x 1 are chosen

by the NONLIN-NOLOC scheme.

5.2. The ETKF/NOLOC scheme

Next, results for the ETKF/NOLOC scheme discussed in Sec-

tion 3.2.2 will be analysed. Recall that this method is equivalent

to the ETKF AO method introduced by B01 and is used opera-

tionally in the WSR at NCEP. The goal is to identify any prob-

lems when using the ETKF/NOLOC method, and if possible,

suggest ways of overcoming them. Figure 1 depicts the fore-

cast errors for the ETKF/NOLOC scheme. The ETKF/NOLOC

method is suboptimal compared to the non-linear ensemble mean

results. For the K = 20 results, the histograms of the observed

locations are depicted in the left-hand column of Fig. 3. Com-

pared to the NONLIN-NOLOC results in the left-hand column of

Fig. 2, the ETKF/NOLOC scheme exhibits different behaviour.

For lead = 1, the ETKF/NOLOC method directs the AO to lo-

cations that are more localized around the verification region

x 1. For longer lead times, the ETKF/NOLOC selects locations

far from the verification region slightly more frequently than
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Fig. 3. Histograms of locations selected for the adaptive observation (AO) over the 104 experiments. The ETKF/NOLOC scheme has been used to

select the location of the AO. The left-hand column shows results for an ensemble size K = 20, the right-hand column is for K = 128. For both

ensemble sizes, results from three independent experiments are shown, where lead = 1, 4, 8 (recall that lead�t = t v − ta = ta − ti).

the NONLIN-NOLOC. This contrasting statistical behaviour is

reflected in higher mean forecast errors for the ETKF/NOLOC

method (compared to NONLIN-NOLOC and NONLIN-LOC).

To understand the ETKF/NOLOC results, the criterion that

the ETKF/NOLOC scheme uses to select the AO location can

be examined. Using the analytical expression for the updated

variance for x 1 at t v given a hypothetical observation at location

α at ta, the ETKF/NOLOC scheme chooses the location that

maximizes,

r 2
x1,tv ,xα,ta

1 + σ 2
α,obs

/
σ

f
xα

2
(ta)

, (5)

where r 2
x1,tv ,xα,ta

is the squared sample correlation coefficient

between x 1(t v) and x α(ta) computed using [x
f
ta ,k] and [x

f
tv ,k],

σ f
xα

2(t a) is the forecast standard deviation for x α and σ α,obs =
0.2 is the observational error standard deviation. A derivation of

this maximization criterion is given in Appendix.

To understand the behaviour of the ETKF/NOLOC, it is in-

structive to examine the role of r 2
x1,tv ,xα,ta

in (5) for short and long

lead experiments. For the lead = 1 results, r 2
x1,tv ,xα,ta

is plotted

for several different state variables in Figs. 4 and 5. Results for

ensemble sizes K = 20 and K = 128 are shown. For both en-

semble sizes, the value of r 2
x1,tv ,x1,ta

appears to dominate over

all others. The empirical results suggest that for both the K =
20 and K = 128 experiments, r 2

x1,tv ,x1,ta
is so dominant in (5),

that ETKF/NOLOC scheme rarely directs observations away

from x 1. For the K = 20 results, the differences between the

locations chosen by the NONLIN-NOLOC, NONLIN-LOC and

ETKF/NOLOC scheme are subtle for lead = 1. However, the

more localized distribution of AOs given by the ETKF/NOLOC

method results in significantly higher mean forecast errors. It

is not clear how this problem can be overcome. As shown on

the right-hand side of Fig. 3, increasing the ensemble size from

K = 20 to K = 128 causes an even greater localization of the

AO, since the correlation between x 1(ta) and x 1(t v) becomes

slightly less noisy (this can be seen visually by comparing the K
= 20 and K = 128 results in the upper left-hand panel of Fig. 4)

and therefore even more dominant in (5).

For linear dynamics, the ETKF/NOLOC and NONLIN-

NOLOC are equivalent (as discussed in Section 3.4). The large

discrepancy in performance for the lead = 1 results in Fig. 1

is surprising, since one might expect linear dynamics to apply

as the error doubling time of L96 is roughly 8 �t . However, for

linear dynamics to apply, the average size of the ensemble pertur-

bations about the ensemble mean must also be small. One way of

quantifying this is to compute the mean forecast standard devia-

tion of x 1(ta) over all the ETKF/NOLOC experiments. The mean

forecast standard deviation for x1(ta) was found to be roughly

0.8. This value is large given that the climatological standard

deviation of each individual state variable is roughly 3.6. The

mean size of the perturbations about the ensemble mean, sug-

gests that the ensemble perturbations evolve non-linearly from

ti to t v . The discrepancy in the results for lead = 1 is a reflection
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Fig. 4. For the ETKF/NOLOC experiment where the lead time is 1�t . The square of the correlation coefficient between the state variable indicated

on the top of each panel at the adaptive observation time ta, and the state variable of interest x 1 at the verification time t v . Statistics are plotted for a

sample of 500 consecutive experiments from the total of 104 (all samples are qualitatively similar). The correlation coefficients are computed from

the ensemble forecasts for ta and t v initialized at ti. The dashed line is for ensemble size K = 20, the solid line is for K = 128.

of this non-linearity. To confirm that the ETKF/NOLOC and

NONLIN-NOLOC do indeed converge, 106 experiments were

run for �t = t v − ta = ta − ti = 0.0001 and lead = 1. The mean

forecast standard deviation for x 1(tt) was found to be roughly

0.06 over all the ETKF/NOLOC experiments. The combined

effect of small �t = 0.0001 and perturbation size was appar-

ently enough for linearity to apply since the ETKF/NOLOC and

NONLIN-NOLOC were found to give identical results.

What happens for the longer lead experiments? r 2
x1,tv ,xα,ta

for

the lead = 8 experiments is plotted in Figs. 6 and 7. r 2
x1,tv ,xα,ta

for grid points immediately upstream of x 1 are generally higher

than grid points far away (leading to more frequent observa-

tions of locations nearby the verification region). Figures 6 and

7 show that occasionally, there are high correlations associated

with grid points x 10, x 20, x 30 for the small ensemble size K =
20, but they do not appear for the large ensemble size K = 128.

It appears that these ‘spurious’ correlations are arising due to the

smaller ensemble size. For the K = 20 and lead = 8 results, the

ETKF/NOLOC methods frequently direct observations to loca-

tions far from the verification region (surprising given the group

velocity of the most unstable wavenumber). For the K = 128

experiments, the lower right panel of Fig. 3 demonstrates that

the ETKF/NOLOC rarely directs the AO to far away locations

(‘physically surprising’ locations). It appears that the behaviour

of the ETKF/NOLOC for the K = 20 and lead = 8 results is

attributable to the ensemble size. The nature of the sampling
problem in the NONLIN-NOLOC method is not quite the same
as the sampling problem in the ETKF/NOLOC method. As dis-

cussed in Section 5.1, the sampling problem encountered in the

NONLIN-NOLOC scheme is for statistical estimates of quanti-

ties relating state variables valid for the same time, ta. For the

ETKF/NOLOC scheme, the sampling problem is for statistical

estimates of quantities relating state variables valid for different
times, the AO time ta and the verification time t v .

By comparing the lower left panels of Figs. 2 and 3, note that

the ETKF/NOLOC scheme directs the observations to locations

far from the verification region slightly more often. Intuitively,

one expects correlations for state variables valid at different times

(relevant to the ETKF/NOLOC scheme) to be less than the ex-

pected correlations for state variables valid at the same time (rele-

vant to the NONLIN-NOLOC scheme). As the expected correla-

tions are diminished, the effects of small ensemble size are more

severe. As a result, it is not surprising that the ETKF/NOLOC

directs the AO to far away locations more often.

For the lead = 8 results in the lower left panel of Fig. 3,

the ETKF/NOLOC scheme observes one of the locations

[x 12, . . . , x 29] 2333 times out of the 104 experiments (compared

to 1863 times for the NONLIN-NOLOC scheme). Again, given
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Fig. 5. For the ETKF/NOLOC experiment where the lead time is 1 �t . Same as Fig. 4 except for different state variables indicated at the top of each

panel. The dashed line is for K = 20 and solid line for K = 128.

the group velocity of the most unstable wavenumber, one may

speculate that these 2333 observations led to very little improve-

ment in the forecast errors. Similar calculations to the NONLIN-

NOLOC cases were done. The average forecast error in x 1(t v)

over the 2333 cases was 2.892. If the observation was not assim-

ilated at tt, the mean forecast error in x 1(t v) would have been

2.893. Therefore, over the 104 experiments, when the observa-

tion was directed to one of the grid points x 12, . . . , x 29, nearly

zero improvement in forecast error was achieved. The lower left

panel of Fig. 3 shows that the most frequently observed grid

points were x 38, x 39 and x40. Had the observations been directed

to x 38, x 39 or x40, the mean forecast errors would have been

2.766, 2.612 and 2.710 respectively (again, these calculations

were done retrospectively as for the NONLIN-NOLOC results).

5.3. The impacts of space/time covariance localization
on ETKF-type schemes: ETKF-SPACETIME
and ETKF-SPACE

Given that operational systems can only run a limited number of

ensemble members, and the results of Section 5.2, one is led to

ask if the performance of ETKF-type schemes can be improved

through the use of CL? Section 5.1 demonstrates that for the case

of K = 20, the performance of the non-linear ensemble mean

scheme is improved through the use of CL. In what follows, the

benefits of using CL in ETKF-type schemes are demonstrated.

First, consider the forecast variance for x 1 at t v given a hypo-

thetical observation of location α at t a (σ f
x1

2(t v|Hta,α
)) computed

by the ETKF-type methods examined in this paper,

σ f
x1

2
(tv|Hta ,α) = σ f

x1

2
(tv) −

f (|d|1,α)2σ f 4

x1,tv ,xα,ta

σ
f

xα

2
(ta) + σ 2

α,obs

, (6)

where σ f
x1

2(t v) is the forecast variance for x 1(t v), σ f 4

x1,tv ,xα,ta
is the

squared forecast covariance between x 1(t v) and x α(t a), σ f
xα

2(t a)

is the forecast variance for grid point x α(ta) and σ 2
α,obs is the

observational variance of the observation at grid point α (the

forecast variances/covariance are computed from the ensem-

ble forecast generated at ti). f (|d|1,α) is some function of the

‘distance’ |d|1,α between x 1(t v) and x α(ta). See Appendix for a

derivation of (6). The location α which minimizes (6) is chosen

by the ETKF-type scheme as the location of the AO.

For the implementation with no localization (ETKF/NOLOC),

f (|d|1,α) = 1 in (6). Note that in B01, eq. (6) is called the ‘sig-

nal variance’ for f (|d|1,α) = 1. The type of CL considered here

multiplies σ f 4

x1,tv ,xα,ta
by a factor f (|d|1,α)2, where |d|1,α is the

absolute ‘distance’ between state variable x 1(t v) and x α(ta), and

f is a function with compact support that falls off with increasing

‘distance’. We take f to be the same fifth-order piecewise ratio-

nal function characterized by a parameter c = 0.3 (Gaspari and

Cohn, 1999) used in the DA scheme (see Section 4.1.1.). This

multiplication has the potential to damp ‘spurious’ correlations
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Fig. 6. For the ETKF/NOLOC experiment where the lead time is 8 �t . The square of the correlation coefficient between the state variable indicated

on the top of each panel at the adaptive observation time ta, and the state variable of interest x 1 at the verification time t v . Statistics are plotted for a

sample of 500 consecutive experiments from the total of 104 (all samples are qualitatively similar). The correlation coefficients are computed from

the ensemble forecasts for ta and t v initialized at ti. The dashed line is for ensemble size K = 20, the solid line is for K = 128.

between (x 1(t v)) and observed variable (x α(ta)) which may be

degrading the performance of the ETKF/NOLOC scheme. Given

that the covariance σ f 2

x1,tv ,xα,ta
is computed using information at

different times, it seems reasonable to assume that the distance

|d|1,α should somehow incorporate flow information for the time

interval ta → t v . Properly characterizing the ‘distance’ |d|1,α

and using f (|d|1,α), will hopefully lead to an effective space-

and time-dependent localization. For the scheme labelled ETKF-

SPACE, the distance |d|1,α is simply taken as the physical dis-

tance between grid points x 1(t v) and x α(ta), effectively treating

the grid points as though they are at the same time. Only the

simplest of flow-dependent definitions of |d|1,α are offered here.

Suppose that the L96 dynamics is well characterized by the group

velocity of the most unstable wavenumber. The technique that

is tried here is to translate the location of x α(ta) by +cgulead
�t zones downstream (for a given lead experiment). Here, cgu is

defined as the group velocity of the most unstable wavenumber.

This definition effectively sets the ‘distance’ between x 1(t v) and

x α(ta) to zero if the grid point x α(ta) happens to be −cgulead �t
upstream of x 1. Once x α(ta) has been translated downstream, the

distance between the translated grid point and grid point x 1 is

computed and set equal to |d|1,α . The implementation that uses

this method to compute |d|1,α is labelled ETKF-SPACETIME. In

experiments with GCMs, Szunyogh et al. (2000, 2002) demon-

strate that the velocity of data impacts is associated with baro-

clinic Rossby wave group velocity, providing motivation for

using the group velocity of the most unstable wavenumber in

this context.

The histograms for the ETKF-SPACE and ETKF-

SPACETIME schemes are plotted in Fig. 8. Not surprisingly, for

lead = 1 the AO remains very localized around the verification

region x 1. For the lead = 8 experiments, the ETKF-SPACE and

ETKF-SPACETIME schemes no longer direct the AO to the

so-called ‘physically surprising’ locations. The impact of the

CL is evident by comparing the lower left and right panels of

Fig. 8 and the lower left panel of Fig. 3. The CL schemes result

in improved (compared to the ETKF/NOLOC) mean forecast

errors for larger lead times as shown in Fig. 1. As well, the

ETKF-SPACE and ETKF-SPACETIME outperform the FIXED

scheme for all the 8 lead times, unlike the ETKF/NOLOC. The

differences between the histograms for the ETKF-SPACE and

ETKF-SPACETIME schemes are subtle, yet the space and time

localization scheme picks upstream locations slightly more

often. One likely reason for the subtle difference between the

ETKF-SPACE and ETKF-SPACETIME results is the small

group velocity of the most unstable wave. For the K = 20

results, the flow-dependent definition of distance yields a small

improvement in forecast errors for longer lead times. For lead =
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Fig. 7. For the ETKF/NOLOC experiment where the lead time is 8�t . Same as Fig. 6 except for different state variables indicated at the top of each

panel. The dashed line is for K = 20 and solid line for K = 128.

Fig. 8. Histograms of locations selected for the adaptive observation (AO) over the 104 experiments. The left-hand column shows results for the

ETKF-SPACE scheme, the right-hand column for the ETKF-SPACETIME scheme. For both ensemble sizes, results from three independent

experiments are shown, where lead = 1, 4, 8 (recall that lead�t = t v − ta = ta − ti).
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7, 8, ETKF-SPACETIME yields slightly better forecast errors

for long lead experiments compared to the NONLIN-LOC

scheme. We view these results optimistically, since statistically

significant improvement over the ETKF-SPACE was achievable

using only a crude representation of the L96 dynamics.

Given these results, it is interesting to note that in a compar-

ison between total energy singular vectors and the ETKF AO

techniques for 10 cases in the NORPEX experiment, Majumdar

et al. (2002a) found that the ETKF generally identifies broader

regions for AOs. Majumdar et al. (2002a) mention that a possible

explanation of their results is the lack of a CL scheme appropri-

ate for ensemble-based targeting. Given the results of this paper,

it would be interesting to see if the performance of present day

ETKF schemes could be improved through the use of CL. One

simple yet potentially effective scheme would be to only calcu-

late P f (t v|H ∗
ta ) for physically reasonable locations suggested by

the group velocity of propagating disturbances.

6. Summary and conclusions

The type of ensemble-based AO methods of primary concern

in this paper are so-called ETKF-type schemes. For a given

initial time ti, ETKF-type schemes make use of the ensem-

ble forecast generated at ti in testing various hypothetical AO

networks. ETKF-type schemes do not require repeated integra-

tions of the prediction model, making them suitable for real-time

applications.

The underlying theory behind the ETKF-type methods is dis-

cussed in Section 3.3. This theory regards the ensemble forecast

generated at ti as a sample of a prior distribution for a joint state.

The joint state combines system states at the relevant times be-

yond ti. To test a given hypothetical AO network, the ensemble

forecast can be updated in a manner consistent with the Kalman

filter update equations (seen in Section 3.3.1 starting from Bayes

rule). The forecast covariance of the system state at the verifica-

tion time, conditioned on a hypothetical AO network can then be

quantified. When a deterministic ensemble square root Kalman

filter (Tippett et al., 2003) is used for the update without CL,

this methodology is equivalent to the ETKF AO methodology

developed by Bishop et al. (2001) as shown in Section 3.3.2 (this

method has been called ETKF/NOLOC throughout this study).

The ETKF/NOLOC is equivalent to a sequential in-time filter-

ing process when the forecast ensemble evolves linearly (Sec-

tion 3.4). In Section 3.3.3, new ETKF-type AO methodologies

that make use of CL are introduced.

To develop an understanding of the various ETKF-type

schemes discussed in Section 3.3, OSSEs in the non-linear L96

model have been analysed in Section 5. The OSSEs simulate the

problem of choosing an AO in a large data void to improve fore-

casts of an important physical location. An ensemble adjustment

Kalman filter (EAKF) has been used for the data assimilation.

When implementing ensemble Kalman filters (EnKF) in real-

istic prediction models, a limited number of ensembles can be

run. As a result, realistic implementations of EnKF often require

heuristics such as covariance inflation/localization to handle fil-

ter divergence/sampling errors to achieve stable assimilations.

The emphasis has been placed on analysis of ensemble size

K = 20 results, since covariance inflation/localization were nec-

essary to achieve stable assimilations, mimicking the situation

often encountered in realistic applications.

Results have been obtained for a variety of lead times (vary-

ing from 6 h to 2 d). The short lead time experiments demon-

strate that locations selected by the ETKF/NOLOC method are

more localized when compared to the non-linear ensemble mean

scheme (equivalent to a sequential in-time filtering process for

non-linear dynamics described in Section 3.2). This is reflected

in higher mean forecast errors for the ETKF/NOLOC compared

to the non-linear ensemble mean method. The problem is not

alleviated by increased ensemble size and is therefore not neces-

sarily attributable to sampling error. It is not clear how this can be

overcome in a systematic way. The results for longer lead times

and K = 20 show that the performance of the ETKF/NOLOC

method can be improved upon by the use of an ETKF-type

scheme that makes use of space/time CL. Space/time CL is

used to handle sampling error for relationships between state

variables at different times. While several methods for CL have

been suggested for ensemble-based data assimilation, no previ-

ous study has developed a method for ETKF-type AO schemes

(Majumdar et al., 2002a). Two approaches to space/time CL

for ETKF-type schemes are proposed in Section 3.3.3 (ETKF-

SPACE, ETKF-SPACETIME). The results in Section 5.3 for

longer lead times and K = 20 show that the ETKF-SPACE

and ETKF-SPACETIME methods yield improved forecast

errors compared to the ETKF/NOLOC. The first approach

(ETKF-SPACE) simply treats state variables at different times as

though they are at the same time to define a distance, which can

be plugged into the localization function f . While this approach

seems reasonable for small lead times, it is questionable for long

lead times since evolution of the flow is ignored. The second

approach (ETKF-SPACETIME), which yields a slight improve-

ment over the first, uses a simple characterization of the L96

dynamics to define distances between state variables at different

times. Operational systems typically use ensemble sizes much

less than the size of the state vector. This fact, combined with

the results in this paper suggests that an appropriate space/time

CL scheme is crucial to realizing the full benefits of ETKF-type

schemes when applied to realistic prediction problems. Develop-

ment and testing of a generally applicable space/time CL scheme

is left to a future study.
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8. Appendix

Derivation of σ
f
x1

2(t v |Hα,ta ) for ETKF-type
methods

The following derivation amounts to an application of the EAKF

to the AO problem examined in Section 5 for ETKF-type meth-

ods. For a given ti, assume that an ensemble forecast has been

generated out to t v . The augmented state z = [xta , xtv ] is a

2n-dimensional vector (n is the model size). The ensemble fore-

cast is considered a random sample of the prior distribution,

p(xta , xtv ). As discussed in Section 3.2, the prior ensemble is up-

dated in a manner consistent with the Kalman Filter update equa-

tions. Going through a derivation of the Kalman Filter (Cohn,

1997) demonstrates that the expression for the updated covari-

ance for the augmented state z can be written as,

P f
aug

(
tv|Haugα,ta

) = (
I − KHaugα,ta

)
P f

aug(ta, tv), (A1)

where α is the hypothetical AO location at t a , P f
aug(t a , t v|Haugα, ta )

(P f
aug(t a , t v)) is the 2n × 2n posterior (prior) covariance, I is a 2n

× 2n identity matrix, K is the 2n × 1 ‘Kalman gain matrix’ and

Haugα, ta is the 1 × 2n observation operator where all the columns

are zero except for a 1 in the αth column (corresponding to an

observation of grid point α at ta, subscript aug is used to indicate

the augmented state space). The Kalman gain matrix is given by

K = P f
aug(t a , t v)Haug

T
α,ta (H augα, ta P f

aug(t a , t v)Haug
T

α,ta + R)−1,

where R = σ 2
α,obs is the observational variance at grid point α.

For the MSE norm and problem of interest, we are only con-

cerned with the updated variance for state variable x 1 at t v . This

is given by the (n + 1, n + 1) element of P f
aug(t v|Haug ta ,α).

Using eq. (A1), the updated variance is (after some simple

algebra),

σ f
x1

2
(tv|Hta ,α) = σ f

x1

2
(tv) −

f (|d|1,α)2σ f 4

x1,tv ,xα,ta

σ
f

xα

2
(ta) + σ 2

α,obs

, (A2)

where Hta ,α is the 1 × n observation operator and σ f 4

x1,tv ,xα,ta

is the squared covariance between x 1(t v) and x α(ta) computed

from the ensemble forecast generated at ti. For a finite size en-

semble, the EAKF will generate an updated sample variance that

fits eq. (A2) exactly. For the implementation without localiza-

tion, f (|d|1,α) = 1 and is equivalent to what is computed by the

ETKF/NOLOC. As discussed in Section 5.3, ETKF-SPACE and

ETKF-SPACETIME methods specify values of f to diminish

the potentially negative impacts of sampling error. Finally, the

maximization criterion given in eq. (5) is simple to derive from

eq. (A2). Since σ
f
x1,tv ,xα,ta

4 = r 2
x1,tv ,xα,ta σ

f
xα

2(t a)σ f
x1

2(t v), one

wants to maximize the second term in (A2) to minimize

σ f
x1

2(t v|H α , t a).
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