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ABSTRACT
We modify the local ensemble Kalman filter (LEKF) to incorporate the effect of forecast model bias. The method is
based on augmentation of the atmospheric state by estimates of the model bias, and we consider different ways of
modeling (i.e. parameterizing) the model bias. We evaluate the effectiveness of the proposed augmented state ensemble
Kalman filter through numerical experiments incorporating various model biases into the model of Lorenz and Emanuel.
Our results highlight the critical role played by the selection of a good parameterization model for representing the form
of the possible bias in the forecast model. In particular, we find that forecasts can be greatly improved provided that a
good model parameterizing the model bias is used to augment the state in the Kalman filter.

1. Introduction

In many situations the dynamics of a real process may differ from
those of the best available model of that process. We refer to this
difference as model error. Model error is thought to be a key
issue in weather forecasting in that the presence of model error
can lead to cause large discrepancies between the forecasts and
the true atmospheric states. In this connection, we note (i) that
Kalman filters have been considered for estimating atmospheric
states to be used as initial conditions in forecast models (Ghil
et al., 1981), and, (ii) that the general Kalman filter methodol-
ogy has long been adapted to account for model error (Friedland,
1969). Recently, the ensemble technique has been proposed as a
computationally feasible means of applying Kalman filtering to
the very high dimensional states inherent in global atmospheric
models (Evensen, 1994; Houtekamer and Mitchell, 1998, 2001;
Anderson, 2001; Bishop et al., 2001; Hamill et al., 2001;
Whitaker and Hamill, 2002; Ott et al., 2004a). One of our goals
in this paper is to investigate the incorporation of model error
correction in an ensemble Kalman filter. Here, we consider only
the case where the evolution of the model error is governed by a
deterministic equation, i.e. the model error has no random com-
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ponent. We refer to this type of error as model bias, since when
the state of the model is described by a probabilistic variable, as
is the case in data assimilation, such errors become equal to the
expected error in the model forecast.

We will restrict our considerations to the example of one par-
ticular ensemble Kalman filter, the Local Ensemble Kalman Fil-
ter (LEKF) proposed by Ott et al. (2004a). [This scheme has been
successfully tested (Szunyogh et al., 2005) on a reduced resolu-
tion version of the operational Global Forecast System (GFS) of
the National Centers for Environmental Prediction (NCEP) for
the perfect forecast model scenario.] We believe that our results
in the present paper, using the LEKF example, may also be more
generally applicable, providing an indication of what to expect
if model bias correction is attempted using other related ensem-
ble Kalman filter methods. In addition, some of our ideas may
also be useful in designing weakly constrained 4DVAR schemes
(e.g. Derber, 1989; Zupanski, 1997), which also allow for model
errors.

The technique we propose belongs to the family of schemes
usually called state space augmentation methods (Cohn, 1997).
In these techniques the state vector is augmented with the
uncertain model parameters, and the augmented state is esti-
mated using the forecast model in conjunction with observations.
In principle, the uncertain parameters can occur in otherwise
completely known forecast model equations. In such a case,
the augmented state space approach may provide an accurate
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estimate of the parameters even for a highly chaotic system,
as recently demonstrated on a simple model by Annan and
Hargreaves (2004). In reality, the equations governing the motion
of the atmospheric flow are not known exactly, thus uncertainties
also arise due to our limited knowledge of the dynamics. Also,
estimating all parameters of the forecast model equations would
not be computationally feasible due to the large number of pa-
rameters. A practical approach, first suggested by Derber (1989),
is to assume that the uncertainties in the forecast model can be
approximately represented in the form of a limited number of
bulk error terms. Then the task is to estimate the parameters of
the bulk error terms. We recall that since the error terms are mod-
eled as random vectors, the parameters to be estimated are the
mean errors (model biases).

The information encapsulated in the bias can be used either to
modify the forecast model equations or to modify the analysis
scheme. Here we follow the second approach. That is, we treat
the forecast model as a ‘black box’, that does not yield the true
time evolution of the atmosphere, and we attempt to use this
black box in conjunction with observations to account for model
bias in the state estimation.

The two key components of the aforementioned strategy are
the selection of a bias model that efficiently represents the bias
and the design of a computational strategy that can efficiently
estimate the parameters of the bias model. The most common
assumption is that the bias is constant or has a simple evolution
in time. It is also frequently assumed that the uncertainties in
the forecast model state and the bias are uncorrelated. These
assumptions were used to derive the bias estimation schemes of
Dee and Da Silva (1998), Dee and Todling (2000), Carton et al.
(2000), Martin et al. (2002) and Bell et al. (2004).

The scheme we propose allows for correlations between the
uncertainties of the forecast model state and the bias. This ad-
ditional flexibility is necessitated by the structure of our tech-
nique (see Section 2.4), and is affordable due to the high com-
putational efficiency of the LEKF approach. In Section 2, we
introduce three different bias models. Bias Model I is a sim-
ple additive correction to the model forecast. Bias Model II
is motivated by envisioning a situation in which the forecast
model evolution takes place on an attractor that is shifted from
the attractor for the true system evolution. Bias Model III is
essentially a combination of Bias Models I and II. Section 3
presents the results of numerical experiments with the Lorenz-
96 model (e.g. Lorenz and Emanuel, 1998) for several cases
of the difference between the forecast model evolution and the
evolution of the true state. Conclusions and discussion follow in
Section 4.

A main result is the importance of selecting a bias model that
effectively parameterizes the form of possible bias in the fore-
cast model. In particular, if the bias model can parameterize the
possible bias of the forecast model, then our results suggest that
substantial improvement in forecasts may result. On the other
hand, if the parameterization of the model bias through the bias

model does not sufficiently capture the form of the true biases in
the forecast model, then substantial forecast improvements were
not obtained in our numerical experiments.

2. Bias modeling and data assimilation

The discrepancy between the forecast model evolution and the
evolution of the real atmosphere has two sources: (i) due to nu-
merical solution on a grid of a finite number of points, the forecast
model state is a finite dimensional representation of the infinite
dimensional atmospheric fields, and (ii) the equations that gov-
ern the true evolution of the atmosphere are not known exactly.
These two sources of forecast model errors are not independent,
since the errors in the forecast model formulation are mainly as-
sociated with the inherent problems of considering only a limited
number of interactions between the finite number of components
of the state vector and the imperfect representation of the effects
of the subgrid processes on the motions at the resolved scales.

Denoting the true atmospheric state at tn by xt
n , the true atmo-

spheric evolution is denoted

xt
n+1 = Ft (xt

n

)
, (1)

where Ft is the (unknown) true atmospheric evolution operator
and xt

n+1 is the true atmospheric state at time t n+1 = tn + �t .
Denoting the forecast model state at time tn by xm

n , the black box
produces a forecast model state at time t n+1,

xm
n+1 = Fm (

xm
n

)
, (2)

where Fm is the forecast model evolution operator that mimics
Ft . Note that the dimensions of xt and xm are, in general, differ-
ent; for example, in the case of real weather forecasting the true
state is infinite dimensional and the forecast model state is finite
dimensional. In what follows we will treat a scenario in which
xm and xt have the same (finite) dimensionality, and we hence-
forth assume this circumstance. With respect to the situation of
atmospheric weather forecasting, this assumption restricts the
character of the errors and their means (biases) that can be ad-
dressed by our bias models. In particular, we regard our treatment
to follow as addressing only those types of forecast model bi-
ases that can be represented as dynamics in the state space of the
forecast model variables. Thus, we ignore dynamics that occur
at smaller scales than the forecast model resolves. On the other
hand, if we think of the dynamics at the unresolved scales as ran-
dom perturbations to the forecast model dynamics, our methods
may be able to correct for the mean bias due to such perturba-
tions. Meanwhile, the uncertainty in the small-scale fluctuations
is modeled as representativeness error in the observation error
statistics.

In this section, we define three ways of modeling the bias that
can arise due to forecast model error. We refer to these as Bias
Model I, Bias Model II and Bias Model III.
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Fig. 1. Illustration of Bias Model I: xt
n is the true state evolving

according to Ft from the previous true state, and xm
n is the forecast

model state evolving according to Fm from the previous true state.

2.1. Bias Model I

In general, it is desired to have the forecast model state as close
to the true state as possible so that, assuming that the forecast
model and the true evolution operators are the same, the forecast
model state stays near the true state after its evolution. In practice,
however, the forecast model evolution operator differs from the
true evolution operator. As a result, even if we evolve the forecast
model state from an initial condition corresponding to the true
state at the initial time (e.g. xm

n−1 = xt
n−1), it is likely that the

forecast model state departs from the true state as it evolves. In
Bias Model I, we attempt to estimate

bt
n = Ft (xt

n−1

) − Fm (
xt

n−1

)
, (3)

i.e. the departure of the forecast model state from the true state
as illustrated in Fig. 1.

In order to estimate bt
n , we must use some model of how it

is related to past values of the bias bt
i (i < n). For example,

we can assume that the bias is constant in time. If so, the true
system evolution can be written in terms of the model evolution
as follows:

xt
n = Fm(

xt
n−1

) + bt
n, (4)

bt
n = bt

n−1. (5)

Though we could write this system more concisely as xt
n =

Fm(xt
n−1) +b, where b is an unknown parameter vector, we write

the system in terms of the augmented state vector (xt
n , bt

n) in or-
der to facilitate the iterative estimation of both xt

n and bt
n by

our data assimilation procedure. More generally, we can replace
eq. (5) with another model for the bias of the form,

bt
n = Gb (

bt
n−1, xt

n−1

)
, (6)

where Gb is the evolution operator for the bias correction term.
Another alternative is to assume that the model error evolution
is a Markov process. In that case, bt

n is represented as bt
n−1 mul-

tiplied by a matrix that describes the temporal covariance be-

Fig. 2. Illustration of data assimilation with Bias Model I: Data
assimilation produces an unbiased analysis for the true state, xa

n , and an
analysis for the bias correction term, ba

n .

tween the model errors at different spatial location, and the right-
hand side of eq. (6) also includes an additive random term (e.g.
Jazwinski, 1970; Daley, 1992; Zupanski, 1997).

Then given an estimate (xa
n−1, ba

n−1) of the augmented state
vector at time tn−1 (the ‘analysis’ from the previous data assimi-
lation), we take the forecast (or ‘background’) of this vector (xb

n ,
bb

n) at time tn to be

xb
n = Fm (

xa
n−1

) + bb
n, (7)

bb
n = Gb (

ba
n−1, xa

n−1

)
, (8)

where we have assumed bias evolution by eq. (6). We then per-
form data assimilation using (xb

n , bb
n), and the observations at

time tn to obtain the analysis (xa
n , ba

n).
This way of taking forecast model error into account is illus-

trated in Fig. 2, and is the general scheme used in several previous
methods appearing in the literature (e.g. Dee and Da Silva, 1998;
Dee and Todling, 2000; Carton et al., 2000; Martin et al., 2002;
Bell et al., 2004). The vector yn in Fig. 2 is the observation of the
true state at time tn, which we assume to obey a model equation
of the form,

yn = H
(
xt

n

) + εn, (9)

where H is the observation operator mapping the true states to
the observations. and εn is the observational noise.

Basically, in Bias Model I it is supposed that the best forecast
is produced when the input to the forecast model evolution is as
close to the truth as possible. One can imagine problems with
this. For example, say that atmospheric balance for the forecast
model is not the same as that for the true atmosphere. Then, if
a very good estimate of the true state at time tn is inserted into
the forecast model, the forecast model state at time tn could of-
ten be out of balance, and spurious gravity wave activity might
be excited. In the practice of numerical weather prediction, such
spurious gravity wave activity is prevented by a filtering process,
called initialization, applied to the fields provided by the data as-
similation process (e.g. Machenhauer, 1977; Baer and Tribbia,
1977; Lynch and Huang, 1992; Lynch, 1997). The general wis-
dom is that a well-designed Kalman filter might eliminate the
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need for initialization process. This consideration motivates Bias
Model II.

2.2. Bias Model II

A consequence of the imperfect model is that the forecast model
system has a different attractor from the true system. In some
cases, it might be desirable to let the forecast model state fol-
low its own attractor, since plugging a very good approximation
of the true state into the forecast model system can result in
completely different dynamics (like gravity wave excitation). In
addition, one can envision a situation in which forecast model
dynamics and true dynamics become more similar through an (a
priori unknown) coordinate transformation. For instance, such
transformations were rigorously derived to correct for trunca-
tion errors in numerical solution of the two-dimensional Navier–
Stokes equations (Margolin et al., 2003). Having found a similar
transformation for the weather prediction model, we may obtain
a better estimate of the true trajectory by applying this transfor-
mation to an appropriate forecast model trajectory after it has
been computed than by forcing the forecast model state to be
close to the truth and then computing its trajectory. For simplic-
ity, we assume the transformation is just a shift of the forecast
model state to the true state, and we define the bias ct

n at time tn

by

ct
n = Ft

(
xt

n−1

) − Fm
(
xm

n−1

)

= Ft
(
xt

n−1

) − Fm
(
xt

n−1 − ct
n−1

)
. (10)

A schematic illustration of this bias model is shown in Fig. 3.
The forecast model state is not pushed to the true state. Instead, it
mimics the true dynamics in a shifted location of the state space.

Unlike the bias in Bias Model I, the bias in Bias Model II at
time tn depends not only on Ft , Fm , and xt

n−1, but also on the
previous bias ct

n−1. Nonetheless, we may assume that for some
choice of ct

n−1, the correction term ct
n approximately obeys a

Fig. 3. Illustration of Bias Model II: xt
n and xm

n evolve according to
their own dynamics but the behavior of the forecast model is similar to
the behavior of the truth.

simplified evolution model such as ct
n = ct

n−1, or more generally
ct

n = G̃c(ct
n−1, xt

n−1). In terms of this model, we approximate the
true system evolution by the augmented model system,

xt
n = Fm (

xt
n−1 − ct

n−1

) + ct
n, (11)

ct
n = G̃c (

ct
n−1, xt

n−1

)
. (12)

For this bias model (and for Bias Model III to follow), our
goal is not that the analysis state vector xa

n closely approximates
the true state xt

n , but rather that it approximates the best forecast
model state xm

n = xt
n − ct

n from which to make future forecasts.
Thus, we rewrite eqs. (11) and (12) as

xm
n = Fm (

xm
n−1

)
, (13)

ct
n = Gc (

ct
n−1, xm

n−1

)
, (14)

where G(c, x) = G̃c(c, x + c). We can then write the background
augmented state vector (xb

n , cb
n) in terms of the previous analysis

(xa
n−1, ca

n−1) as follows:

xb
n = Fm (

xa
n−1

)
, (15)

cb
n = Gc (

ca
n−1, xa

n−1

)
, (16)

In taking this approach, one must keep in mind that the bias
should be added to the forecast model state vector whenever
making comparisons to observations. Thus instead of eq. (9), we
use the observation model,

yn = H
(
xm

n + ct
n

) + εn (17)

when performing data assimilation. The analysis (xa
n , ca

n) repre-
sents an approximation to the augmented state vector (xm

n , ct
n),

and thus forecasts made using xa
n as the initial condition should

also be corrected by the approximated bias in order to better
predict the true system. Data assimilation with Bias Model II is
illustrated in Fig. 4.

Fig. 4. Illustration of data assimilation with Bias Model II in the case
H(x) = x: Data assimilation produces an analysis of the best forecast
model state, xm

n = xt
n − ct

n , and an analysis for the correction term, ct
n .
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To the best of our knowledge, Bias Model II is a novel ap-
proach to the effects of model errors on the accuracy of the state
estimates. Hansen (2002) also argued for the model attractor, but
he suggested the use of a multi-model approach as opposed to
the state augmentation we propose.

2.3. Bias Model III

In Bias Model III, we combine Bias Model I and Bias Model
II. Formally, we combine the equations describing the previous
two bias models in the following manner. We evolve the analysis
augmented state vector (xa

n−1, ba
n−1, ca

n−1) to the background at
the next step using the model

xb
n = Fm (

xa
n−1

) + bb
n (18)

bb
n = Gb (

xa
n−1, ba

n−1, ca
n−1

)
(19)

cb
n = Gc (

xa
n−1, ba

n−1, ca
n−1

)
, (20)

and we compare the background state with observations accord-
ing to eq. (17). Since xb

n and cb
n represent the best available ap-

proximations to xm
n and ct

n prior to the data assimilation at time
tn, the observation increment we use is

yn − H
(
xb

n + cb
n

)
. (21)

Notice that if Gb(x, b, c) = 0, then this model reduces to Bias
Model II, while if Gc(x, b, c) = 0, this model reduces to Bias
Model I. In its simplest form, our model uses Gb(x, b, c) = b
and Gc(x, b, c) = c. However, we find a slightly different bias
evolution function to be advantageous in some situations (see
Section 3.6).

2.4. Augmented local ensemble Kalman filter

For the purposes of all subsequent discussion we henceforth
take the system state at time tn to be a scalar variable xn,i

defined on a discrete one-dimensional spatial domain, i = 1,
2, . . . , N. Thus we represent the system state as a vector xn =
[xn,1, xn,2, . . . , xn,N ]T, where the superscript T denotes the trans-
pose.

Once a suitable model for the bias is chosen, it can be incorpo-
rated into the formulation of the Kalman filter. For example, in
the case of Bias Model III, the new equations can be obtained by
replacing the state xn , by the augmented state, vn = [xn, bn, cn]T,
in the Kalman filter equations. Here, the correction terms, bn =
[bn,1, bn,2, . . . , bn,N ]T, and cn = [cn,1, cn,2, . . . , cn,N ]T, have the
same dimension, N, which is typically equal to the number of
grid-point variables in a numerical weather prediction model. By
inserting the augmented state into the Kalman filter equations,
we assume that ψ (vb

n), the background probability distribution
of the augmented state, is Gaussian; that is,

ψ
(
vb

n

) ∼ exp

[
−1

2

(
vb

n − v̄b
n

)T (
Pb

v

)−1 (
vb

n − v̄b
n

)]
, (22)

Fig. 5. Illustration of a local state centered about location m.

where v̄b
n is the background mean of the augmented state, and

Pb
v is the background error covariance matrix for the augmented

state.
The main computational challenge in designing an augmented

Kalman filter is to find a computationally efficient approach to
estimate Pb

v, whose dimension increases by N when a new pa-
rameter is added to the state. One frequently applied approach to
reduce the computational burden associated with the estimation
of Pb

v is to assume that many entries of the matrix are zero, e.g.
by assuming that the (non-augmented) state and the bias param-
eters are uncorrelated. We propose a different approach, which
involves estimating the background mean and the background er-
ror covariance matrix by an ensemble, and solving the ensemble
Kalman filter equations locally in grid space applying the Local
Ensemble Kalman Filter (Ott et al., 2004a) to the augmented
state. The LEKF scheme estimates ‘local states’ as illustrated in
Fig. 5. In particular, considering the LEKF procedure without
model bias correction (i.e. as in Ott et al., 2004a), for each point
m on the spatial grid, we consider a neighborhood consisting of
the 2l + 1 points centered at m; these points have locations m −
l, m − l + 1, . . . , m, . . . , m + l − 1, m + l (e.g. l = 3 in Fig. 5).
At time t = tn, the LEKF does data assimilation on local regions
centered at each grid point using the local state,

xn(m) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎢⎢⎢
⎣

xn,m−l

xn,m−l+1

...
xn,m

...
xn,m+l−1

xn,m+l

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎥⎥⎥
⎦

. (23)

The global analysis state (i.e. the analysis state at t = tn at each
grid point over the entire grid) is then taken to be the state at
the center of each local region (see Ott et al., 2004a, for further
discussion).

In order to adapt the LEKF to correct for model bias, we
augment each local state to include the bias estimate of the bias
model employed. For example, for Bias Model III, we form
an augmented local state, vn(m) = [xn(m), bn(m), cn(m)]T, for
the data assimilation at location m. Similarly, for Bias Model
I, vn(m) = [xn(m), bn(m)]T, and, for Bias Model II, vn(m) =
[xn(m), cn(m)]T. Since the augmented local state is derived from
the global state vn, it can be also assumed to have a Gaussian
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distribution,

ψm

(
vb

n(m)
) ∼ exp

{
−1

2

[
vb

n(m) − v̄b
n(m)

]T

× [
Pb

n(m)
]−1 [

vb
n(m) − v̄b

n(m)
]}

, (24)

where v̄b
n(m) is the background mean of the augmented local

state, and Pb
n(m) is the background error covariance matrix for

the augmented local state. In this way, the dimension of the space
for data assimilation is reduced to 2(2l + 1) for Bias Model I or
II and to 3(2l + 1) for Bias Model III. An important property of
this scheme is that it allows for (and also requires) the estimation
of cross-correlations between uncertainties in the state estimates
and uncertainties in the estimation of the model bias terms.

3. Numerical experiments

3.1. Experimental setup

For testing our assimilation scheme, we consider the Lorenz-
96 model (Lorenz and Emanuel, 1998) which is defined by the
system of differential equations,

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + �, i = 1, . . . , N , (25)

where x −1 = x N−1, x 0 = xN , x N+1 = x 1 and � is a constant. The
variables form a cyclic chain and may be thought of as roughly
analogous to the values of some unspecified scalar meteorologi-
cal quantity at N equally spaced sites along a latitude circle. For
compactness of notation, we will also represent eq. (25) as

dx
dt

= L(x), (26)

where x = [x1, x2, . . . , xN ]T. We solve eq. (25) with a fourth-
order Runge–Kutta method using a time step of 0.05 dimen-
sionless units for which the system is computationally stable.
Lorenz and Emanuel (1998) consider this time step as roughly
corresponding to 6 h of real atmospheric evolution. With � = 8.0
and N = 40, Lorenz and Emanuel demonstrate that the system
(25) results in a westward (i.e. in the direction of low index of
locations) progression of individual maxima and minima and an
eastward progression of the center of activity with a dominant
wavenumber of 8. In addition, they also find that the system is
chaotic with 13 positive Lyapunov exponents and a Lyapunov
dimension of 27.1. Throughout our numerical experiments we
use � = 8.0 and N = 40.

In what follows we will assume that our forecast model dy-
namics is given by eq. (25) but that the true dynamics of the
system whose state we are concerned with obeys dynamics that
may differ from those of our forecast model. We will consider
situations in which the true dynamics differ from the forecast
model in three ways, which we refer to as Type A truth bias,
Type B truth bias, and Type C truth bias. The dynamical behav-

iors of the true system in these three cases are as follows:

dx
dt

= L(x) + β (Type A), (27)

dx
dt

= L(x + ζ) (Type B), (28)

dx
dt

= L(x + ζ) + β (Type C), (29)

where β = [β1, β2, . . . , βN ]T and ζ = [ζ1, ζ2, . . . , ζN ]T. When
the true dynamics is described by the same equation [eq. (25)] as
the forecast model, we say that the forecast model is ‘perfect’.
Note that Bias Model I would be a natural choice if it were
known that the deviation of the true dynamics from the model
dynamics (26) was such that the true dynamics belonged to a
family of systems of the form given by (27) (Type A truth bias).
Similar statements apply with regard to the relation between Bias
Model II and Type B truth bias and between Bias Model III and
Type C truth bias.

With small values of β and ζ, we conjecture that the systems
(27)–(29) exhibit behaviors similar to those of system (25). In
our numerical experiments, the elements ofβ and ζ vary in space
(i) and have the forms

βi = A sin

(
2π

i − 1

N

)
, (30)

ζi = B sin

(
2π

i − 1

N

)
, i = 1, . . . , N , (31)

where A and B are scalar constants.
The true states are generated by integrating one of the three

eqs. (27)–(29), while the forecast model states are generated by
integrating eq. (26). The evolution operators, Ft and Fm , are the
integrations of the above eqs. (26)–(29) from some time t to t +
�t where �t = 0.05 and the states are available at every discrete
time tn = t 0 + n�t , where t0 is the time at which an experiment
begins and n is a positive integer.

We assume that the observations are available at every time
tn for n ≥ 0 and the state variables themselves are directly ob-
served. Thus the observation operator in eqs. (9) and (17) is the
identity operator [i.e. H (x) = x]. We also assume that the obser-
vational noise εn has zero-expected value and is uncorrelated,
white and Gaussian with variance σ 2. Thus the local observation
error covariance matrix is a diagonal matrix whose components
are σ 2. Correspondingly, we generate our simulated ‘observa-
tions’ (9) by adding uncorrelated Gaussian random numbers
with variance σ 2 to the true state variables xt

i and form a lo-
cal observation yn(m) = [yn,m−l , . . . , yn,m+l ]T. Throughout our
numerical experiments, we take σ 2 = 0.09.

Data assimilations are done at every integration time tn. The
analysis error is defined as

ea
n = x̄a

n − xt
n, (32)

for Bias Model I, and

ea
n = x̄a

n + c̄a
n − xt

n, (33)
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for Bias Model II and Bias Model III, where x̄a
n is the ensemble

mean of the analysis and where c̄a
n is the ensemble mean of the

estimate of the Type II bias. We use the root-mean-square (rms)
of the analysis error,

RMS
{
ea

n

} =
√√√√ 1

N

N∑

i=1

(
ea

n,i

)2
, (34)

to assess the quality of the analysis at a given time, and the time
mean of the rms error over a long time interval T ,

〈〈ea〉〉 = 1

T

n0+T∑

n=n0+1

RMS
{
ea

n

}
, T � 1, (35)

to measure the overall performance of the assimilation scheme.
Here, n0 is the time we allow for the analysis to converge to the
true state.

To improve the analyses in our numerical experiments, we
employ variance inflation,

P̂
a
n(m) → P̂

a
n(m) + μ


k
Ik, (36)

where P̂
a
n(m) is the local analysis error covariance matrix de-

fined in the ‘internal’ coordinate system (Ott et al., 2004a)
whose basis is the set of eigenvectors of the local background
error covariance matrix Pb

n(m), μ is an inflation coefficient, and

 = Trace{P̂a

n(m)}. This particular form of variance inflation
was proposed in Ott et al. (2004a) where it is referred to as ‘en-
hanced variance inflation’. Enhanced variance inflation has the
effect of enhancing the estimated probability of error in direc-
tions that formally show only very small error probability. [This
modification of P̂

a
n(m) also modifies the ensemble perturbations

through the square root filter; see Ott et al. (2004a).] The gen-
eral purpose of employing a variance inflation is to correct for
the loss of variance in the ensemble due to non-linearities and
sampling errors. Most importantly, variance inflation can also
stabilize the Kalman filter in the presence of model errors, as it
was shown in Ott et al. (2004b) for the Loranz-96 model and
in Whitaker et al. (2004) for the NCEP GFS model preparing a
historical reanalysis data set. Since variance inflation schemes
are computationally less expensive than the state augmentation
method, we hope to see that the technique we propose here lead to
larger improvements in the accuracy of the state estimates than
what can be achieved by simply tuning the variance inflation
coefficient μ.

For the dimension of local states used in the LEKF, we select
13 (i.e. l = 6) which is known to be a good choice for the Lorenz
model (25) with � = 8 and N = 40 (Ott et al., 2004a). Hence,
the augmented local states have 26 dimensions for the states
used in Bias Model I or Bias Model II, and 39 dimensions for
the states used in Bias Model III. In our numerical experiments,
we choose the number of ensemble members to be the same as
the dimension of the augmented local states so that the local
background error covariance matrix has full rank. This choice

means that the ensemble size is 13 when bias is not estimated
in the assimilation, 26 when Bias Model I or II is used, and
39 when Bias Model III is used. Thus we take into account the
added dimensionality of the augmented local states, anticipating
that this increased dimensionality necessitates correspondingly
increased ensemble size in order to properly represent it. This
increased ensemble size is part of the added computational cost
that is paid in order to correct for model bias. In practice, for
given computer resources, the need for a large ensemble may thus
necessitate consideration of benefit trade-offs among ensemble
size, local domain size, model resolution, etc.

Finally, for bias evolution [eqs. (8), (16), (19) and (20)] we
use Gb(x, b, c) = b and Gc(x, b, c) = c, until Section 3.6 where
we consider different evolution.

3.2. Perfect forecast model

We first test our bias models for the case of a perfect forecast
model, i.e. for the case when the true values of β and ζ in
eqs. (27)–(29) are 0. In this case, the evolution operators for
the true state and the forecast model state are identical, Ft = Fm .

In order to generate the true states for this run, we first in-
tegrate eq. (25) for 104 time steps from a random initial con-
dition, allowing the system to approach its attractor. After this,
we perform data assimilation at every time step. The initial en-
semble members for the first data assimilation are generated
by adding independent, zero mean, normally distributed ran-
dom numbers of variance 1.3 to the true state at every spatial
point i. Before obtaining the rms time mean of the analysis
error (35), we run 2 × 104 data assimilations to allow con-
vergence. Past this time (denoted n0), it is found that the rms
analysis error reaches a statistically steady state in which it
fluctuates about a temporally constant mean value which we
denote 〈〈ea〉〉.

The data plotted in Fig. 6 show the time-averaged rms analysis
error (35) as a function of the inflation coefficient μ (36). Here,
the rms analysis error is averaged over T = 3 × 104 time steps.
For the case in which no state augmentation is employed in the
assimilation (data plotted as ∗ symbols) the best performance is
obtained near μ = 0.005 for which 〈〈ea〉〉 = 0.057. The other
three curves in Fig. 6 show the analysis errors for the cases
when the same observations are assimilated with using the three
different bias models of Section 2.4 in the state estimation. In
these cases, we try to estimate a bias that is zero in reality. The
estimated bias terms tend to fluctuate about zero, resulting in
a slight (∼8%) increase of the error. The above results from
examining this case provide a standard against which we can
compare results that we will subsequently obtain for situations
with error in the forecast model.

In Fig. 6, we see that the minima of 〈〈ea〉〉 appear at a lower
inflation coefficient when the states are augmented by an estimate
of the bias, bb (i.e. for Bias Models I and III). In order to see why
this occurs we consider the local perturbations for the augmented
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Fig. 6. Time-averaged rms analysis error, 〈〈ea〉〉, versus variance
inflation coefficient, μ, for the perfect forecast model experiment: With
a perfect forecast model, any attempt to estimate and correct for a bias
results in slightly higher analysis error.

local background,

δvb( j)
n (m) = vb( j)

n (m) − v̄b
n(m), (37)

where {vb( j)
n (m)} are the ensemble members of the augmented

local background. These perturbations are used to estimate the
local background error covariance matrix (Ott et al., 2004a)

Pb
n(m) = Vb

n(m)
[
Vb

n(m)
]T

, (38)

where

Vb
n(m) = k− 1

2
[
δvb(1)

n (m)
∣∣δvb(2)

n (m)
∣∣ · · · ∣∣δvb(k+1)

n (m)
]

(39)

and k + 1 is the number of the local ensemble members. We
rewrite eq. (37) using eq. (7) as

δvb( j)
n (m) =

[
δxb( j)

n (m)
δbb( j)

n (m)

]

=
[

δx̃b( j)
n (m) + δbb( j)

n (m)
δbb( j)

n (m)

]

, (40)

where {δxb( j)
n (m)} are perturbations for the local background,

x̃b
n = Fm(xa

n−1), and {δbb( j)
n (m)} are perturbations for the local

prediction for Bias Model I. In our experiments we observe that
{δbb( j)

n (m)} are only weakly correlated with each other and al-
most uncorrelated with {δx̃b( j)

n (m)}. Effectively, therefore, un-
correlated random vectors are added to the state perturbations
{δx̃b( j)

n (m)} in eq. (40). In consequence, Pb
n(m) (38) is effectively

inflated mostly on the diagonal components by the amount of
the variance of {δbb( j)

n (m)}. (This effective inflation created by
using eq. (7) to obtain the background will also be observed
when the forecast model is not perfect as shown in the following
subsections.)

3.3. Data assimilation with Type A truth bias

In this experiment, we perform data assimilation using the three
augmented local states as described in Section 2.4 and an unaug-
mented state when the true state is evolved using eq. (27) with
A = 0.2� = 1.6 in eq. (30) corresponding to Type A truth bias.
Again the forecast model state is evolved using eq. (25). We can
approximate the bias bt

n given by eq. (3) as follows. Recall that
Ft and Fm are the time �t maps of the true dynamics [eq. (27)]
and the forecast model [eq. (26)] and that eq. (3) is based on
the assumption that xm(t n−1) = xt (t n−1). Taking the difference
between the true equation (27) and the model equation (26),

d

dt
(xt − xm) = L(xt ) + β − L(xm) ≈ β, (41)

then, integrating eq. (41) for the time interval t n−1 ≤ t ≤ tn with
the initial condition xt (t n−1) = xm(t n−1) = xt

n−1, to obtain bt
n =

xt (tn) − xm(tn), yields

xt − xm ≈
∫ tn

tn−1

β dt = β�t . (42)

Using eqs. (3) and (42) we obtain bt
n ≈ β�t . For the situation

in this section, �t = 0.05, and we have taken β to be constant
in time,

βi = A sin

(
2π

i − 1

N

)
= 1.6 sin

(
2π

i − 1

N

)
. (43)

Time-averaged rms analysis errors for each case are shown in
Fig. 7. In the case where the bias is not estimated, the error is
around 0.167 at μ ≈ 0.7, which is still lower than the rms error
of the noisy observations. If we, however, augment the state us-
ing Bias Model I the error is reduced dramatically, and slightly
more if we augment the state using Bias Model III, yielding
〈〈ea〉〉 = 0.068 and 0.061, respectively, at μ ≈ 10−5 [Fig. 7(b)].
If, however, we augment the state using Bias Model II, then the

Fig. 7. Time-averaged rms analysis error, 〈〈ea〉〉, versus μ for the case
of Type A truth bias: Note that (b) shows the same results as (a) for
Bias Model I and Bias Model III but for a different vertical scale.
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Fig. 8. The average bias estimate of location i is shown as ◦. The
approximate true bias β i�t is shown as the solid curve.

rms error is around 0.225 at μ ≈ 0.3, worse than what is ob-
tained when no bias estimation is employed. Here, we see again
that using the unbiased background (7) for data assimilation ef-
fectively inflates the local background error covariance matrix,
and a smaller variance inflation yields the lowest analysis error,
〈〈ea〉〉. The good results obtained when the state is augmented
using either Bias Model I or Bias Model III might reasonably be
ascribed to the fact that estimation of bt

n can be regarded as cor-
recting for precisely the form of truth bias that is present when
the truth evolves by eq. (27).

In Fig. 8, we plot 〈b̄a〉, the time average of the ensemble mean
of the bias estimate,

〈b̄a〉 = 1

T

n0+T∑

n=n0+1

b̄a
n, (44)

b̄a
n = 1

k + 1

k+1∑

i=1

ba( j)
n , (45)

where T = 2000 and n0 = 15 000, for the experiment with the
state augmented using Bias Model I at μ = 10−5 (where the rms
error is minimum in Fig. 7). We see that 〈b̄a〉 agrees well with
the approximation to bt

n given by (42) and (43) (shown as the
solid curve). Also, although the shape is not shown here, for the
case that the state is augmented using Bias Model III, 〈b̄a〉 again
agrees well with (42) and (43).

We now examine the analysis errors using Bias Model I and
III. In Fig. 9, we plot the analysis error (32) averaged over 5000
time steps,

〈ea〉 = 1

T

n0+T∑

n=n0+1

ea
n, (46)

(here, T = 5000 and n0 = 15 000) for the case that no bias
estimation is performed in data assimilation (∗), the case that the
estimation is performed using Bias Model I in the assimilation
(
), and the case that the bias estimation is performed using
Bias Model III (◦). The variance inflation coefficients are μ =
1.0, 10−5, and 10−5, respectively, at which the errors, 〈〈ea〉〉, are
minimum for each case.

In order to understand why Bias Model III does better than
Bias Model I for this case, recall that both models determine the
background state xb

n at time tn by xb
n = Fm(xa

n−1) + bb
n where bb

n

Fig. 9. Time-average of the analysis error as a function of location:
The Type A truth bias is corrected best when we perform the
assimilation using Bias Model III.

is approximately constant in time [eqs. (7) and (18)]. However,
Bias Model I tries to make xb

n close to xt
n , whereas Bias Model III

tries to make xb
n + cb

n close to xt
n , where cb

n is also approximately
constant in time. Suppose that bb

n has converged to the time-
independent approximation β�t of bt

n [see eq. (42)], that cb
n has

converged to a constant vector c, and that the analysis at time
t n−1 is perfect: xa

n−1 + c = xt
n . Consider the model trajectory

xm(t) of eq. (26) with xm(t n−1) = xa
n−1 and the true trajectory

xt (t) of eq. (27) with xt (t n−1) = xt
n−1. Then xt

n = xt (tn) and
xb

n = xm(tn) +β�t , and the background is most accurate if
xb

n + c = xt
n . As in eq. (41),

xt
n − (

xb
n + c

) = xt (tn) − (
xm(tn

) + β�t + c)

= xt (tn−1) − (
xm(tn−1) + β�t + c

)

+
∫ tn

tn−1

[L(xt (t)) + β − L(xm(t))] dt

= xt
n−1 − (

xa
n−1 + β�t + c

)

+
∫ tn

tn−1

[L(xt (t)) − L(xm(t))] dt + β�t

=
∫ tn

tn−1

[L(xt (t)) − L(xm(t))] dt . (47)

Thus, we desire that the average value of L (xt (t)) − L(xm(t))
to be as small as possible over the interval t n−1 ≤ t ≤ tn. Us-
ing c = −β�t/2 makes this average zero to first order, and
is thus superior to using c = 0, which corresponds to Bias
Model I. (see Fig. 10.) This is confirmed in Fig. 11, from
which one observes 〈c̄a〉 ≈ −β�t/2 in the experiment with Bias
Model III.
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Fig. 10. Figure (a) depicts the case c = 0, corresponding Bias Model I, while figure (b) depicts the case c ≈ −β/2 in Bias Model III.

Fig. 11. The average bias estimate of location i is shown as +. The the
value of −β i�t/2 is shown as the solid curve.

3.4. Data assimilation with Type B truth bias

In this experiment, we simulate a bias by evolving the true state
with eq. (28) with temporally constant ζ and estimate it with
three different augmentation methods as done in Section 3.3. To
obtain the true value of ct, defined by (10), we use

dct

dt
= dxt

dt
− dxm

dt

= L(xt + ζ) − L(xm)

= L(xt + ζ) − L(xt − ct ). (48)

A trivial solution to eq. (48) is ct = −ζ whose ith element is
given by

ct
n,i = −B sin

(
2π

i − 1

N

)
= −1.6 sin

(
2π

i − 1

N

)
, (49)

where we take B = 0.2� = 1.6 in this experiment.
The time-averaged rms analysis errors for each case are shown

in Fig. 12. We see that, when we augment the state using Bias
Model II in the assimilation, we can correct for the bias. The
minimum rms error for this assimilation is about 0.061 and oc-
curs near μ = 0.003. The minimum rms error for the assimilation
with the augmented state using the Bias Model III is about 0.062
and occurs at a lower μ value (as expected) of about μ = 2 ×
10−5. Without bias correction, the minimum rms error is 0.263
and occurs near μ = 4.0, similar to what is obtained using Bias
Model I (〈〈ea〉〉 ≈ 0.234 near μ = 0.5). Also, due to the vari-
ance inflation effect of Bias Model I, the best assimilation result

Fig. 12. Time-averaged rms analysis error, 〈〈ea〉〉, versus μ for the case
of Type B truth bias. (b) has a different vertical scale from (a) for
transparency.

with the augmented state using the Bias Model III occurs at a
lower value of variance inflation than the assimilation with the
augmented state using Bias Model II. For the same reason, the
rms error, 〈〈ea〉〉, for the case of assimilation with the augmented
state using Bias Model I has lower values in the region of vari-
ance inflation, 10−5 ≤ μ ≤ 1.0, than for the case of assimilation
with no state augmentation.

We show 〈c̄a〉 in Fig. 13 for the case in which the state is
augmented using Bias Model II at μ = 0.003. It is seen that the

Fig. 13. Bias estimate for the Bias Model II is shown as ◦. The true
bias (49) is shown as the solid curve.
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Fig. 14. Time-averaged rms analysis error, 〈〈ea〉〉, versus μ for the case
in which the truth has Type C truth bias: In order to correct for the
biases, the augmented state used in the assimilations must contain both
the b and c bias estimates, Here, we again use a different vertical scale
in (b) from (a) for transparency.

result (plotted as ◦) agrees very well with eq. (49) (plotted as the
solid line). We obtain the same result for 〈c̄a〉 when the state is
augmented using Bias Model III at μ = 2 × 10−5.

3.5. Data assimilation with Type C truth bias

Now, we combine the two biases in the truth [see eq. (29)], and
estimate them with three augmented states as done in previous
sections. In this case, we can regard the Type A truth bias as
added to a system that already has Type B truth bias. Hence, a
differential equation for bt can be written as

dbt

dt
= L(xt + ζ) + β − L(xt − ct ), (50)

where ζ and β are constant in time in the present experiment. A
solution to eq. (50) is

dbt

dt
= β if ct = −ζ; (51)

that is, the individual true bias is the same as if the system
has only one bias. The quantities β, ζ, are thus again given by
eqs. (43) and (49).

Figure 14 shows the resulting time-averaged rms analysis er-
ror, 〈〈ea〉〉, for each estimation method. The best result is obtained
using Bias Model III. This might be anticipated since augmenta-
tion by one bias estimate alone cannot satisfy the solution (51).
The minimum rms error is around 0.062 and occurs near 2 ×
10−5; this is the same as in the previous experiments. The other
assimilation methods yields 〈〈ea〉〉 ≈ 0.261 at μ ≈ 4.0 without
state augmentation, 〈〈ea〉〉 ≈ 0.236 at μ ≈ 0.5 using Bias Model
I, and 〈〈ea〉〉 ≈ 0.224 at μ ≈ 0.3 using Bias Model II.

3.6. Settling time

Even though the state augmented LEKF can correct for vari-
ous biases in the true state, for the truth biases considered here
it requires longer settling time for the forecast model state to
converge toward the true state as compared to the LEKF with-
out state augmentation. We regard the time it takes for the rms
analysis error (34) to settle near its time-averaged rms analysis
error (35) as the settling time. With a perfect forecast model as
in Section 3.2, the settling time is around 50 time steps with the
k + 1 = 13 ensemble members we are using for the regular (i.e.
without state augmentation) LEKF assimilation scheme. The set-
tling time, however, becomes between 100 and 200 time steps
when either Bias Model I or Bias Model II are used in the as-
similation to respectively correct for Type A or B truth bias. The
longest settling time, which is near 15 000 time steps, appears
when assimilations are done using Bias Model III to correct for
Type B and Type C truth biases (when using Bias Model III to
correct for Type A truth bias, we found settling times that were
generally below 500).

However, it turns out that we can easily correct this problem
by using a priori information on the bias which could be obtained
by looking at the innovation, the difference between the forecast
and the observation,

d̄n = H
(
x̄b

n

) − yn, (52)

for the case when no bias estimation is performed. We plot the
time-average of the innovation in Fig. 15 for the case that no
bias estimations are performed even though Type A, B or C truth
bias is present in the truth. Since we take the observations to
be unbiased, we can think of the time averaged innovation as
the forecast bias. We see that these averages are large and vary
slowly in space.

Fig. 15. Time-averaged innovation for the case that no bias estimation
is performed with various biases in the truth.
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In the previous experiments, the initial ensemble variance for
the bias estimate is 0.1. By increasing the initial variance to 1.0
(somewhat larger than the spread in the time-averaged innova-
tions), we can dramatically decrease the longest settling time
from 15 000 time steps to 800 time steps, while for the case that
the settling time is already small (between 100 and 200 time
steps) no significant change in the settling time is observed. We
can decrease the settling time further if we exploit the fact that
the biases vary slowly in space. To incorporate this added knowl-
edge into our data assimilation scheme we now use a diffusion
process for the time evolution, eqs. (8) and (16), of the biases,

bb
n+1,i = (1 − 2αb)ba

n,i + αbba
n,i−1 + αbba

n,i+1, (53)

cb
n+1,i = (1 − 2αc)ca

n,i + αcca
n,i−1 + αcca

n,i+1, (54)

where αb and αc are diffusion coefficients. By introducing dif-
fusion in this way, rapid spatial variation of the bias estimates is
damped, leading to smooth spatial variation consistent with the
actual case, eqs. (30) and (31), and the evidence of Fig. 15.

Our experiments show that there is a modest improvement
in the settling time in the case that there is one type of bias in
the truth (truth bias A or B) and that it is corrected using the
corresponding bias model (Bias Model I or II, respectively); the
settling time is decreased from between 100 and 200 time steps to
between 80 and 130 time steps when αb (or αc) is increased from
zero to αb = 0.01 (or αc = 0.01). When we consider the case of
Type C truth bias and augment the state using Bias Model III,
non-zero αb diffusion (with αc = 0) can achieve a large decrease
in the settling time, from 800 time steps to 300 time steps.

All of the decreases in settling time we have described come
without significant increase in the time-averaged rms analysis
error 〈〈ea〉〉. We find that using diffusive evolution on bias esti-
mates actually decreases 〈〈ea〉〉 in some cases. Figure 16 shows
the time asymptotic analysis errors as a function of αb for the
case of Type C truth bias and Bias Model III assimilation. We see
that a small amount of diffusion, in addition to shortening the set-
tling time, also improves the time asymptotic performance of the
assimilation. This improvement is not seen in the experiments
with Bias Model I and II.

Finally, we note that if diffusion [eqs. (53) and (54)] is added
in the perfect forecast model case (Section 3.2), all three cases of
augmentation have the same values of rms analysis error as that
of the unaugmented case. That is, curves corresponding to the
four cases in Fig. 6 have the same minimum values with appro-
priate amounts of diffusion. Evidently diffused evolution of the
bias estimate allows the estimate to converge to the truth faster,
and also reduces the rms analysis error of the state augmented
estimates.

3.7. A simple state-dependent model error

In this section, we introduce a simple model error, γ x2
i , which

is proportional to the square of the state variable. That is, the

Fig. 16. Time-averaged rms analysis error, 〈〈ea〉〉, versus μ with
various αb and αc = 0 for the case of Type C truth bias corrected using
Bias Model III: Small diffusion improves the performance of the
assimilation up to αb = 0.01.

dynamic equation for the true system is as follows:

dxi

dt
= (xi+1 − xi−2)xi−1 − xi − γ x2

i + �, i = 1, . . . , N ,

(55)

where γ = 0.05 and � = 10.0. Here, � is increased to maintain
chaotic behavior of the true dynamics (introducing γ x2

i with-
out changing � from its previous value of � = 8.0 results in
dominance of time periodic behavior of the true dynamics). For
the forecast model, we use eq. (25) with � = 10.0. Through
the numerical experiment, we obtain the time average 〈−γ x2

i 〉
≈ −0.95 at each point i while −γ x2

i itself has large temporal
fluctuations ranging from 0 to around −10. The task we under-
take here is to successfully estimate the time mean effect of the
model error, 〈−γ x2

i 〉, with our bias estimation schemes. Using
analysis similar to that in eqs. (41) and (42), we obtain

〈
bt

i

〉 ≈
〈
−γ

∫ tn

tn−1

(xt
i )2 dt

〉
≈ −γ

〈(
xt

i

)2
〉
�t, (56)

and hence 〈bt
i〉 ≈ −0.048 for each location i.

In Fig. 17, we plot the rms analysis errors of the numerical
experiments. Without bias estimation the minimum rms analysis
error 〈〈ea〉〉 ≈ 0.186 is obtained at μ ≈ 1.0. Among the three bias
models, Bias Model I produces the best result, 〈〈ea〉〉 ≈ 0.171 at
μ ≈ 0.05. In terms of the difference with the error in the perfect
model case (〈〈ea〉〉 ≈ 0.057), this represents a 12% improvement
toward the perfect model performance. If we employ diffusive
evolution (with αb = 0.05), we can further decrease the rms
error to obtain 〈〈ea〉〉 ≈ 0.163 at μ ≈ 0.09 and 18% improvement
toward the perfect model performance. In both cases (with and
without diffusion), we obtain 〈b̄a

i 〉 ≈ −0.05, which is a good
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Fig. 17. Time-averaged rms analysis error, 〈〈ea〉〉, versus μ with the
simple state-dependent model error: With Bias Model I and diffusion
process, we can improve the performance in terms of the rms analysis
error.

estimate of 〈bt
i 〉, with smaller spatial variations when we use

diffusion.
We also find that the performance of the assimilation with Bias

Model I is not sensitive to the selection of� in the model equation
while the performance of the assimilation without bias estima-
tion is sensitive to the selection of �. We can also achieve the
same performance with Bias Model III with appropriate diffusion
(αb = 0.05, αc = 0.2), but we cannot achieve it with Bias Model
II. We conjecture that the reason is because the form of the bias
in eq. (55) is closer to Type A truth bias than Type B.

4. Conclusions and discussion

In this paper, we considered three bias models for use in state
space augmentation strategies to mitigate the effects of model
biases on forecasts.

(i) Bias Model I is based on the assumption that the best
background information is obtained when the initial condition
of the short-term forecast that provides the background (the anal-
ysis at the previous assimilation time) is as close to the truth as
possible.

(ii) Bias Model II is based on the assumption that there exists
a transformation from orbits on the attractor of the forecast model
to orbits on the attractor of the true system.

(iii) Bias Model III combines Bias Model I and Bias
Model II.

While Bias Model I was considered by others in earlier pa-
pers for schemes other than the LEKF, Bias Model II and Bias
Model III are (to the best of our knowledge) first introduced in
the present paper.

To evaluate the performance of the proposed bias models for
use in augmented ensemble Kalman filtering, we carried out
experiments with the Lorenz-96 model. While we used the orig-
inal model equation of Lorenz and Emanuel (1998) to evolve
the model state, we employed altered versions of Lorenz and
Emanuel’s equation to generate sets of time-series of the true
states. Each alteration of the equation corresponded to distinctly
different types of model biases. The main results of these nu-
merical experiments are the following.

(i) The effectiveness of the different bias models strongly
depends on the actual form of the true model bias. In our numeri-
cal experiments it was found that when the bias model was suited
to the bias of the forecast model in modeling the true dynamics,
then good results were obtained. However, when this was not the
case, the results were not improved by the model bias correction
scheme. This suggests that serious consideration of the choice of
the bias model may be crucial in obtaining a successful scheme
for model bias mitigation.

(ii) For the bias models we considered, Bias Model III per-
formed as well or better than the other bias models in terms of
average analysis error, at the expense of requiring a larger en-
semble and in some cases increasing the settling time. In most
cases, the inclusion of parameters that were not present in the
model bias did not yield improved performance. However, in
the case of Type A truth bias, Bias Model III did outperform
Bias Model I, due to the fact that the model bias was added to
a continuous time forecast model, while the bias correction was
applied at discrete times (see Section 3.3).

(iii) We found (Section 3.6) that the model bias correction
scheme took many more iteration steps to converge than in the
case in which no model biases are present. The settling time
strongly depends on the actual model bias, and on the bias model
employed. As a result of the possibility of long settling times,
one might anticipate that use of these model correction schemes
may become problematic. We can, however, dramatically reduce
the settling time by increase of the initial ensemble spread of the
bias estimates. Moreover, when the model bias is slowly varying
in space, we demonstrated that choosing a diffusive evolution of
the model bias can also reduce the settling time.

(iv) In a case with state-dependent, and thus time-varying,
additive model error (Section 3.7), Bias Model I estimated a
model bias that was close to the time average of the model er-
ror. In this sense, it found the best estimate of the model error
within our constant-in-time parameterization. The improvement
in performance compared to no bias estimation was modest but
significant.

Finally, we note that state space augmentation is not the only
way to account for the effect of model errors in the state estima-
tion process. As we mentioned earlier, variance inflation (both
additive and multiplicative) can improve the resilience of Kalman
filter schemes to the effects of model errors. Promising results
were achieved by employing additive variance inflation schemes
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(Houtekamer et al., 2005; Hamill and Whitaker, 2005) and by
using hybrid Ensemble/3DVAR schemes (Etherton and Bishop,
2004) first proposed by Hamill and Snyder (2000). Neverthe-
less, we believe that optimal parameterization of model errors
in the data assimilation process is a very promising means of
mitigating model error and that much remains to be done along
these lines. We view our paper as a contribution only to the ini-
tial phase of the quest for efficient model error parameterization
algorithms.
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