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ABSTRACT
Regression-based methods fail to provide a sufficiently unique reconstruction of a given millennial history of Northern
Hemisphere mean temperature. They instead offer a multitude of variants, depending on the specific data processing
scheme. Using a simulated climate history with noise-disturbed pseudo-proxies, we systematically test a set of such
configurations, each of which appears to be a priori reasonable, with existing applications elsewhere. This results in
an entire spectrum between practically useless and almost perfect reconstructions. The reason lies in the fact that the
training variations are not representative of the full millennium, and the regression equations have to be extrapolated.
This creates an error that is proportional to both the model uncertainty and the proxy amplitudes. Estimation of that
uncertainty is paramount for a useful millennial reconstruction, especially if it is of the parameter-loaded multiproxy
type.

1. Introduction

Conventional wisdom has it that empirical models can simu-
late only what they have seen before, just slightly simpler, or
smoother. Statistical regression, which is ubiquitously encoun-
tered in empirical studies of climate research, is no exception.
Even dynamical models, such as general circulation models
(GCMs), are not purely based on so-called first principles and
contain empirical parameterizations that are not seldom derived
from regression. Among numerous applications are statistical
downscaling (Bardossy and Plate, 1991; von Storch et al., 1993;
Bürger, 2002), seasonal ENSO forecasts (Jiang et al., 1995;
Barnston et al., 1999), or short- to medium-range climate fore-
casts based on teleconnections (Lloyd-Hughes and Saunders,
2002; Blender et al., 2003) or lagged SST information (Rodwell
and Folland, 2001; Qian and Saunders, 2003); examples for
model parameterizations are Tiedtke (1989) and Fu and Liou
(1993).

In all of these examples, regression can be understood as a law
that describes the variation of one, usually noisy, variable – the
predictand – in terms of the variation of other variables – the pre-
dictors. The law is a mathematical function of a specified form,
such as linear or logarithmic, with additional parameters that
have to be fitted on previously observed covariations. The appli-
cability of the law, i.e. the domain of allowed predictor variation,
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is usually of little concern; in most cases it is tacitly assumed to
be constant or at most changing with second or higher order. In
the radiation example (Fu and Liou, 1993), the predictor (top of
atmosphere solar radiation and distribution of clouds) variations
are of a well-defined scale. In downscaling applications (e.g. von
Storch et al., 1993), climatic change is supposed to occur at least
one order slower than the variations that are to be downscaled.

Recently, regression-based methods have found their way
into the field of climate reconstruction, using (paleo-)historic
(“proxy”) data such as tree rings, corals, and sediments (Mann
et al., 1998, henceforth MBH98; Jones et al., 1998; Briffa et al.,
2001, 2004; Esper et al., 2002; Jones and Mann, 2004). Among
these studies, the most influential and controversial was cer-
tainly MBH98. Following its prominent role in the third IPCC
report (IPCC, 2001), the study boosted the importance of his-
toric climate for the current debate about anthropogenic global
warming. And since it utilized regression in a rather compli-
cated and unconventional fashion, the focus turned to the regres-
sion theme as a whole. Purely methodological studies followed
where noise-disturbed temperature grid points, so-called pseudo-
proxies, played the role of the proxies, either by using obser-
vations (Mann and Rutherford, 2002) or by simulations (Zorita
et al., 2003; von Storch et al., 2004, henceforth S04). The MBH98
method was thoroughly tested by S04, and they conclude
that for climate reconstruction purposes, any regression-based
method is inherently unable to produce sufficient variability.
The validity of this argument shall be discussed in Section 3.

In all these applications, the regression is trained in the pe-
riod of known climate, that is, in the time of instrumental
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observations, and applied to periods for which proxies are suf-
ficiently abundant. The number of potentially useful proxies is
increasing steadily, and their reach back in time is overwhelm-
ing. For example, the bristlecone pines at the Methuselah Walk
(California), as one of the oldest living species on earth, have
tree-ring chronologies dating back to as much as 8000 yr!
(Hughes and Graumlich, 1996). In view of roughly 200 yr of
calibrating data, this is a bold undertaking. Specifically, the two
main question to be answered are:

(1) Is the instrumental period representative for the predictor
climate?

(2) If no, can one extrapolate the regression law using pre-
dictors that are not represented by that period?

Question (1) addresses the properties of the proxies and must
be answered by inspecting their statistics. Question (2) can of
course only be answered if the predictand, that is the past cli-
mate, is known. As this is not the case in the real-world, one
must rest upon climate simulations performed by GCMs, along
with using pseudo-proxies derived from it. We now describe a
millennial climate simulation whose variations, including those
of the predictors, deviate strongly from the present. It gives a
very good playground for addressing questions (1) and (2). For
the “real” proxies, however, the first question must of course be
answered elsewhere (cf. Bürger and Cubasch, 2005).

2. The Erik simulation

The Erik simulation was performed by the coupled atmosphere-
ocean general circulation model ECHO-G (Legutke and Voss,
1999; Zorita et al., 2003, S04). It is driven by an estimated history
of the past 1000 yr of three external forcing factors: insolation,
volcanic activity, and greenhouse gases, all of which have been
estimated using proxy information from various sources (Blunier
et al., 1995; Lean et al., 1995; Etheridge et al., 1996; Crowley,
2000). Due to internal variability, the model response to that forc-
ing can only be sensibly verified on at least decadal timescales,
and as global instrumental observations are available only since
about 150 yr that possibility is rather limited. Figure 1 shows
the Northern Hemispheric (NH) average of near surface temper-
ature, as observed and interpolated from instrumental records
(Jones et al., 1999), as analyzed by models (Kalnay et al., 1996),
and as simulated by Erik. Note that there are significant differ-
ences between the instrumental observations and analyses (cf.
Simmons et al., 2004). The discrepancies, especially those near
the end of the period (not shown), are reduced if only land areas
are considered for which the data coverage is larger. After about
1950, there are noticeable associations on longer timescales (5 yr
and longer) between Erik and the observations/analyses. Before
1950, where analyses are unavailable, observed and simulated
NH temperature diverge, with distinct simulated cooling and al-
most stationary observations backward in time. It is open whether
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Fig. 1. Upper panel: Time series of NH temperature, from observations
(heavy black), analyses (gray), and the Erik simulation (thin black).
Lower panel: Closeup of upper panel for instrumental period. After
about 1950, noticeable association exists between Erik and the
observation-based values on longer timescales, in particular between
Erik and analyses. Before 1950, Erik is generally cooler than
observations, in particular in the 19th century. All curves are displayed
using a 5-yr smoothing filter.

or not this is attributable to discrepancies over the oceans, or to
model deficiencies, or both.

2.1. Pseudo-proxies

Whether or not the Erik simulation is realistic on longer
timescales, it can serve as a “surrogate climate” (cf. S04) ap-
propriate for solving methodological questions such as (1) and
(2) above. Inside the world of a GCM with a known climate
history, one can mimic the records of proxy data by noise-
degraded values at specific temperature grid points. With two
exceptions explained below, we follow exactly the experiments
conducted by S04. That is, from the Erik fields we select 105
collocated grid points of the proxies used by MBH98 and super-
impose, independently for each point, a white noise process of
appropriate amplitude. S04 chose spatially uniform noise lev-
els that were roughly inspired by the prevailing local proxy
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Fig. 2. Typical grid point temperature and corresponding pseudo-
proxy. The disturbance is a white noise process whose variance is six
times the original variance, so that 86% of the variance is noise. That
level of association roughly corresponds to estimated values for real
proxies (see text).

temperature correlations. But these levels do not account for
the details of the multivariate reconstruction method, yielding
correlations between original and reconstructed global temper-
ature which are much higher than those of MBH98. Follow-
ing MBH98, the portion of explained, spatially explicit global
temperature variance is 22% for the verification phase. Using a
proxy variance noise (i.e. a ratio between noise and total vari-
ance) of 86%, one does roughly match that measure, and we
chose that level for the purpose of this study, which is exception
one. The second exception is the following: For reasons to be
discussed later, S04 applied a detrending in their regression cali-
bration phase, and thus crucially divert from the MBH98 setting,
which even emphasizes the importance of that trend. It turns out
that this diversion has noticeable consequences for the recon-
structions. Figure 2 shows a typical example of a pseudo-proxy
record. Note that the degradation is effective only on the shorter
timescales; the longer timescales appear more coherent. It has
been pointed out (Osborn and Briffa, 2004) that using a red in-
stead of a white noise process is possibly more realistic in the
definition of pseudo-proxies.

3. The regression theme . . .

The basic idea behind regression is as follows. Once a functional
form f is specified the method comes down to estimating, from an
array of observed predictors x and predictands y with sufficient
covariability, a set of unknown parameters, a, that satisfy as well
as possible the identity

y = f (x, a). (1)

Here we are dealing throughout with linear regression, so that
the parameters a to be estimated are the entries of a matrix L, as
follows:

ŷ = Lx (2)

(with ŷ indicating the simulated values). Note that L is of di-
mension mn, with m and n denoting the dimensions of y and x,
respectively. In our case, this gives n = 105 parameters to be
estimated for each predictand.

Linear regression is defined as the maximum likelihood esti-
mator of L, which for a normally distributed error ε = ŷ − y is
simply given by the least-squares solution:

L = R = Cyx C−1
xx , (3)

with Cxx, Cyx, etc. denoting the cross-covariance between x and
x, and y and x, respectively. Using the matrix

Γyx = C−1/2
yy Cyx C−1/2

xx , (4)

eq. (2) can be written as

ŷ = C
1/2
yyΓyx C−1/2

xx x (5)

which exactly corresponds to the one-dimensional case, the
square root matrices being SDs and Γyx being the correlation
coefficient.

3.1. Amplitude damping

Using eq. (5), the simulated local covariance can be written as

Cŷ ŷ = C
1/2
yyΓyxΓxyC

1/2
yy , (6)

so that

|Cŷ ŷ | = |�yx�xy ||Cyy |. (7)

Note that Γyx is known from canonical correlation analysis to be
the matrix whose singular values, which are all ≤1, are the canon-
ical correlations between y and x (e.g. Johnson and Wichern,
2002). Equation (7) expresses the fact that when regressing y
on x, the simulated amplitudes are scaled by the canonical cor-
relations between x and y. This is the exact mathematical ex-
pression of the damping effect of regression mentioned in S04.
S04 argue that, with proxy temperature correlations being in
the range 0.4–0.7, this effect renders regression-based recon-
structions of past climate from proxies with too little variability
and thus basically useless. They neglect the fact that eq. (7) is
governed by canonical correlations, which can be much higher
in a multidimensional context than their pointwise pendants.
Another complicating effect is the superposition of the target
quantity (NH average temperature) of other quantities (NH tem-
perature PCs), where positive and negative effects might cancel
each other.

3.2. Inverse regression

The entire damping argument is misplaced, however, if applied
to the reconstructions undertaken by MBH98. MBH98 utilize
a completely different scheme which one might call inverse re-
gression. (To our knowledge, no other application makes use of
this scheme.) There, one first regresses x (proxies) on y (tem-
perature) and then inverts the result, which yields, according to
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eq. (5), the linear model

ỹ = C
1/2
yyΓ

+
xyC−1/2

xx x, (8)

where the “+” indicates the Moore–Penrose (pseudo) inverse.
Obviously, Γyx and Γxy share the same singular values (= canon-
ical correlations), so that eq. (7) has now the simple analogue

|Cŷŷ | = ∣∣�2
yx

∣∣−1 |Cyy |. (9)

For inverse regression, the simulated amplitudes are therefore
scaled by the inverse of the squared canonical correlations and
thus amplified.

3.3. Colinearity

Equation (3) shows that to have a well-defined regression model,
the covariance matrix Cxx must be invertible. If that is not the
case, for example if there are more parameters than cases, this
leads to an overfitted system. Likewise, the SE in estimating
the regression matrix eq. (3) also depends on the inverse of
Cxx (Johnson and Wichern, 2002). Therefore, a badly condi-
tioned matrix Cxx, for example if some predictors are corre-
lated, leads to large estimation errors. In the current context,
this so-called colinearity is relevant because the 20th century
warming trend affects most of the proxy predictors and renders
them highly correlated. To reduce the model uncertainty sev-
eral standard measures can be applied, such as transforming to
principal components (principal component regression, PCR),
or simply removing the trend. The latter was applied by S04, er-
roneously assuming that MBH98 did the same (pers. comm. E.
Zorita). Besides creating colinearity, the trend moreover reveals
considerable nonstationarity in the (real) tree ring – temperature
relation on centennial timescales (cf. Briffa et al., 2004) which
would further degrade a regression model. In both cases, the
inclusion of the trend belongs to the more general question of
whether or not the calibrating variations (e.g. interannual) are
representative for the millennium. While being important for
real-world applications, that question must, however, clearly be
separated from the purely methodological aspects such as am-
plitude damping.

4. . . . and 32 variations

It is customary to undertake certain pre- and postprocessings
to the variates x and y before and after estimating the regres-

Table 1. The five criteria used for defining a regression flavor

C1 C2 C3 C4 C5

0 No trend No PCR Spatially explicit Normal regression No rescaling
1 Trend PCR Spatially averaged Inverse regression Rescaling

sion matrix. For example, one can detrend or, more generally,
apply frequency filters to the data; another processing is the
use of rescaling techniques (e.g. in downscaling) to correct for
variance deficits. This processing is not a vital part of regres-
sion, and the literature is full of applications with all sorts of
processing techniques and combinations thereof. To study the
effects of such processing more closely, we have selected five
criteria to define a “flavor” of regression. Since all of them
are mutually independent, one has altogether as many as 25

= 32 regression flavors on stock. This list is easily extendible
but already enough for our purpose, which is the reconstruc-
tion of the Erik NH temperature from pseudo-proxies using all
flavors.

Each flavor is determined by the validity of the criteria shown
in Table 1. It can thus be identified using a binary code of length
5, indicating whether or not the criteria C1–C5 are valid. For
example, 10011 refers to an inverse regression with rescaling,
using trended, correlated predictors and spatially explicit predic-
tands. This is the variant used by MBH98; the detrended version,
i.e. 00011, was used by S04. The following points are important:

(ad C1): Twentieth century warming is the dominant variation
in the instrumental data as well as in the Erik simulation. For
example, 28% (Erik 37%) of instrumental global variance comes
from the detrended, purely interannual fluctuations, contrasting
to 71% (63%) stemming from the warming trend. Whether or
not one builds the model on trended or detrended data should
therefore strongly affect the result.

(ad C2): Applying PCR is not only a measure against the
colinearity induced by the 20th century warming. By retaining
only the dominant predictor PCs (in our case: 50% explained
variance), most of the noise stemming from residual variations
is filtered out.

(ad C3): One can use either the single predictand of spa-
tially averaged NH temperature, or alternatively, a set of lead-
ing principal components so that spatial detail is simulated as
well. Following MBH98, the predictand PCs are defined as fol-
lows: At first, the monthly fields were transformed to monthly
anomalies from the 1900 to 1980 climatology and scaled by the
corresponding (detrended) SD. Artificial grid-size-related effects
were removed by weighting each grid point by the cosine of
its latitude. These fields were subject to a principal component
analyses, from which we selected the first nine dominant EOFs
for the subsequent analysis. Principal components were obtained
by projecting the original fields (from the entire period) onto the
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EOFs. Finally, annual averages were formed from the observed
fields and principal components.

(ad C4): See above.
(ad C5): To match simulated and original variability, rescaling

of the predictand is sometimes applied with scaling factors that
are derived from the calibration period. This ensures adequate
variability at least for that period, but introduces uncontrollable
results if that domain is left. Note that if either one of C4 and C5
is satisfied, the simulated amplitude is increased.

Who has believed that the influence of the various flavors on
the overall result is only moderate must rethink now. Figure 3
shows the reconstructions using the 32 flavors. We see that the
entire spectrum is covered between practically no and almost
perfect levels of variability. What complicates things is that ex-
cept for the trend, no single factor can be isolated with a definite
positive or negative influence on the variability, as shown below;
they thus appear thoroughly mixed. But why should the result be
any more unique? In view of Fig. 3, it is evident that the variabil-
ity captured in the calibration period is only a small portion, and
therefore not representative, of the full millennial variability. We
shall return to this point further below.

The influence of the 20th century trend on the regression
model is depicted in Fig. 4. It shows the S04 reconstruction
(00011) versus the MBH98 analogue (10011). With the trend
included in the training phase, much greater variability is simu-
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Fig. 3. Thirty-two variants of reconstructed NH temperature using regression from pseudo-proxies (gray). Relative to the true NH history (black),
the entire spectrum between almost no and full variability is attained. The overall variations are well beyond those of the calibration period
(1900-1980). A 30-yr smoothing has been applied to all curves.
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Fig. 4. Effect of using trend in calibration. Relative to the von Storch
et al., 2004 method with detrended calibration data (dotted, from
Fig. 3), the MBH98 analogue with the full 20th century warming trend
(dashed) creates much larger variability. The LMM cooling is almost
doubled, but still only 60–70% of the true cooling (solid). The straight
lines indicate average LMM temperature and 20th century trend.

lated, not only for that century but for the entire historic period.
For example, the Late Maunder Minimum (LMM, Luterbacher
et al., 2001) – as measured by the 1681–1710 NH temperature
average – is about −0.5 K versus −0.3 K in the S04 version,
which is still quite imperfect relative to the true −0.9 K cold
anomaly (which is, as we note again, way off the fluctuations
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Fig. 5. Scatter of the 32 variants in terms of simulated 20th trend versus LMM climate. To be able to have a cold LMM, one evidently needs a strong
warming trend. The reverse is only partly true as there are instances with a strong trend but without a cold LMM. We have emphasized (bold large)
the versions of von Storch (00011) and Mann (10011) along with the true GCM values. Note that all 10 × 0x variants result from overfitting (see
text). A single number n indicates the average overall variants with criterion n valid.

from the calibration period). It is trivial that if the 20th century
trend cannot be reproduced, there is only little hope that fluctu-
ations such as the LMM be simulated.

This is verified in Fig. 5, showing the scatter of the simulated
20th century trend versus the LMM climate for all 32 regression
variants, along with the original Erik values. In fact, there is
no variant with a cold LMM and no, or small, 20th century
warming. The reverse is only partly true, as there are instances
where that trend is strong but the LMM is not cold. Four of these
counterexamples have the signature 10×0x. They all represent an
underdetermined system (105 predictors, 81 cases) with perfect
calibration statistics (so that C5 has no effect) that is prone to
overfitting. As a consequence, strong 20th century trends are
accompanied by reduced amplitudes for the past. It is not clear
if this also applies to the variants 10×1x, i.e. those using inverse
regression. Note further that the five variants closest to the GCM
all have complementary choices of criteria 4 and 5 (i.e. “01” or
“10” at the end) ensuring enhanced variability (see above). Four
of them (11110, 11010, 11001, and 11101) are special instances
of PCR with training 20th century trend. Conversely, the entire
upper left corner, corresponding to bad performance, is occupied
by detrended variants.

Except for the trend, no clear signs of the average behavior
of each criterion can be recognized. If the trend is included (in
the calibration), the simulated overall variability is enhanced,
with a better representation of the LMM and especially the 20th
century.

To summarize, if overfitting can be excluded it appears that
the ability to reproduce the 20th century warming trend is

enough to establish realistic variability for the millennium. In
other words, the warming-induced 20th century covariations
of pseudo-proxies and temperature are representative for the
millennium – in contrast to the purely interannual (detrended)
covariations.

5. Other calibration periods

With the variant 11110, that is, inverse PCR with trended data
and spatially averaged predictands, the reconstruction closest to
the GCM was achieved. For that variant, Fig. 6 shows the original
reconstruction as in Fig. 3, along with two other versions with
different calibration periods (1400–1480, 1300–1380). While
it is obvious that each version shows best performance in its
calibration period, they are all remarkably similar and close to
the GCM in the entire millennial period. Even the period 1300–
1380, with its fairly little variability, allows a 11110 calibration
that is representative for the millennium. This is indicative of
a large robustness of that variant and might recommend it for
further use, for instance, with real proxies.

A word of caution may nevertheless be required here: In the
stage of model definition, apart from things that are known a
priori, only information from the calibration period must be used.
To select from a large set of model variants (and 32 is large
here), the one that shows the best skill for an independent period
amounts to defining the model from that period, and therefore
renders that same period no longer independent. Being with-
out independent verification the model is, like in the case with
many parameters, prone to overfitting. The only way to avoid
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Fig. 6. 11110 reconstruction with various calibration periods. Units:
anomalies from the 1000 to 1990 mean. Independent of the calibration
period, performance is good for the full millennium. Note that 15th
(dashed) and 20th (solid) century trends are strong, while the 14th
century (dashed-dotted) has almost no trend. A 30-yr smoothing has
been applied.

overfitting is to exclude it a priori, for example, by applying
appropriate regularization schemes.

Whether or not one is able to select the “optimum” variant,
they all differ in only a handful of details but still diverge so
strongly on the millennial scale. This large divergence cannot
simply be explained by overfitting. Figure 7 might throw some
light on this as it concentrates, in a simple example, our view
on the main issues around regression-based reconstructions. It
shows two scatters between the dominant, trended proxy PC
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Fig. 7. Scatter plot between the dominant proxy PC and the NH temperature, as anomalies from the 1900 to 1980 mean. The calibration population
(fat circles) is clearly distinct from the full millennium (dots). A strongly linear, but different relation exists for both populations. The calibration
model (heavy line) predicts too small NH variations compared to the full millennium (thin line).

and the NH temperature. They represent the two populations
corresponding to the 20th century calibration and to the en-
tire millennium. First of all, NH temperature variations are ob-
viously dominated by the first proxy PC. Moreover, not only
are both populations evidently different [recall (1) from the
first section], the calibrated linear relation is also not repre-
sentative of the full millennial population. Application of the
model therefore involves extrapolation of that relation [recall
(2)], with an error that grows linearly with both the model un-
certainty and the amplitude of the change. The model uncer-
tainty, on the other hand, grows with the number of predictors,
especially if they are colinear as in applications using trended
multiproxies.

6. Conclusion

Inside the ideal world of a 1000-yr GCM simulation (Erik)
with known climate history and noise degraded pseudo-proxies,
we have tested the applicability of regression-based methods to
reconstruct the NH mean temperature from the proxies. On the
basis of five independent configuration switches, we defined a
set of 25 = 32 “flavors” of regression, each of which appear-
ing a priori reasonable. It turned out that relative to the true NH
temperature history, an entire spectrum was generated reaching
from practically no variability to almost perfect reconstructions.
This uncertainty is grounded in the fact that the empirical esti-
mation applied here is not of the kind one usually encounters in
the context of regression. The core assumption, that the calibrat-
ing portion is representative for the entire population, is not met
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here as the calibrating 20th century climate is much warmer than
the rest of the millennium. Hence, although a regression model
is defined the context in which it is applied is an extrapolation
into a domain which it has never experienced before. This is
foreign to regression and explains the large spread of simulation
errors.

The ability to simulate the 20th century trend is paramount
for the performance of the full millennium. It turns out that the
covariations defined by that trend are of a different kind than
purely interannual (detrended) covariations; therefore, remov-
ing the trend is not a recommended procedure. The colinearity
(estimation) problems arising from the few degrees of freedom
of the trend, along with the predictor noise, can be handled using
PCR.

With respect to the real-world, the question of applicability of
the regression model is of foremost importance. This addresses
the statistics of proxies such as tree rings, bore holes, corals,
and others, and in particular the question: Are their 19th to 20th
century variations representative for the entire millennium? If
not, estimates of the model uncertainty are essential, and one
should be aware that applying the model amounts to extrapo-
lating the observed linearity (or whatever function is assumed)
into the unknown and extrapolating the model uncertainty
accordingly.
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