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ABSTRACT
Numerical solutions of the normal modes of a linearized Boussinesq fluid model are studied with respect to the variable
static stability in height z, the Brunt-Väisälä frequency N(z). The model includes both the vertical and horizontal
components of Coriolis force. Our aim is to explore the characteristics of the little-known class of normal modes,
referred to as the ‘boundary-induced inertial (BII)’ modes, in addition to the traditional inertio-gravity (IG) modes. Two
kinds of finite-difference schemes are used to set up the eigenvalue-eigenvector matrix problem for crosscheck.

Numerical results of the characteristics of IG and BII modes are presented for the case of an exponential form of N(z),
together with the cases of constant N, whose exact solutions are used to check the performance of the numerical models.
Because the frequencies of BII modes are close to the inertial frequency, which is a singular point of the model, the
eigenfunctions of BII modes become highly oscillatory in z for a large value of N. It is shown that, under a realistic profile
of N(z) in the oceans, the BII modes can appear complementary to the IG modes throughout the domain, suggesting
that the joint consideration of both the IG and BII modes is necessary to understand the near-inertial oscillations in the
seas.

1. Introduction

The objective of this study is to contribute to our understanding
of a little-known class of normal modes that emerge in atmo-
spheric and oceanic numerical models, in addition to the well-
known acoustic, inertio-gravity, and planetary (Rossby) modes,
when the complete Coriolis forces arising from both the vertical
and horizontal components of the Earth’s rotation are included.
This particular class of oscillation modes, whose frequencies
are close to the inertial (Coriolis) frequency, are referred to here
as the ‘boundary-induced inertial (BII)’ modes, because without
the imposition of boundary conditions at the top and bottom of
the system, this class of modes are absent.

The BII modes were recently rediscovered by Thuburn et al.
(2002) and, independently, Kasahara (2003a,b) from the normal
mode analysis of a compressible and stratified model on a tan-
gent plane with complete rotation. Because of the assumption
of constant Coriolis parameters, the planetary (Rossby) modes
are not included in this consideration. What is unique about the
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emergence of the BII modes is that the linear system of equa-
tions that consists of five time-dependent variables gives rise
to six eigenfrequencies with the imposition of solid boundary
conditions at the bottom and top of the system. If the verti-
cal boundary conditions are absent, the system yields only five
eigenfrequencies associated with harmonic eigenfunctions. This
rediscovery is at odds with the conventional notion that the sys-
tem of five time-dependent equations that includes only the ver-
tical component of the Earth’s rotation yields at most five eigen-
frequencies, including steady-state geostrophic relations with
zero eigenfrequency, besides the external modes such as Lamb
waves, which are not included in the number of internal-mode
eigenfrequencies.

The emergence of the BII modes, however, is not directly
connected to the compressibility of the system. The BII modes
also appear in the homogeneous incompressible and Boussi-
nesq models as long as both the vertical and horizontal com-
ponents of rotation are included (Stern, 1975; Kamenkovich and
Kulakov, 1977; Miropol’sky, 2001; Thuburn et al., 2002;
Kasahara, 2003a,b; Durran and Bretherton, 2004). These stud-
ies deal with the normal mode analysis of linearized models in
which the buoyancy parameter N (Brunt-Väisälä frequency) is
assumed to be constant. This assumption in turn yields the so-
lution by analytical methods. However, once this assumption is

368 Tellus 58A (2006), 3



NORMAL MODES OF FLUID MODEL 369

removed, the analytical approach is not generally practical, and
we need to adopt numerical methods.

There is another reason that a numerical study of BII modes
should be undertaken. The vertical structure of BII-mode eigen-
functions can be highly variable depending on the magnitude of
buoyancy parameter N. Therefore, it is of interest to investigate
the resolution required to resolve the vertical structure of BII
modes. Moreover, such a question can be investigated through
the application of different numerical methods.

As suggested by Kasahara (2004), the characteristics of BII
modes correspond in many respects with those of near-inertial os-
cillations observed in the oceans (e.g. Webster, 1968; Fu, 1981).
Therefore, we provide a normal mode analysis of the linearized
Boussinesq model with particular emphasis on the BII modes.

The basic equations and their normal mode solutions are dis-
cussed in Section 2. Eigensolutions for a special case of constant
N are presented in Section 3 as an aid to verify the coding of
numerical computer programs and to make the interpretations
of numerical outputs easier. Two different numerical methods
are discussed in Section 4 for solving the normal modes of this
system with a variable vertical distribution of N. Numerical re-
sults are presented in Section 5, and conclusions are stated in
Section 6.

2. Normal modes of a Boussinesq model with
rotation

2.1. Basic equations

We consider the small-amplitude motions of a stratified, hori-
zontally unbounded ocean of uniform depth Hs in the Cartesian
coordinates (x, y, z) on a tangent plane, with x, y, and z directed
eastwards, northwards, and upwards from z = 0 to Hs, and t being
time. The basic equations governing the motions are based on a
Cartesian version of the spherical Boussinesq (incompressible)
system by Munk and Phillips (1968), except that the Coriolis
parameter, fH , due to the horizontal component of Earth’s an-
gular velocity �, is considered in addition to the usual Coriolis
parameter, fV .

The basic equations are

∂u

∂t
− fV v + fH w + ∂ p

∂x
= 0, (1)

∂v

∂t
+ fV u + ∂ p

∂ y
= 0, (2)

∂w

∂t
− fH u − s + ∂ p

∂z
= 0, (3)

∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z
= 0, (4)

∂s

∂t
+ N 2w = 0. (5)

Here, (u, v, w) are the velocity components for (x, y, z),

fV = 2� sin φ, and fH = 2� cos φ, (6)

where φ denotes the latitude of the coordinate centre which is
constant. Other symbols are

s = g(ρo − ρ)ρ−1
o for buoyancy,

ρ(x, y, z, t) for density,

ρo for volume mean density (constant),

(7)

p = perturbation pressure divided by ρo, (8)

N (z) =
(

−g

ρo

d ρ(z)

dz

) 1
2

, (9)

for the Brunt-Väisälä frequency with g the gravity constant and
ρ(z) horizontal mean density.

We consider the normal mode solutions of the above system
in a three-dimensional domain that is periodic in x and y and
bounded by the bottom z = 0 and the top at z = Hs, where we
assume that

w(x, y, z, t) = 0 at z = 0 and Hs . (10)

Eckart (1960) discussed the basic properties of the normal
modes of a general hydrodynamic system with the complete rep-
resentation of Coriolis terms that includes the Boussinesq system
considered in this study. Eckart states that the eigensolutions are
denumerable, i.e. they may be numbered with an index, j, that
takes on only integer values. If N(z) ≥ 0, the eigenfrequencies or
eigenvalues are real. Let uj, vj, wj, pj, and sj be the eigensolutions
associated to the eigenfrequency of σ j , then the eigensolutions
satisfy the following orthogonality condition∫ ∫ ∫ (

u j u∗
k + v j v∗

k + w j w∗
k + N−2 s j s∗

k

)
dx dy dz

= 0, if j �= k,

> 0, if j = k, (11)

where the asterisk denotes complex conjugate and the integral is
to be extended over the entire domain. Note that, due to the as-
sumption of incompressibility adopted in this study, the variable
p does not appear in (11). For more discussion on the orthog-
onality condition (11), the reader is referred to Eckart (1960,
pp. 85–88).

2.2. Vertical structure equations

We write the dimensionless system of equations by introducing
the length scale Ls for x and y and Hs for z. The time t is scaled
by Ts = (2 �)−1. The velocity components u and v are scaled
by Us = Ls/Ts and w by Ws = Hs/Ts. Thus, if we denote the
dimensionless variables and parameters by the superscript ,̂ we
have
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x̂ = x L−1
s , ŷ = y L−1

s , ẑ = z H−1
s , t̂ = t T −1

s ,

û = u U−1
s , v̂ = v U−1

s , ŵ = w W −1
s , p̂ = p U−2

s ,

ŝ = s Ts W −1
s ,

f̂ V = fV Ts = sin φ, f̂ H = fH Ts = cos φ, N̂ = N Ts . (12)

With this choice of scaling, all equations, variables, and param-
eters in Section 2.1 become dimensionless.

Because all the parameters in this linear system are indepen-
dent of x, y and t and the horizontal boundary conditions are
periodic, we can seek the solutions of this system in the form

(û, v̂, ŵ, p̂, ŝ) = (U , iV , iW , P, S) exp [i(m̂x̂ + n̂ ŷ − σ̂ t̂)],

(13)

where i = √−1, m̂, and n̂ are the dimensionless wavenumbers
in x and y, σ̂ denotes the dimensionless frequency scaled by

m̂ = 2π Ls L−1
x , n̂ = 2π Ls L−1

y , σ̂ = σ Ts, (14)

and Lx and Ly are the wavelengths of motion in x and y, respec-
tively.

From this point we omit the superscript ˆ , since we consider
only dimensionless variables and parameters. The dimensionless
basic equations become

σU + fV V − as fH W − m P = 0, (15)

σ V + fV U + in P = 0, (16)

σ W − a−1
s fH U − S + a−2

s

dP

dz
= 0, (17)

m U + i n V + dW

dz
= 0, (18)

σ S − N 2 W = 0, (19)

where as denotes the aspect ratio of the domain defined by

as = Hs L−1
s . (20)

This is the only scaling parameter in this system.
From (15) and (16), we get the expressions for U and V in

terms of P and W,

U = −(
f 2

V − σ 2
)−1

[(σm + i fV n)P + asσ fH W ], (21)

V = (
f 2

V − σ 2
)−1

[( fV m + iσn)P + as fV fH W ]. (22)

The expression for S is given by (19) in terms of W. Two inde-
pendent relations are required to determine P and W. One such
relationship is derived from (18) by eliminating U and V using
(21) and (22). The result is(

d

dz
− as �1 − i as �2

)
W = σ

(m2 + n2)(
f 2

V − σ 2
) P, (23)

where �1 and �2 are defined by

�1 = fH σm(
f 2

V − σ 2
) and �2 = − fH fV n(

f 2
V − σ 2

) . (24)

Another relationship between W and P is obtained by first elim-
inating S in (17) by using (19) and then eliminating U by using
(21). The result is(

d

az
+ as �1 − i as�2

)
P

= a2
s

σ

[
N 2 − σ 2

(
f 2

V + f 2
H − σ 2

f 2
V − σ 2

)]
W . (25)

Thus, we have two equations for P and W. Note that these two
eqs. (23) and (25) are derived by eliminating variables with-
out differentiation and with the assumptions, σ 2 �= f 2

V and σ

�= 0. In fact, these two equations are the Boussinesq version of
the similar equations (53–1,2) on page 130 of Eckart (1960).
Eckart treated the normal modes of the compressible and strati-
fied isothermal atmosphere on the tangent plane with complete
rotation. He discussed the solution of Lamb waves as the external
mode, but left the solutions of internal modes unexplored. In this
study, we will discuss the general solutions of (23) and (25) for
variable N.

2.3. Normal mode solutions

The general solutions of the system of eqs. (23) and (25) can be
expressed by

P = A ξ (z) exp (ias�2z), (26)

W = A η(z) exp(ias�2z), (27)

where ξ (z) and η (z) are real functions, and A is a real coefficient
that will be determined later. The exponential factor (ias�2z) is
introduced to eliminate the imaginary term i as �2 in (23) and
(25). By substituting (26) and (27) into (23) and (25), we obtain
the following two equations for ξ (z) and η(z),

(
f 2

V − σ 2
)dη

dz
− as σ fH m η = σ (m2 + n2)ξ, (28)

σ
(

f 2
V − σ 2

)dξ

dz
+ as σ 2 fH m ξ

= a2
s

[
σ 4 − σ 2

(
f 2

V + f 2
H + N 2

) + N 2 f 2
V

]
η. (29)

Because these two equations are real differential equations, it is
simpler to solve them rather than the complex differential eqs.
(23) and (25).

Once the solutions of ξ and η are obtained from (28) and (29),
the eigenfunctions P and W are determined from (26) and (27).
Then, U and V are calculated from (21) and (22), and the function
S is obtained from (19). It remains now to determine the constant
real coefficient A for the eigenfunctions. Recall that there is the
energy product relationship (11) among the eigensolutions. By
substituting (13) into the dimensionless form of (11) and car-
rying out the integration with respect to the horizontal coordi-
nates, we can have the orthogonality-normalization condition in
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the form∫ 1

0

(
U j U ∗

k + Vj V ∗
k + a2

s W j W ∗
k + a2

s N−2 Sj S∗
k

)
dz

= 0 if j �= k,

= 1 if j = k. (30)

Note that the constant on the right-hand side of the integral is
now chosen as unity.

Let us define the energy product E in the form

E = UU ∗ + V V ∗ + a2
s W W ∗ + a2

s N−2 SS∗. (31)

Then, we calculate E explicitly by the use of expressions (21)
for U, (22) for V , and (19) for S, and the solutions (26) for P,
and (27) for W. After lengthy calculations involving complex
arithmetic, we arrive at

E = A2

(
f 2

V + σ 2
)

(
f 2

V − σ 2
)2

[
(m2 + n2) ξ 2(z)

+ a2
s f 2

H η2(z) + 2as fH m ξ (z) η(z)
]

+ A2a2
s (1 + N 2 σ−2)η2(z). (32)

Note that the sum in the brackets above can be regrouped to show
that E is always positive. Thus, the constant A can be determined
from the integral condition,∫ 1

0
E dz = 1. (33)

3. Eigensolutions of the system in the case
of constant N

It is useful to get the eigensolutions of this system for a simpler
case in order to check the computer solution of the discrete nu-
merical model. If N = No is constant, then (28) and (29) with the
boundary conditions (10) have a solution that can be expressed
in terms of elementary functions. By eliminating ξ in (28) with
(29), we get

(
f 2

V − σ 2
)2 d2η

dz2
− a2

s

[
(m2 + n2)σ 4

− σ 2(m2 + n2)
(

f 2
V + f 2

H + N 2
o

) + N 2
o (m2 + n2) f 2

V

+ σ 2 f 2
H m2

]
η = 0. (34)

Because the boundary conditions are η = 0 at z = 0 and 1, the
solution of (34) is chosen in the form

η = sin (kz), (35)

where k is the dimensionless vertical half-wavenumber and is
expressed by

k = ki π (36)

and ki = 1, 2, . . . denotes the vertical wave index.

Solution (35) satisfies (34) provided that

(
m2 + n2 + a−2

s k2
)
σ 4 − [

(m2 + n2)N 2
o

+ (
m2 + n2 + a−2

s k2
)

f 2
V + n2 f 2

H + a−2
s k2 f 2

V

]
σ 2

+ [
(m2 + n2)N 2

o + a−2
s k2 f 2

V

]
f 2

V = 0. (37)

This is a quadratic equation in σ 2. Therefore, there are two
kinds of wave oscillations which propagate in both eastwards
and westwards directions with the same phase speed. The prop-
erties of these wave modes are discussed by Kasahara (2003a,
2004) and Durran and Bretherton (2004) for the cases of No =
0 and No = constant. Therefore, the readers will be referred to
those references. However, we should bring out some basics of
the dispersion eq. (37) that are pertinent to understand the con-
trast of eigenfunctions between the two different kinds of normal
modes. This difference is particularly prominent for large values
of No.

In case No is much larger than fV and fH , we can get good
approximate solutions of (37) as the high-frequency modes in
the form

σ 2
g =̇ N 2

o (m2 + n2) + n2 f 2
H + a−2

s k2 f 2
V

m2 + n2 + a−2
s k2

. (38)

This kind of solution represents the inertio-gravity modes that
are slightly modified from the well-known inertio-gravity modes
(Gill, 1982) by the presence of fH . By contrast, the low-frequency
modes are represented by

σ 2
I =̇ f 2

V

[
1 − n2 f 2

H

(m2 + n2)
(
N 2

o − f 2
V

) + n2 f 2
H

]
. (39)

Note that the magnitude of σ 2
I is close to f 2

V . In fact, the low
frequency modes appear only in the case of nfH �= 0, with the
boundary conditions (10), and are referred to as the BII modes
as explained in the introduction. Kasahara (2004) presents a his-
torical perspective on these modes and a possible implication for
the physics of near-inertial oscillations in the seas.

The eigenfunctions are obtained as follows. By substituting
(35) into (28), the solutions ξ (z) are given in the form

ξ = (m2 + n2)−1
[
σ−1

(
f 2

V − σ 2
)
k cos(kz) − as fH m sin(kz)

]
.

(40)

Once the solutions η and ξ are obtained, the eigenfunctions W, P,
U, V and S are calculated from the formulas (27), (26), (21), (22)
and (19), respectively. Here, the coefficient A is determined by
calculating the integral (33) of the energy quantity E involving
the products ξ 2, η2, and ξ η which leads to

A−2 =
(

f 2
V + σ 2

)
2
(

f 2
V − σ 2

)2
(m2 + n2)

[(
f 2

V − σ 2
)2

k2

σ 2
+ a2

s f 2
H n2

]

+ 1

2
a2

s

(
1 + N 2

o

σ 2

)
. (41)
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Fig. 1. Layout of equally-spaced vertical grid for method A.

The analytical solutions presented in this section are useful to
check the correctness of the numerical solutions to be discussed
next.

4. Eigensolutions of the system in the case
of variable N(z)

In the case of variable N(z) we need generally to resort to a
numerical method to solve the system of normal mode eqs.
(15)–(19), with the boundary conditions W = 0 at z = 0 and
z = 1. In this section, we adopt two different approaches to
analyse the numerical characteristics of the BII modes that are
rather different from those of well-known inertio-gravity modes.
Method A is designed to follow a close analogue to the ana-
lytical approach, while method B tests the utility of a gener-
alized matrix method that consists of all dependent variables
without elimination of variables as done in flow simulation
techniques.

4.1. Reduced matrix method A

In this approach, we solve the eigenvalue problem involving the
transformed variables ξ and η, introduced in Section 2, by using
the vertical grid of equal increments �z as shown in Fig. 1.
Variable η j is placed at an integer level j (top and bottom of
cell) and variable ξ j+ 1

2
at a half-integer level j + 1

2 (mid-point
of cell). Parameter variable Nj is placed at the same level as η j.

The difference form of eq. (29) is given by

a2
s

[
σ 4 − σ 2

(
f 2

V + f 2
H + N 2

j

) + N 2
j f 2

V

]
η j

= σ
(

f 2
V − σ 2

) (
ξ j+ 1

2
− ξ j− 1

2

�z

)

+ as σ 2 fH m

(
ξ j+ 1

2
+ ξ j− 1

2

2

)
.

(42)

Similarly, eq. (28) is discretized as

σ (m2 + n2)ξ j+ 1
2

= (
f 2

V − σ 2
)(η j+1 − η j

�z

)

− as σ fH m

(
η j+1 + η j

2

)
. (43)

We can eliminate the terms involving ξ j+ 1
2

and ξ j− 1
2

in (42)
by using (43) and the similar expression for ξ j− 1

2
. The result is

σ 4
[∇2

d η j − a2
s (m2 + n2)η j

]
,

− σ 2

[
2 f 2

V ∇2
d η j + 1

4
a2

s f 2
H m2(η j+1 + 2η j + η j−1)

− (
f 2

V + f 2
H + N 2

j

)
a2

s (m2 + n2)η j

]
+ [

f 4
V ∇2

d η j − a2
s N 2

j f 2
V (m2 + n2)η j

] = 0, (44)

where

∇2
d ( ) j = (�z)−2 [( ) j+1 − 2( ) j + ( ) j−1]. (45)

Equation (44) is a discretized version of (34), in the case of
variable N(z), but it is arranged in such a way to form a polyno-
mial matrix equation for the square of frequency σ . Moreover,
with the boundary conditions η = 0 at z = 0 and 1, (44) is
expressed in the matrix form for the eigenvalue σ and the eigen-
function η j . However, it is not in the form of a standard eigen-
value problem. In Appendix A, we describe how (44) can be put
into the form of a standard eigenvalue problem to determine σ

and η j .
Once we obtain σ and η j, then we can calculate ξ j+ 1

2
from the

difference form (43). The eigenfunctions P and W are determined
from (26) and (27) by multiplying the factor exp (i as �2 z) and
the coefficient A. The value of A can be calculated from the
condition (33), replacing the integral by a quadrature. Here, the
trapezoidal rule is used. Care must be used in the quadrature of
energy product E, since the variables η j and ξ j+ 1

2
are located at

different levels.
The remaining eigenfunctions U, V and S are then obtained

from (21), (22) and (19), respectively. The discretized version of
the normalization-orthogonality condition (30) is used to check
the calculations of the eigenfunctions.

4.2. Generalized eigenvalue problem, method B

In this approach, we solve the system of eqs. (15)–(19) with
the boundary conditions W = 0 at z = 0 and 1 without the
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elimination of the variables. Then, we compare the results with
those of method A. We define the following vector X, whose
elements consist of the values of W at integer levels (see Fig. 1)
and the values of P, U, V and S all at half-integer levels.

X = (
Wo, P1

2
, U 1

2
, V 1

2
, S 1

2
,

− − − − −
W j , Pj+ 1

2
, U j+ 1

2
, Vj+ 1

2
, Sj+ 1

2

− − − − −
WJ−1, PJ− 1

2
, UJ− 1

2
, VJ− 1

2
, SJ− 1

2
, WJ

)T
. (46)

Note that the boundary values Wo and WJ , which are zero, are
included in (46). Given J cells, the total number of elements is
5 J + 1. The elements are complex numbers.

Note that the values of S are placed at the half-integer levels
unlike in method A. In method A it is automatically assumed that
W and S are placed at the same levels during the elimination of S
variable. However, since the boundary conditions are specified
only for W, there is no obvious reason for placing S at the same
level of W.

The next step is to discretize the system of eqs. (15)–(19)
in terms of the vector X. The derivative with respect to z is
approximated by the centered difference in �z and the variable,
which is not available at a particular level, is evaluated by the
arithmetic average of the variables at the nearest two levels. This
discretization results in a linear matrix system in the form of
(A − σB) X = 0. These two matrices A and B, which are not
shown here, are constructed in such a way that the terms related
to the frequency σ (eigenvalue) are collected to form the matrix
B and the remaining terms are collected as the matrix A. Note
that B is a diagonal matrix of unity except that the elements
in the row corresponding to the variable P are zero. Thus, the
matrix B is singular, and we are faced with solving this system
as a generalized eigenvalue problem to determine σ and X. See
Appendix B for more details.

The positive and negative eigenvalues appear in the same mag-
nitude in agreement with method A. The corresponding eigen-
vectors W, P, U, V , and S as obtained from the routine are further
normalized by the discretized version of the condition (30). By
doing so the eigenfunctions from method B can be compared
with those of method A on the same scales.

5. Numerical results

One objective of presenting the results from methods A and B
is to demonstrate some unique features of the little-known BII
modes generated by the fH-terms. These modes differ from the
well-known inertio-gravity modes. With a potential application
in mind to aid our understanding of near-inertial oscillations in

the seas, we select the following values for the model parameters:

Ls = 50 km and Lx = L y = 50 km in (12),

Hs = 5 km,

Ts = (2�)−1,

�z = 1./J , where J is the number of discrete cells,

φ = 25◦ N , latitude of coordinate centre,

together with g = 9.8 m s−2 and � = π/(12 × 60 × 60) s−1.
Although the eigenfrequencies of the BII modes are relatively

insensitive to either the spatial scales and stability parameter N,
the corresponding eigenfunctions are very sensitive to the values
of N. Here, the numerical results are presented for three cases of
N = 0, N = constant, and an exponentially varying function of
height.

5.1. Case of N = 0

Table 1 shows the comparison of positive dimensionless frequen-
cies from methods A and B with the exact values obtained from
(37) for mode index, ki = 1 to 4, for the two kinds of modes in the
case of N = 0. Numerical values from method A with grid cells
J = 50 and method B for J = 50, 100 and 200 denote the devi-
ations of σ from the corresponding exact values, i.e. numerical
errors. The low-frequency modes whose σ ’s are smaller than
fV = 0.422618 correspond to the traditional inertial waves
(Tolstoy 1973) modified by the presence of fH-terms. The high-
frequency modes whose σ ’s are larger than fV are the BII modes,
because without the imposition of the boundary conditions they
do not appear. The fact that there are two different kinds of
inertial modes in the homogeneous and incompressible model
with full rotation and boundary conditions is not well known,
but it is discussed recently by Kasahara (2003a) and Durran and
Bretherton (2004).

As seen from Table 1, the numerical errors are very small for
low vertical mode index ki in both numerical schemes, though the

Table 1. Numerical errors of eigenfrequencies σ from methods A and
B for vertical index ki = 1 to 4 with high- and low-frequency modes in
case of N = 0. Exact values are from (37)

ki Exact AJ = 50-Ex BJ = 50-Ex BJ = 100-Ex BJ = 200-Ex

High-frequency modes
1 0.511287 0.000065 −0.000118 −0.000029 −0.000007
2 0.467840 0.000128 −0.000237 −0.000059 −0.000014
3 0.452848 0.000187 −0.000357 −0.000089 −0.000022
4 0.445304 0.000247 −0.000477 −0.000119 −0.000030

Low-frequency modes
1 0.336140 −0.000047 0.000121 0.000030 0.000007
2 0.378006 −0.000108 0.000240 0.000060 0.000015
3 0.392665 −0.000167 0.000361 0.000090 0.000023
4 0.400089 −0.000226 0.000481 0.000120 0.000030
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errors inevitably increase as ki increases. For a fixed ki, we can
see the errors decrease as the grid resolution increases in method
B. The same can be said for method A from the examination of
the difference solutions (not shown).

For the same cell resolution, say J = 50, method A produces
more accurate results than method B, presumably due to the
elimination of the complex factor exp (i as �2 z) discussed in
Section 2.3.

The eigenfunctions from methods A and B can be com-
pared easily against the exact solutions, since they are normal-
ized in the same way. By visual comparisons of the graphs
of eigenfunctions, W, P, U and V , which are complex, we
verify that methods A and B reproduce them accurately for
both kinds of normal modes. Figure 2 shows one example (U-
field) of such plots, which has four panels for vertical index
ki = 1 through 4 of high-frequency modes. The solid lines
show the real part of U and the dashed lines for the imaginary
part. The same four panels of low-frequency modes are shown
in Fig. 3.

As seen from Figs. 2 and 3, the structures of U fields of high-
and low-frequency modes are rather similar. This is the case of
other profiles of V , W and P, too. However, the similarity of the
eigenfunctions between the high- and low-frequency modes is
observed only for a small value of N, compared with fV , including
N = 0. As we will see next, the results from the cases of large N

Fig. 2. Profiles of eigenfunction U against z
from 0 to 1 in abscissa for high-frequency
modes in case of N = 0. Solid lines for
REAL(U) and dashed lines for IMAG(U).
Panels (a) for ki = 1; (b) for ki = 2; (c) for
ki = 3; and (d) for ki = 4.

show a dramatic contrast of eigenfunctions between the high-and
low-frequency modes.

5.2. Cases of constant No

In Table 2, we present the positive dimensionless frequencies
from the exact solutions of (37) and the numerical errors of
method A with J = 50 and method B with J = 200 for vertical
index ki = 1 to 4 for the two kinds of modes with various values
of No. Contrary to the case of No = 0, the high-frequency modes
whose σ ’s are larger than fV are now the inertio-gravity (IG)
modes and the low-frequency modes are the BII modes.

The exact solutions show that the IG frequency is largest for
ki = 1 and the value decreases as ki increases, while the BII
frequency is smallest for ki = 1 and the value increases as ki

increases. And, as ki increases both frequencies approach to the
value of fV , which is a singular point. When No is sufficiently
larger than fV , we see that the BII frequencies become very
close to fV and rather insensitive to the index ki. In fact, for No =
68.7549 (= 0.01 s−1), the variation of BII frequency with respect
to ki becomes extremely small. We can see how challenging it
is for the numerical methods to calculate the solutions of BII
modes.

Before proceeding further, let us point out the difference in
the numerical procedures between methods A and B. We have
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Fig. 3. Same as Fig. 2, but for
low-frequency modes.

seen that the BII frequency can be very close to fV even for the
low index modes. This means that the value of �2 defined in
(24) is rather large, and therefore, the argument ias�2z of the
harmonic factor for P and W in (26) and (27) becomes large, im-
plying that the eigenfunctions P and W and therefore, U, V and
S too, may become highly oscillatory in z. In method A, these
high variability factors are removed by the variable transforma-
tions and difference schemes are applied to the variables ξ (z)
and η(z). In method B, we instead deal with the original vari-
ables without any measure of easing their high variability. Thus,
method B requires a high vertical resolution and all calculations
are performed with J = 200.

Method A did quite well with J = 50 for calculating the low-
index BII modes as well as IG modes. However, for a large
No, about 6.8754 (=0.001 s−1) and beyond, the high-index BII
modes become inaccurate due to the trend of decreasing σ values
as ki increases in opposite to that of exact solutions. Although
the low-index BII modes will improve as resolution J increases,
i.e. each σ i (�z) converges as �z → 0, the increasing truncation
errors in the higher modes relative to the lower modes remain as
the consequence of any discretized scheme. This is borne out by
the analytical solutions of method A for constant No.

Figure 4 shows the real and imaginary parts of the U-field
of the IG modes for index ki = 1 to 4 and No = 3.4377
(=0.0005 s−1). All the eigenfunctions of IG modes for a small
ki are smooth and calculated accurately by both methods. Also,

the profiles match with our usual expectation of eigenfunctions;
smooth, semi-periodic, and the complexity increases gradually
as index ki increases.

Figure 5 shows the same as Fig. 4, except for the BII modes.
Note that, in contrast to the IG modes, the patterns of U are highly
oscillatory even in low-index modes. Moreover, the patterns of
real and imaginary parts of U show the same general shapes with
a slight shift of phase in z. These oscillatory features appear in
all of the variables, but both methods A and B reproduce the
exact solutions accurately for low-index modes and they are not
artifacts of the numerics. We presented Figs. 2–5, which are
obtained from the exact solutions, but the figures of numerical
eigenfunctions from methods A and B are indistinguishable from
the exact ones on printed scales.

Because the harmonic factor exp (ias�2z) in (26) and (27) is
the cause of highly oscillatory solutions, we anticipate that the
eigenvector magnitude, for example ABS (U), may be smooth
even for the BII modes, as well as the IG modes. Figure 6 demon-
strates that is indeed true. This figure has two panels: Upper (a)
for IG modes and lower (b) for BII modes. Each panel has four
lines; thick solid for ki = 1, thick dashed for ki = 2, thin solid for
ki = 3, and thin dashed for ki = 4. For both IG and BII modes,
the number of maxima moves up from one to four as does the
index ki.

Once the cause of a highly oscillatory nature of BII-mode
functions is known, we can comprehend the difficulty in

Tellus 58A (2006), 3



376 A. KASAHARA AND J. M. GARY

Table 2. Numerical errors of σ from methods A and B for vertical index ki = 1 to 4 for the IG and BII
modes with various values of No. Exact values are from (37)

Inertio-gravity (IG) modes BII modes

ki Exact A50-Ex B200-Ex Exact A50-Ex B200-Ex

No = 0.687549 (=1.e-4 s−1)
1 0.531892 0.000071 −0.000008 0.355685 −0.000041 0.000006
2 0.473355 0.000134 −0.000016 0.383363 −0.000101 0.000013
3 0.455326 0.000195 −0.000023 0.395095 −0.000130 0.000021
4 0.446703 0.000250 −0.000031 0.401467 −0.000219 0.000028

No = 3.437746 (=5.e-4 s−1)
1 1.037911 0.000148 −0.000016 0.415403 −0.000007 0.000000
2 0.648708 0.000277 −0.000033 0.415533 −0.000027 0.000003
3 0.539025 0.000364 −0.000043 0.415731 −0.000057 0.000007
4 0.494092 0.000432 −0.000051 0.415976 −0.000097 0.000012

No = 6.875493 (=1.e-3 s−1)
1 1.923279 0.000287 −0.000039 0.420788 −0.000002 0.000001
2 1.054329 0.000588 −0.000075 0.420790 −0.000007 0.000001
3 0.773748 0.000825 −0.000102 0.420794 −0.000016 0.000002
4 0.645354 0.001004 −0.000124 0.420799 −0.000028 0.000003

No = 34.377467 (=5.e-3 s−1)
1 9.366822 0.001426 −0.000199 0.42254483672 −0.0000001 0.000001
2 4.832801 0.003099 −0.000398 0.42254483687 −0.0000003 0.000003
3 3.254710 0.004705 −0.000595 0.42254483711 −0.0000006 0.000004
4 2.461600 0.006275 −0.000788 0.42254483744 −0.0000011 0.000006

No = 68.754935 (=1.e-2 s−1)
1 18.717955 0.002850 −0.00031 0.422599903966 −0.00000001 0.000001
2 9.637125 0.006182 −0.00079 0.422599903969 −0.00000007 0.000007
3 6.467640 0.009462 −0.00120 0.422599903972 −0.00000016 0.000016
4 4.868099 0.012679 −0.00158 0.422599903978 −0.00000028 0.000027

getting the accurate numerical solution for BII modes for a large
No > 3.4377 (=0.0005 s−1). As we see from Table 2, the BII-
mode σ ’s are very close to fV even for a small ki and the differ-
ence in σ values for different values of ki is very small.

We now estimate the degree of difficulty in calculating the BII-
mode solutions for a large No. In this case, the BII frequency can
be approximated, following (39), in the form

σ 2
I =̇ f 2

V

[
1 − n2 f 2

H

(m2 + n2)N 2
o

]
. (47)

Hence the value of �2 as defined in (24) will be approximated
by

|�2| =̇ (m2 + n2)N 2
o

n fH fV
= 2π

D
, (48)

where we introduced the vertical scale D to represent the vertical
wavenumber �2. Here, for convenience we use original dimen-
sional symbols for the parameters used in this subsection, so that
D has the dimension of length. By assuming that m = n = 2 π/L ,
where L denotes the horizontal scale of motion, we obtain the

ratio D/L that can be expressed as

D

L
= fH fV

2N 2
o

. (49)

By choosing that fV fH = 0.8 × 10−8 s−2 at φ = 25◦N, the
value of D/L becomes 0.4 × 10−4 for No = 10−2 s−1 and 0.4 ×
10−2 for No = 10−3 s−1 . Thus, in this range of No the value of
D varies from 2 to 200 m for L = 50 km. This means that even
the use of J = 200 in method B may be too coarse for accurate
calculations of BII eigenfunctions for a large No.

In contrast, for the IG modes the magnitude of �2 becomes
very small so that the factor exp(ias�2z) is practically unity and
can be neglected. This is the case of the IG modes.

The high vertical variability of BII-mode eigenfunctions is
first noted by Thuburn et al. (2002, Fig. 7) who presented the
eigenfunctions of the zonal wind component and the pressure
which are strongly tilted with a very high vertical variability
of ‘typically a few meters to few hundred meters’ in vertical
wavelength.

Because numerical prediction models are primarily formu-
lated in multiple space dimensions like the system (1)–(5), it
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Fig. 4. Profiles of eigenfunction U against z
from 0 to 1 in abscissa for lG modes in case
of N 0 = 5 × 10−4 s−1. Solid lines for
REAL(U) and dashed lines for IMAG(U).
Panels (a) for ki = 1; (b) for ki = 2; (c) for
ki = 3; and (d) for ki = 4.

Fig. 5. Same as Fig. 4, but for BII modes.
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Fig. 6. Profiles of ABS(U) in case of N 0 = 5 × 10−4 s−1. Upper (a)
for IG modesl; lower (b) for BII modes. Each panel has four lines; thick
solid for ki = 1; thick dashed for ki = 2; thin solid for ki = 3; and thin
dashed for ki = 4.

is important to investigate the characteristics of BII modes in
method B with a moderate grid resolution. Namely, our purpose
is not necessarily to get high accuracy solutions with high grid
resolution, but to find out what will happen in moderate resolu-
tion numerical prediction models by including the fH-terms.

Actually, run B200 did surprisingly well even for No =
0.01 s−1 in calculating at least several lowest BII modes. As
for the eigenfunctions of BII modes for a large No, both method
A and B produced highly oscillatory eigenfunctions which are
difficult to compare with the exact solutions. However, as shown
in Fig. 6, the absolute values of eigenfunctions, say ABS (U), are
smooth. Run A50 produced the absolute values of eigenfunctions
accurately only for low-index BII modes. The absolute values of
BII eigenfunctions from run B200 are off in their magnitudes,
but the shapes are reproduced well considering the handicap of
method B.

5.3. Case of exponential profile of N

Now, we consider the case of variable N(z). For application to
the problem of near-inertial oscillations in the oceans, we select
the following form of N(z):

N (z) = NT exp
[
b(z − Hs)H−1

s

]
, (50)

where NT = 7.4 × 10−3 s−1 and b = 3.5. These values are adopted
from Fu (1981). The value of N decreases exponentially from
7.4 × 10−3 s−1 at the top z = Hs to 2.2 × 10−4 s−1 at the bottom
z = 0.

In the case of fH = 0, Garrett and Munk (1972) obtained
the normal mode solutions of the Boussinesq model with the
exponential form of N(z) by using Bessel functions. Since we
are using finite-difference methods to solve our problem, we face
one unique issue. That is how to select the solutions in order of
increasing index ki, because the outputs of eigensolutions from
the matrix routines do not list necessarily from the lowest modes.
The identification of IG modes is easy, because the lowest mode
corresponds to the solution with the largest eigenvalue and the
ordering of modes in terms of increasing index ki can be done in
the order of decreasing eigenvalues. In contrast, the identification
of BII modes is not straightforward, because their eigenvalues
are usually very close to each other. To identify the BII modes,
we must examine the smoothness of all eigenfunctions including
their magnitudes. Above all, the comparison of solutions from
two different numerical methods is very useful, as the low-index
normal modes are reproduced reliably in the numerical solutions
with good resolutions.

Table 3 shows the frequencies of the IG (upper) and BII (lower)
lowest 4 modes with varied resolutions J = 50 and 100 for
method A and J = 50, 100 and 200 for method B. We can see the
systematic trends in the changes of σ values as the grid resolution
increases in both methods. For example, A100 values rather than
A50’s are close to the B200 values, which are presumably most
accurate as the increase of grid resolution is leading to them.
This observation applies to both types of modes.

Table 3. Eigenfrequencies σ from methods A and B for vertical index
ki = 1 to 4 for IG and BII modes with the exponential N

ki A50 A100 B50 B100 B200

IG modes
1 4.283613 4.282015 4.277027 4.280368 4.281202
2 2.098151 2.094128 2.082053 2.090098 2.092116
3 1.423694 1.417499 1.399343 1.411393 1.414440
4 1.103981 1.095742 1.072314 1.087783 1.091740

BII modes
1 0.4225696 0.4109196 0.4113164 0.4110529 0.4109863
2 0.4225563 0.4148294 0.4155644 0.4150778 0.4149537
3 0.4225445 0.4165106 0.4175371 0.4168599 0.4166857
4 0.4225285 0.4174847 0.4187756 0.4179272 0.4177069
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Fig. 7. Profiles of W of IG modes in height z
for exponential N(z). In the sequence of ki

from 1 to 4, left panels (a) to (d) for
REAL(W) in solid line and IMAG(W) in
dashed line; right panels (aa) to (dd) for
ABS(W).

Figure 7 presents the profiles of W of IG modes in height z.
In the sequence of ki from 1 to 4, the left-hand side (a) through
(d) show for real (W) in solid line and imag(W) in dashed line.
The right-hand side (aa) through (dd) show for the absolute
value of W. Since the imag(W) is generally small compared with
real (W), the ABS(W) reflects mostly the real (W). The max
of ABS(W) moves downwards as ki increases, leaving behind
wavy structures whose magnitudes are smaller than the major
peak. The profiles of variable S, which are not shown here, are
essentially similar to those of W, but the wavy structures are
heavily weighted in the upper part of the model because of large
N there.

Figure 8 presents the same as shown in Fig. 7, except for
the BII modes. In contrast to Fig. 7, we see the actions take
place in the lower part of the model. Moreover, unlike the IG
modes the imaginary parts of W are just as large as the real

parts. Also, the peak of ABS(W) starts from near the bottom
and gradually moves upwards as ki increases, leaving behind
wavy structures. This trend likely continues as ki gets larger,
but the numerical solutions probably become very inaccurate
for a large ki due to the fact that the corresponding σ becomes
very close to fV . With respect to the S profiles of BII modes,
which are not shown here, the overall features are similar to
those of the W profiles. However, the patterns are modified by
the upwards increase of N, i.e. the leading peak of ABS(S) stands
out more clearly than that of ABS(W) as it moves upwards as ki

increases.
Figure 9 presents the same IG modes shown in Fig. 7, except

for the variable U. Again, the actions dominate the upper part of
the model as a common feature of IG modes. In fact, the major
peak of ABS(U) stays at the top of the model. The imaginary
part of U is nearly in phase with the real part and contributes to
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Fig. 8. Same as Fig. 7, but for BII modes.

ABS(U). The profiles of V and P are not shown here, but they
share the same general features found in U.

Figure 10 presents the same as Fig. 8, except for the variable
U. Unlike the IG modes, the actions of BII modes dominate in
the lower part of the model and move upwards as ki increases. In
fact, ABS(U) near the bottom remains substantial and changes
little in height. The profiles of ABS(V), not shown, are identical
to those of ABS(U). The profiles of P, which are not shown
here, share the common features of the BII modes. In fact, the
profiles of ABS(P) are remarkably similar to ABS(W) for BII
modes rather than ABS(U). In the case of IG modes, the profiles
of ABS(P) are very similar to ABS(U) and not similar at all to
ABS(W).

We can summarize the results of numerical solutions of this
case in one sentence: The BII modes are complementary to the
IG modes in their properties.

6. Conclusions

The emergence of the ‘boundary-induced inertial (BII)’ modes
in fluid models which include both the vertical and horizontal
components of Coriolis force has been noted so far only in
the continuum models of constant Brunt-Väisälä frequency N
through analytical studies. Because the BII modes are near-
singular solutions, the question arises how such modes can ap-
pear in the discretized numerical stratified fluid models with
finite freedom under a variable condition of N(z) in height z. To
that end, we investigated the numerical solutions of the normal
modes of Boussineq model of variable N(z) suitable to study
the internal waves in the ocean under the complete influence of
rotation.

Because the frequencies of BII modes are close to the inertial
frequency and the near-inertial oscillations are dominant in the
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Fig. 9. Profiles of U of IG modes in height z
for exponential N(z). In the sequence of ki

from 1 to 4, left panels (a) to (d) for
REAL(U) in solid line and IMAG(U) in
dashed line; right panels (aa) to (dd) for
ABS(U).

power spectrum of ocean currents, we selected the exponential
form of N(z) following Garrett and Munk (1972) and Fu (1981).
Although the value of N varies in the order of magnitude from
the top to the bottom of the model, the low-index modes of both
IG and BII oscillations are calculated satisfactorily by two finite-
difference schemes. The horizontal motions of IG modes appear
dominantly in the upper part of model and the vertical profiles
of modes resemble those obtained by Garrett and Munk (1972).
In contrast, the horizontal motions of BII modes are dominant
in the lower part of the model. This is a unique finding of this
study.

The fact that the BII modes appear complementary with the
IG modes may have a significant implication on the physics of
near-inertial oscillations (NIOs), which are a subject of current

interest (Klein and Smith, 2001). The NIOs are internal waves
with frequencies close to fV . They are ubiquitous, though in-
termittent, phenomena from the subtropics to polar regions at
all depths (e.g. Webster, 1968). They are likely generated by
atmospheric disturbances and many investigations have been
conducted to elucidate the mechanism of generation and the ver-
tical structures of the NIOs.

There is a large amount of literature concerning the observa-
tional and theoretical-numerical studies on the NIOs. In fact, the
November 1995 issue of the Journal of Physical Oceanography
contains a collection of papers on this subject resulting from the
Ocean Storms Experiment (D’Asaro et al., 1995). What is rele-
vant to our present finding is to point out that the consideration of
the complete Coriolis forces may lead to a better understanding of
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Fig. 10. Same as Fig. 9, but for BII modes.

the physics of NIOs. Pollard (1970), Kroll (1975), Gill (1984),
Kundu and Thomson (1985), Zervakis and Levine (1995) and
many others have investigated the propagation of wind-generated
NIOs from the surface to the bottom using the IG normal modes
as the expansion functions to represent the vertical profiles of
NIOs. One vexing question that seems to be still relevant today
has been, as stated by Pollard (1970), that ‘the model cannot
account for the amplitudes of inertial waves observed at great
depth.’ Because the BII normal modes appear dominantly in
the lower part of the model as complementary to the IG normal
modes, it is an attractive proposition to include the role of the BII
modes along with the IG modes as joint actions in modelling the
mechanism of the NIO generation. After all, it is not justifiable
to neglect the role of the horizontal component of the earth’s ro-

tation in the stratified model if our interest is in the wave motions
whose frequencies are close to the Coriolis frequency.
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8. Appendix A. matrix problem of method A

Equation (44) can be rewritten compactly as(
Gσ 4 − F1 σ 2 − F2

)
D = 0, (A1)

where D is defined below as a vector consisting of the values of
η j at the integer levels (Fig. 1).

D = (η1, η2, . . . . ηJ−1)T . (A2)

Note that the boundary values of ηo and ηJ , which are zero, are
excluded in the vector D. Other symbols are defined by

G = (�z)−2Ã − a2
s (m2 + n2)I, (A3)

F1 = 2 f 2
V (�z)−2Ã + 1

4
a2

s f 2
H m2 B̃

− a2
s

(
f 2

V + f 2
H

)
(m2 + n2)I − a2

s (m2 + n2)N, (A4)

F2 = − f 4
V (�z)−2Ã + a2

s f 2
V (m2 + n2)N, (A5)

Ã =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 1 0 0 .

1 −2 1 0 .

.

. 0 1 −2 1

. 0 0 1 −2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A6)

B̃ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 0 .

1 2 1 0 .

.

. 0 1 2 1

. 0 0 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A7)

N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N 2
1 0 0 . .

0 N 2
2 0 . .

.

. . 0 N 2
J−2 0

. . 0 0 N 2
J−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A8)

and I is the unit matrix.
The polynomial matrix eq. (A1) can be solved as the second-

order equation in σ 2 by setting up a 2 × 2 block matrix lin-
ear eigenvalue problem in a manner similar to that adopted by
Simmons and Temperton (1997). By further rewriting (A1) as(
σ 4I − σ 2 M1 − M2

)
D = 0, (A9)

where

M1 = G−1 F1 and M2 = G−1 F2, (A10)

we can obtain the eigenvalue σ 2 and associated eigenvectors by
solving the standard eigenvalue problem in the form(

O I

M2 M1

)(
D

σ 2 D

)
= σ 2

(
D

σ 2 D

)
. (A11)

9. Appendix B. details of how to find the
solution of method B

In the mathematical analysis of the generalized eigenvalue-
eigenvector problem (A − σB) X = 0, the solution is taken
to be a pair of numbers (α, β), along with the vector X such that
(βA − αB) X = 0. Pairs with the same ratio, α/β, are considered
equivalent. If β �= 0, then σ = α/β is the solution we are looking
for. However, to study the numerical properties of the solution, it
is necessary to look at the number pairs. The LAPACK software
routine, ZGGEVX, (Anderson et al., 1999) that we use reports
the solution in terms of the pairs.

Consider the system

A =
(

1 0

0 0

)
B =

(
0 0

0 1

)
. (B1)

The solutions are (α, β) = (1, 0) and (α, β) = (0, 1) with corre-
sponding eigenvectors (1, 0) and (0, 1). The characteristic poly-
nomial for this problem has degree one, namely

det(A − σB) = σ = 0. (B2)

There are two solutions if the problem is formulated in terms of
(α, β), but only one if formulated in terms of σ .

The routine ZGGEVX provides an estimate of the error in the
solution caused by the finite word-length of the computer. These
estimates are in the form of inverse condition numbers for each
computed eigenvalue and eigenvector. The inverse condition
numbers are RCONDE(i) for the ith eigenvalue and RCONDV(i)
for the ith eigenvector. These numbers provide an estimate of the
distance between the exact solution pair (α, β) and the computed
pair (α̂, β̂). This distance is defined by

D((α, β), (α̂, β̂)) = |αβ̂ − βα̂|√|α2| + |β2|
√

|α̂2| + |β̂2|
. (B3)

The estimated error in the computed ith eigenvector pair mea-
sured by (B3) is ε ‖A, B‖/RCONDE (i), where ε is the machine
precision and ‖A, B‖ =

√
‖A‖2

1 + ‖B‖2
1 is obtained from the

Euclidean one norm of the matrices. We use these condition
numbers to select the eigenvalue pairs α(i)/β(i) that correspond
to acceptable standard eigenvalues σ (i) =α (i)/β (i). We require
|α/β| < 106 and RCONDE(i) > 10−8.

By adding a ‘pressure change’ term to the continuity eq. (4)
we can obtain high frequency modes similar to sound waves in
the eigensolutions. We find that all the eigenvalue pairs are well
conditioned if sound waves are included in the model (i.e. the
compressible model), but in the incompressible model the high-
frequency sound waves are replaced by eigenvalue pairs that are
ill-conditioned. In general, for the incompressible case, we find
that an approximation using J cells will have J − 1 modes with
positive eigenvalue, J − 1 negative, J + 1 zero, 2J ill-conditioned
modes, and 2 well conditioned modes with β = 0. The latter 2
modes are a consequence of including the boundary conditions,
Wo = WJ = 0 to the set of equations instead of incorporating
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the boundary conditions into the finite difference scheme. The
ill-conditioned modes are ruled out from further discussion.
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