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ABSTRACT
Probabilistic forecasts of near-term climate change are derived by using a multimodel ensemble of climate change
simulations and a simple resampling technique that increases the number of realizations for the possible combination of
anthropogenic climate change and internal climate variability. The technique is based on the assumption that the proba-
bility distribution of local climate changes is only a function of the all-model mean global average warming. Although
this is unlikely to be exactly true, cross-verification indicates that the resulting biases are more than compensated by the
increased sample size provided by the method. The resulting forecasts for southern Finland suggest a 95% probability
of annual mean warming and an 80% probability of increased annual mean precipitation from the years 1971–2000
to 2011–2020 under the SRES A1B emissions scenario. The choice of the emissions scenario is unimportant for such
short-term forecasts but becomes gradually more important towards the late 21st century. The simulations also suggest
that the probability of near-term warming that is large enough to be discernible from internal variability is largest in the
tropics where internal temperature variability is small, not in the Arctic where the average model-simulated warming is
largest.

1. Introduction

Projections of anthropogenic climate change often have a long-
time perspective. One of the best-known results from the Third
Assessment Report of the Intergovernmental Panel on Climate
Change (Houghton et al., 2001) is the prediction that the global
mean temperature in the year 2100 would be 1.4◦–5.8◦C higher
than in the year 1990. A centennial timescale has also been com-
mon in regional studies, such as in the PRUDENCE (Prediction
of Regional scenarios and Uncertainties for Defining EuropeaN
Climate change risks and Effects) project (Christensen et al.,
2002) in which several regional climate models were used to
simulate European climate changes from 1961–1990 to 2071–
2100.

A focus on a relatively distant future is partly motivated by
the needs of climate policy. To estimate the urgency of emission
reductions, information on the possibly severe long-term con-
sequences of unmitigated greenhouse gas emissions is needed.
However, there is also an important technical viewpoint. The
larger the greenhouse-induced climate changes grow, the eas-
ier it is to distinguish them from natural variability. Conversely,
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natural variability is sometimes considered to make short-term
(say, 10–20 yr) climate projections too uncertain to be of any
practical value. Yet, when considering adaptation to climate
changes, century-scale climate projections are directly relevant
only for sectors such as forestry and water authorities that have
a very long planning horizon. For many parts of the society,
shorter-term projections would be more useful, among other
things for giving people a realistic idea of the climate changes
expected in their own lifetimes.

Here, we explore prospects of near-term climate change in
probabilistic terms, using a multimodel ensemble of recent cou-
pled atmosphere-ocean general circulation model (AOGCM)
simulations. The climate change projections obtained from the
individual models differ both because the models are different
and because each model simulation has its own realization of
unforced natural variability (e.g. Räisänen, 2001a). Thus, to the
extent that differences between the models cover the uncertainty
in modelling climate processes and the amplitude of the sim-
ulated variability is realistic, the multimodel ensemble gives a
plausible sample of the climate changes that may occur under
a given forcing scenario. However, the limited number of mod-
els included in the ensemble (in our case, at best 21) makes
the sample rather small for estimating, in particular, the tails
of the underlying probability distribution. A simple resampling
methodology is, therefore, used to enlarge the samples. Objective
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Table 1. The models used in this study. Models marked with a star (∗) did not provide data for the B1 and/or A2
scenario(s) and are, therefore, excluded in Section 7. For more details, see http://www-pcmdi.llnl.gov

Model Institution

CCSM3 National Center for Atmospheric Research, USA
CGCM3.1 (T47) Canadian Centre for Climate Modelling and Analysis
∗CGCM3.1 (T63) Same as previous
CNRM-CM3 Météo-France
CSIRO-MK3.0 CSIRO Atmospheric Research, Australia
ECHAM5/MPI-OM Max Planck Institute (MPI) for Meteorology, Germany
ECHO-G University of Bonn and Model & Data Group, Germany; Korean Meteorological Agency
∗FGOALS-g1.0 Chinese Academy of Sciences
GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory, USA
GFDL-CM2.1 Same as previous
∗GISS-AOM Goddard Institute for Space Studies, USA
∗GISS-EH Same as previous
GISS-ER Same as previous
INM-CM3.0 Institute for Numerical Mathematics, Russia
IPSL-CM4 Institut Pierre Simon Laplace, France
∗MIROC3.2 (hires) Center for Climate System Research, National Institute for Enviromental Studies

and Frontier Research Center for Global Change, Japan
MIROC3 (medres) Same as previous
MRI-CGCM2.3.2 Meteorological Research Institute, Japan
PCM National Center for Atmospheric Research, USA
UKMO-HadCM3 Hadley Centre for Climate Prediction and Research / Met Office, UK
∗UKMO-HadGEM Same as previous

probabilistic cross-verification indicates that the increased sam-
ple size outweighs biases eventually caused by the resampling
itself.

In the next two sections of this paper, we describe the model
simulations used for this study and the resampling technique
used to increase the sample size. In Section 4, the performance
of the technique is compared in a cross-verification mode with
the standard technique of only using each simulation once. Sec-
tion 5 evaluates the success of the technique in hindcasting the
climate changes that occurred from 1961–1990 to 1991–2000.
The next section gives probabilistic forecasts of climate change
for the early 21st century and later periods, based on the SRES
A1B emissions scenario. Most of the examples are for southern
Finland but selected results are also shown for other areas to
highlight, in particular, the implications of the geographically
varying amplitude of internal climate variability. In Section 7,
the sensitivity of the findings to the choice of the emissions sce-
nario is studied. Finally, the results are summarized and some
issues related to their interpretation are discussed in Section 8.

2. Data set

We use a new set of AOGCM simulations performed for the
Fourth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC AR4) (Table 1). First, the data set
includes ‘20th Century Climate in Couple Climate Models’

(20C3M) simulations covering the 20th century and forced by a
mixture of anthropogenic and (in most models) natural forcing
factors. The details of the forcing vary with model, but all mod-
els include at least the increase in major anthropogenic green-
house gases and some representation of anthropogenic aerosols.
Second, there are 21st century simulations with anthropogenic
greenhouse gas and aerosol forcing based on the SRES A1B,
B1 and A2 emissions scenarios (Nakićenović and Swart, 2000).
Altogether, there are 21 models with data for both the 20C3M
and A1B simulations. Of these, 15 also have data for both the
B1 and A2 scenarios (Table 1). Although parallel runs started
from slightly different initial conditions are available for some
models, only one model run per one forcing scenario is used in
this study. Third, the data set also includes long (at least 200 yr
for almost all models) control simulations with constant exter-
nal conditions. These simulations are used in Sections 5 and 6
to estimate the probability distribution of climate changes in the
absence of external forcing.

Throughout this study, we assume that all models give equally
plausible simulations of climate change and thus deserve the
same weight in the calculations. Alternatives to this simple
method have been proposed (e.g. Giorgi and Mearns, 2002;
2003) but are not considered here. Note that weighting between
models is less of an issue for near-term than long-term climate
changes because, for weak forcing, the uncertainty in climate
changes is dominated by internal variability rather than by model
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differences (Räisänen, 2001a). Similarly, while observations do
not allow us to exclude the possibility that the sensitivity of the
real climate system to increasing greenhouse gas forcing would
be outside the range of current model results (Allen and Ingram,
2002; Andreae et al., 2005), this is less of a problem for short-
than for long-term forecasts.

3. Methods

We focus on decadal means of temperature and precipitation
in the early 21st century. Although 30 yr means are standard
in the definition of climatic means, we prefer the decadal scale
here because it is probably better compatible with the perception
of climate by lay people. However, 30 yr means for the period
1971–2000 are used for the definition of the baseline climate
from which the changes are calculated.

An example of the simulated near-term climate changes un-
der the A1B forcing scenario—the annual mean temperature
and precipitation changes from 1971–2000 to 2011–2020 in a
grid box in southern Finland (60◦N, 25◦E)—is given by the 21
black markers in Fig. 1. The markers are strongly concentrated
in the upper right quadrant representing increased temperature
and precipitation. Thus, at this time already, the greenhouse-gas-
dominated forcing has a large impact on the distribution of the
model results. Yet, 21 simulations is not a large sample for es-
timating the underlying distribution that would be obtained if

Fig. 1. Changes from 1971–2000 to 2011–2020 in annual mean
temperature (◦C, horizontal axis) and precipitation (%) in southern
Finland (60◦N, 25◦E). Black markers: as simulated by 21 models under
the SRES A1B emissions scenario. Grey markers: as inferred from the
resampling ensemble.

an infinite number of model simulations from the same hypo-
thetical population were analysed. A sample of this size gives
essentially no information below the 5th and above the 95th per-
centile of the distribution, and substantial sampling errors occur
even in the middle of the distribution. For example, if a given
value of climate change is exceeded with a probability of 50%
in the underlying distribution, the root-mean-square error when
estimating the probability of this value from a sample of 21 is
[1/2 × (1 − 1/2) / 21]1/2 ≈ 11%.

To increase the sample size, a simple resampling method is
used. This method is based on the finding that, apart from the ran-
dom noise associated with internal variability, model-simulated
climate changes tend to scale quasi-linearly with the change
in global mean temperature (e.g. Santer et al., 1990; Mitchell
et al., 1999; Huntingford and Cox, 2000; Mitchell, 2003;
Harvey, 2004), at least for forcing scenarios dominated by in-
creased greenhouse gas concentrations.

As an example, Fig. 2 shows the 21-model mean changes in
annual mean temperature for two pairs of periods (from 1971–
2000 to 2011–2020 and from 2051–2080 to 2086–2095) that
share under the A1B scenario the same difference (0.62◦C) in
21-model mean global mean temperature. The overall patterns
of change are very similar in the two cases. Although some dif-
ferences are visible (in particular, the warming over the Arctic
Ocean is larger in the former than in the latter case), these are
much smaller than the differences between the individual model
simulations for either of the two pairs of periods. It is, there-
fore, reasonable to assume that temperature changes (which are
always a combination of a model-dependent signal and internal
variability) should follow approximately the same probability
distribution in the two cases.

Thus, we assume that the probability distribution of climate
changes is determined simply by the multimodel mean change
in the global mean temperature. Under this assumption, we can
form a resampling ensemble for the climate change from period
P1 (e.g. 1971–2000) to P2 (e.g. 2011–2020) that includes all
the pairs (P3, P4) (e.g. 2051–2080, 2086–2095) for which the
multimodel mean global warming is the same as from P1 to P2.
In practice, we subsample P4 with 5 yr interval and select for
each P4 the 30 yr period P3, which gives the closest match to
the target multimodel mean global warming. P3 and P4 are not
allowed to overlap, and the multimodel global mean warming is
required to match the target value within 0.03◦C.

From the time-series obtained from the 20C3M and A1B sim-
ulations (years 1901–2098), our algorithm finds 20 suitable pairs
(P3, P4) for the target pair of periods (1971–2000, 2011–2020),
the first being (1906–1935, 1991–2000), the second (1932–1961,
1996–2005), the second last (2047–2076, 2081–2090) and the
last (2051–2080, 2086–2095). The number of available pairs
for cases with P2 later in the 21st century is smaller because
the larger target global means warming in these cases can-
not be achieved with P4 much before P2. For example, for
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Fig. 2. 21-model mean changes in annual mean temperature under the A1B scenario (a) from 1971–2000 to 2011–2020 and (b) from 2051–2080 to
2086–2095.

(P1, P2) = (1971–2000, 2041–2050) 13 pairs are found, whereas
only 7 pairs are found for (1971–2000, 2071–2080).

In Fig. 1, the resulting 20 × 21 = 420 realizations of climate
change for (P1, P2) = (1971–2000, 2011–2020) are shown by the
small grey markers. As expected, the increase in ensemble size
reveals a wider range of possible temperature and precipitation
changes than the simulated changes for the target pair of periods
only. The probability of warming as inferred from the resampling
ensemble is practically the same as inferred directly from the
changes simulated from 1971–2000 to 2011–2020 (95%). The
probability of precipitation increase is smaller for the resampling
ensemble (80% versus 95%), but the difference is not statistically
significant.

Because of the subsampling, our realizations of climate
change are only partly independent. However, cross-verification
with methods described in Section 4 indicated the subsampling
to be a better alternative than the use of independent periods.
Subsampling with 1 yr interval worked even better than the 5 yr
interval, but the difference was small, obviously because the sub-
sequent realizations of climate change become highly correlated
in this case. Thus, the 5 yr interval was preferred to reduce the
computations.

Our resampling method has similarities with the pattern-
scaling technique first introduced by Santer et al. (1990). How-
ever, while pattern-scaling methods are generally designed for
obtaining a good estimate of the noise-free climate change signal
(e.g. Mitchell, 2003), our method aims to produce a realistic dis-
tribution for the combination of the signal and the noise caused
by internal variability.

The resampling provides a computationally cheap alternative
for exploring the uncertainty associated with internal climate
variability, which can also be studied by running climate mod-
els several times with identical forcing but different initial condi-
tions. This should not be mixed with the aims of the perturbed-
parameter technique, which is currently applied on a massive
scale in the ClimatePrediction.net project (Stainforth et al., 2005)
and is hoped to cover model-related uncertainty more completely
than is possible with traditional multimodel ensembles like the
one used in this study.

4. Cross-verification

In comparison with the standard method of only using each
model simulation once, the larger sample size allowed by the
resampling reduces random errors in the derived probability
estimates. On the other hand, the resampling may introduce
systematic errors, since its basic assumption is unlikely to be
exactly valid. Even for the same global mean warming, the pat-
terns of climate change may vary for at least two reasons. First,
the spatial patterns of forcing change with time, because the ge-
ographical distribution of aerosol forcing and its importance in
relation to greenhouse gas forcing change with time under the
SRES scenarios. Second, the regional distribution of the feed-
backs that regulate the magnitude and distribution of climate
changes may change as the global warming proceeds. For ex-
ample, the ice-albedo feedback may become gradually less im-
portant with successively decreasing ice cover (Mitchell et al.,
1999), which might in fact contribute to the smaller warming
over the Arctic Ocean in Fig. 2(b) than 2(a). It is, therefore, nec-
essary to ask whether the increased sample size outweighs the
systematic errors eventually caused by the resampling.

To answer our question, we use cross-verification. The climate
changes in one of the 21 models are chosen as a pseudo-truth,
against which the probability distributions derived from the other
model simulations either with the standard method or with the
resampling ensemble are verified. This is then repeated for all
choices of the verifying model and the verification statistics is
averaged over all cases.

A basic verification statistic for probability forecasts is the
Brier score B (Brier, 1950; Wilks, 1995). Consider a binary event
E. For example, E might be defined to occur if the mean tem-
perature in a given decade and location is at least 1◦C above the
normal. As evaluated over N cases

B =
N∑

i=1

mi (pi − oi )
2

/
N∑

i=1

mi , (1)

where oi = 1 (0) if E occurs (does not occur) in case i and pi

is the corresponding forecast probability. mi is the weight given
to case i; here we weight grid boxes according to their area.
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The better the forecast, the lower the Brier score. For a perfect
deterministic forecast system, which gives a probability of 1 (0)
always when E occurs (does not occur), B = 0.

The Brier score can be evaluated for any threshold value ξ used
in the definition of E. Integrating B over ξ gives the continuous
ranked probability score CRPS (Stanski et al., 1989; Herbach,
2000; Candille and Talagrand, 2005)

C R P S =
∫ ∞

−∞
B(ξ )μ(ξ ) dξ, (2)

where μ(ξ ) is a weighting function. Here, we use unity weight-
ing (μ(ξ ) = 1) for temperature changes in the whole real axis.
For precipitation changes, unity weighting is used from -100%
to 200% but zero weighting above 200%, to avoid CRPS from
being unduly affected by the huge per cent changes that occasion-
ally occur in models in desert areas where absolute precipitation
approaches zero.

We evaluated CRPS in cross-verification mode and averaged
the resulting score over all choices of the verifying model and
over the global domain. Examples of the results for the A1B
scenario are shown in Table 2. The CRPS scores for the resam-
pling ensemble are consistently lower than those for the standard
method, although the improvement is smaller in the later peri-
ods (2041–2050 and 2071–2080) than in the early 21st century
(2011–2020). As a sensitivity test we also repeated these calcula-
tions for absolute precipitation changes, which are well defined
even in dry areas, and found almost exactly the same ratios of
CRPS scores as for the relative changes (not shown).

The decreases in CRPS achieved by the resampling may ap-
pear small. However, most of the CRPS is attributable to the in-
herent variation of climate changes between models. Denoting
the score that would be obtained if the probability distribution of
the data were known exactly (e.g. from an infinite ensemble) as
CRPS∞, the expected value of cross-verified CRPS when using

Table 2. Cross-verification CRPS (see text) for the
standard method, and the ratio between the CRPS scores for
the resampling ensemble method and the standard method.
Ratios below one indicate improvement. Results are shown
for annual mean temperature and precipitation changes in
the years 2011–2020, 2041–2050 and 2071–2080 under the
A1B emissions scenario, relative to the baseline period
1971–2000. The ratios for seasonal and monthly climate
changes are slightly lower (not shown)

Temperature Precipitation

Standard Ratio Standard Ratio

2011–2020 0.188◦C 0.963 4.34% 0.964
2041–2050 0.285◦C 0.980 5.60% 0.973
2071–2080 0.417◦C 0.987 7.04% 0.982

a M-member forecast ensemble is

CRPSM =
(

1 + 1

M

)
CRPS∞, (3)

when the M forecast values are independent from each other
(Appendix). In our cross-verification, the forecast ensemble size
for the standard method was M = 20 and from (3) CRPS∞ is
only 4.8% below CRPS20. From this perspective the decreases in
CRPS achieved by the resampling are substantial, particularly for
the period 2011–2020. The smaller relative decreases in the later
periods probably relate to the facts that (1) the number of resam-
pled realizations per model was smaller in the later periods and
that (2) the directly model-related differences in climate change
grow in magnitude with increasing forcing (Räisänen, 2001a).
Because of (2), realizations obtained from a single model, which
only sample the uncertainty due to internal variability, are less
independent of each other for a stronger forcing.

5. Verification against recent observed
climate changes

Cross-verification only tests the sampling properties of a proba-
bilistic forecast method. If the sample from which the forecast is
derived is biased, for example if the models systematically over-
or underestimate the magnitude of natural variability or if they
misrepresent climate response to anthropogenic forcing, the real
skill of the forecasts may be compromised. As a brief check of
our method against reality, we compared the observed tempera-
ture and precipitation changes from 1961–1990 to 1991–2000 as
presented by the Tyndall Centre TYN SC 2.0 data set (Mitchell
et al., 2004) with the model-based probability distributions. In
addition to the distributions derived from the forced 20C3M and
A1B simulations, the corresponding distributions of 10 yr mi-
nus 30 yr climate changes from the unforced control simulations
were also used in this exercise.

Almost all land areas covered by the TYN SC 2.0 data set ex-
perienced annual mean warming from 1961–1990 to 1991–2000
(Fig. 3a). This warming was consistent with the probability dis-
tributions estimated from the forced simulations (Fig. 3b): the
fractional area with observed temperature change outside the
5–95% range of the model-based distribution was only 8%, of
which 3% in the cold and 5% in the warm end of the distri-
bution. Similar results were obtained in the individual 3 month
seasons, with the total fraction of observed temperature changes
outside the model-based 5–95% range varying from 6% in the
boreal autumn to 14% in winter. Thus, the temperature forecasts
were reliable in a probabilistic sense: the observed changes fell
in the tails of the distributions approximately as often as on the
average expected from pure chance. For precipitation changes,
however, slight symptoms of unreliability were found (maps not
shown). The fractional area with observed precipitation change
outside the 5–95% range of the model-based distribution var-
ied from 11% (summer) to 17% (winter and the annual mean
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466 J . RÄ ISÄNEN AND L. RUOKOLAINEN

Fig. 3. (a) Observed (TYN SC 2.0, covering land at 60◦S–90◦N)
annual mean temperature changes from 1961–1990 to 1991–2000, and
grid boxes in which the observed changes fell in the bottom (lightest
shading) or the top (darkest shading) 5% of the distribution derived
from (b) the forced simulations and (c) the unforced control
simulations.

change). This bears a suggestion that the models might under-
estimate precipitation variability on interdecadal timescales, but
other factors such as observational errors and temporal inhomo-
geneities might also play a role.

The observed changes were also compared with the distribu-
tion of 10 yr minus 30 yr climate changes from the unforced

control simulations. The observed annual mean temperature
change was in the top 5% of this distribution in 58% of the
studied area, but nowhere in the bottom 5% of the distribution
(Fig. 3c). This is consistent with the findings of Karoly and Wu
(2005), who showed that the recent warming has been statisti-
cally significant in a much larger part of the world than can be
explained by internal climate variability. In marked contrast, the
fraction of observed precipitation changes falling in the top and
bottom 5% of the distribution was practically the same for the
forced and the unforced simulations. This primarily reflects the
much lower signal-to-noise ratio of precipitation than tempera-
ture changes but could also be affected by errors in the models
and/or observations.

6. Probabilistic estimates of climate change
under the A1B emissions scenario

Probabilistic forecasts of temperature and precipitation change
for a grid box in southern Finland (60◦N, 25◦E) from the 30 yr
period 1971–2000 to the decade 2011–2020, as derived with the
resampling ensemble method, are shown in Fig. 4. The calcu-
lation suggests a 95% probability of annual mean warming and
an 80% probability of increasing annual precipitation (rightmost
whiskers in Figs. 4a and b), with a 5–95% uncertainty range of
0.0◦–1.9◦C (−4 to 11%) for temperature (precipitation) change.
Uncertainty ranges for the changes in seasonal and particularly
monthly 10 yr means are wider than those for the annual means,
due to increasing variability with decreasing temporal averaging.
However, for temperature the width of the distribution differs
only slightly between the summer (June–July–August = JJA)
mean and the annual mean.

For both temperature and precipitation, the best-estimate in-
creases as inferred from the median of the distribution are largest
in winter and smallest in summer, in agreement with earlier stud-
ies of simulated greenhouse gas induced climate change in north-
ern Europe (e.g. Räisänen, 2001b). However, the uncertainty in
temperature change is also much larger in winter than in summer,
reflecting the seasonal contrast in the amplitude of temperature
variability in this part of the world. The estimated probability of
warming, therefore, varies only slightly with the time of the year,
being approximately 90% for seasonal and 80–85% for monthly
mean changes. For precipitation, the probability of increase is
distinctly larger in winter than in summer, but a substantial proba-
bility of reduced precipitation remains in all seasons and calendar
months.

As time proceeds, the best-estimate temperature and precip-
itation changes increase in magnitude, as shown for the annual
means in Fig. 5. At the same time, the estimated probability dis-
tributions grow wider. This is because the uncertainty associated
with model differences, which is initially small compared with
internal variability (Räisänen, 2001a), increases with increasing
magnitude of the greenhouse gas forcing. A small chance of pre-
cipitation decrease is found even in the decade 2081–2090, but
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Fig. 4. Probabilistic forecasts of (a) temperature and (b) precipitation change in southern Finland from 1971–2000 to 2011–2020. The box plots
show the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentiles of the distribution for four calendar months (January, April, July and
October), the four 3 month seasons (DJF, MAM, JJA and SON) and for the annual 10 yr means. The 99th percentiles of precipitation change in April
and July exceed 50%. The two rows of numbers in the bottom give the medians of the estimated probability distributions (in ◦C for temperature
change and% for precipitation change) and the probability of increase (in per cent).

Fig. 5. As Fig 4 but for annual mean (a)
temperature and (b) precipitation changes
relative to 1971–2000, decade by decade
from 2001–2010 to 2081–2090. The dotted
lines at 1.0◦C and 7.5% indicate the 95th
percentiles of 10 yr minus 30 yr temperature
and precipitation changes in the unforced
control simulations.

the calculated probability of warming reaches unity already in
the decade 2051–2060 (and exceeds 99.5% one decade earlier).
A larger ensemble of models might of course indicate a non-zero
probability of cooling even in the late 21st century.

Figure 5 also includes the 95th percentiles of the probability
distribution of 10 yr mean minus 30 yr mean temperature and
precipitation changes as estimated from the unforced control
simulations. This threshold (approximately 1.0◦C for tempera-
ture and 7.5% for precipitation change) gives a lower limit of
‘detectable’ climate change, which can be considered unusual in
the context of internal variability. The first decade when the prob-
ability of detectable warming (detectable precipitation increase)
relative to 1971–2000 exceeds 50% is 2021–2030 (2041–2050).

A global view of the probabilistic results for the annual mean
climate change from 1971–2000 to 2011–2020 is given in Fig. 6.
As expected from earlier work, the median estimate of the warm-
ing (Fig. 6a) is largest over the Arctic Ocean. The estimated
probability of warming exceeds 90% everywhere except for the
high-latitude Southern Ocean and the northern North Atlantic
(Fig. 6c). In wide areas in low latitudes, this probability already
approaches unity in the decade 2011–2020, despite the relatively
modest median warming there. This reflects the small internal
temperature variability in low latitudes, which is illustrated in

Fig. 6e with the 95th percentile of the control run 10 yr mean
minus 30 yr mean temperature differences.

The probability of exceeding the mentioned 95% threshold of
unusual warming in 2011–2020 is actually very high (95–100%)
in large parts of the tropics (Fig. 6g). Over much of the tropical
Indian Ocean and the western tropical Pacific, this probability
already exceeds 95% in the decade 2001–2010 (not shown). The
corresponding probabilities in higher latitudes are typically 50–
75% in the decade 2011–2020, with even lower values over the
Southern Ocean and in areas surrounding the northern North Pa-
cific and North Atlantic. Thus, although the simulated warming
is larger over the Arctic Ocean and many other high-latitude ar-
eas than in the tropics, this difference is more than compensated
by the difference in the magnitude of internal variability. In other
words, according to these model experiments high latitudes are
not the best place to look for the first signs of anthropogenic
climate change.

A similar sequence of figures for precipitation change is
given in the right column of Fig. 6. The median changes from
1971–2000 to 2011–2020 (Fig. 6b) are modest in magnitude but
display the familiar pattern of generally increasing precipitation
in high latitudes and in the tropics and decreasing precipi-
tation in many areas in the subtropics and the lower mid-latitudes
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Fig. 6. Probabilistic forecasts of annual mean temperature change (left) and precipitation change (right) from 1971–2000 to 2011–2020. (a)-(b)
Median of the forecast distribution; (c)–(d) probability of increase; (e)-(f) threshold of unusual 10 yr minus 30 yr change inferred from the control
simulations (see text); (g)-(h) probability of exceeding the threshold of unusual change. In (f) and (h), areas with substantial intermodel
disagreement on the sign of the precipitation change are left blank (see text).

(Cubasch et al., 2001). The remaining panels all illustrate the
fact that the signal-to-noise ratio is lower for precipitation than
temperature changes. The probability of increasing precipita-
tion is mostly in the range 25–75%, although values of 75–90%

are found in some high-latitude areas where precipitation has
a relatively direct link to temperature via the increased mois-
ture transport capacity of a warmer atmosphere (Manabe and
Wetherald, 1987) (Fig. 6d). The threshold of unusual change in
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Fig. 6f is defined as the 95th (5th) percentile of the control run
distribution of changes where at least 16 of the 21 models agree
on precipitation increase (decrease) from 1901–2000 to 2001–
2098, and is left undefined elsewhere. This threshold exceeds,
in absolute value, the median precipitation change everywhere.
The probability that the (positive or negative, depending on the
criteria defined above) precipitation change from 1971–2000 to
2011–2020 would exceed this threshold is, therefore, invariably
below 50% (Fig. 6h). In most areas this probability is in the range
10–25%.

7. Sensitivity of the forecasts
to emissions scenario

The results presented this far have been based on the SRES A1B
emissions scenario. To test the sensitivity of our forecasts to the
assumed magnitude of greenhouse gas and aerosol emissions,
similar calculations were made for the other two SRES scenarios
available in the IPCC AR4 database (B1 and A2). As measured
by the accumulated anthropogenic CO2 emissions during the
21st century, A2 is the second highest (after A1FI) and B1 the
lowest of the six illustrative SRES scenarios used by Houghton
et al. (2001). However, the differences between the scenarios are
much smaller in the early than in the late 21st century, particularly
so for the CO2 concentration that responds slowly to changes in
emissions (Houghton et al., 2001, p. 14).

Probabilistic forecasts of annual mean temperature and pre-
cipitation change in southern Finland (60◦N, 25◦E), as de-
rived for the B1, A1B and A2 scenarios, are compared in
Figs. 7(a) and (b). In this case, we only use those 15 models
for which simulations are available for all the three scenarios

Fig. 7. Probabilistic forecasts of annual
mean temperature (left) and precipitation
change (right) in southern Finland (top) and
Zaire (bottom) under three SRES emissions
scenarios. Results are given for the decades
2011–2020, 2041–2050 and 2071–2080,
with 1971–2000 as the baseline of the
calculation. At the bottom of each panel, the
three rows of numbers show the median
estimate of the change (in ◦C for temperature
and in% for precipitation), the probability of
increase (in%), and the probability of
exceeding the median for the A1B scenario
(for A1B, this is by definition 50%). See Fig.
4 for the explanation of the box plots.

(Table 1). The results for the A1B scenario differ, therefore,
slightly from those given in Fig. 5. The following conclusions
arise:

(1) In the late 21st century, exemplified in the figure by the
decade 2071–2080, the median changes are largest for the A2
and smallest for the B1 scenario. However, there is a considerable
overlap between the distributions derived for the three scenarios.
For the B1 scenario with lower emissions, the probability of
exceeding the median warming (3.2◦C) of the A1B scenario is
25%, whereas the same number for the A2 scenario is 63%. The
corresponding numbers for the changes in precipitation are 29%
and 62%.

(2) In the early 21st century (2011–2020), differences be-
tween the scenarios are negligible compared with the uncertain-
ties associated with internal variability and model differences.

(3) In the mid-21st century (2041–2050) as well, the inter-
scenario differences are relatively small. At this time, the median
changes for the A1B scenario are slightly higher than those for ei-
ther of B1 and A2, consistent with the projections of global mean
warming by Cubasch et al. (2001). The lower global warming
under the A2 than the A1B scenario at this time is due to larger
aerosol emissions under the A2 scenario; in terms of the green-
house gas emissions the two scenarios are similar in the first half
of the 21st century.

For comparison, the same analysis is repeated in Figs. 7(c)
and (d) for a grid box in equatorial Africa (0◦N, 25◦E). At this
location, internally generated temperature variability is weak
and the impact of model differences on simulated temperature
changes is also much smaller than in Finland. Consequently, the
probability distributions derived for the three scenarios are in
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the decades 2041–2050 and 2071–2080 more distinct from each
other in Fig. 7(c) than 7(a). In particular, the distribution for
the B1 scenario is in 2071–2080 completely below the median
changes for A1B and A2. For precipitation changes, however, the
overlap between the scenarios is at least as large as in southern
Finland (Fig. 7d). For both temperature and precipitation, the
differences between the three scenarios are even at this location
negligible in the decade 2011–2020.

Some authors (e.g. New and Hulme, 2000; Giorgi and Mearns,
2003) have derived probability distributions of climate change
by combining model results for two or more emissions scenar-
ios. Doing this for the late 21st century requires a non-trivial
decision on the relative likelihood of different scenarios. On the
other hand, Fig. 7 indicates that such multiscenario forecasts for
the early 21st century would be insensitive to how the scenarios
are weighted. A multiscenario approach with uniform weighting
between scenarios might, therefore, be used to increase the sam-
ple size for probabilistic estimates of near-term climate change,
without losing the simple interpretation of single-scenario dis-
tributions. The only practical complication in the construction
of such multiscenario ensembles is the fact that all models have
not been run for all scenarios.

8. Summary and discussion

In this paper, we have studied the prospects of near-term decadal-
scale climate change in probabilistic terms, using a method that
takes into account both the anthropogenic greenhouse gas and
aerosol forcing and internal climate variability. Our results are
based on a newly completed multimodel ensemble of climate
change simulations, together with a resampling technique that
helps to increase the number of realizations from which the prob-
ability estimates are derived. Below we first list our main results,
before discussing some of the issues related to their interpreta-
tion.

(1) The resampling technique increases the skill of the result-
ing probabilistic forecasts in cross-verification, with the largest
improvement for near-term forecasts. This indicates that, at least
in most areas of the world, the reduced sampling uncertainty in
the derived probabilities outweighs the biases eventually caused
by the resampling.

(2) The temperature changes that occurred from 1961–1990
to 1991–2000 were in good agreement with our probabilistic
hindcasts. The observed changes only fell outside our 5–95%
probability range approximately as often as on the average ex-
pected from pure chance. By contrast, the observed warming was
in wide areas unusually large in comparison with the distribution
derived from the unforced control simulations.

(3) The hindcast for precipitation changes from 1961–1990
to 1991–2000 was somewhat worse than the hindcast for temper-
ature, with a slightly too large fraction of the observed changes
in the tails of the estimated probability distribution.

(4) In most parts of the world, there is a very high probability
of annual mean warming relative to current baselines already
in the first few decades of the ongoing century. For southern
Finland, for example, our method indicates a 95% probability
of a higher mean temperature in 2011–2020 than in 1971–2000
under the SRES A1B emissions scenario.

(5) Precipitation forecasts are in relative terms more uncer-
tain than those for temperature. In southern Finland, the esti-
mated probability of increased precipitation from 1971–2000 to
2011–2020 is 80%. Also, more so than for temperature, it is
important to note that the probability estimates in this study per-
tain to changes in area mean precipitation on the GCM grid box
scale (about 105 km2). Because internal climate variability and
features of local geography may induce a lot of variation in pre-
cipitation changes on scales smaller than that (e.g. Hellström et
al., 2001), our results are not directly applicable to precipitation
on the truly local scale.

(6) Because reduced temporal averaging leads to larger in-
ternal variability, forecasts for seasonal and particularly monthly
10 yr means of climate are more uncertain than those for the an-
nual means.

(7) Internal temperature variability is much smaller in the
tropics than in high latitudes. Therefore, although the average
model-simulated warming is largest over the Arctic Ocean, the
probability of near-term warming and the probability that this
warming will be unusual in terms of internal variability both
appear to be highest in the tropics.

(8) The best (median) estimates of anthropogenic climate
change increase with time. However, the uncertainty ranges also
grow wider, as model differences in the response to anthro-
pogenic forcing become increasingly important with increasing
magnitude of the forcing.

(9) Probabilistic climate change forecasts for the first
decades of this century are almost identical between the SRES
A1B, B1 and A2 scenarios. Later on, the scenario-related uncer-
tainty increases but substantial overlap between the probability
distributions derived for these three scenarios remains even in
the late 21st century.

Our probabilistic forecasts are conditional on the assumptions
that (1) the uncertainty in the climate system response to anthro-
pogenic greenhouse gas and aerosol forcing is captured by the
multimodel ensemble, and (2) that the magnitude of decadal-
scale climate variability is similar between the models and the
real world. The forecasts also (3) neglect the uncertainty in the
link between greenhouse gas emissions and concentrations. The
extent to which (4) uncertainty in aerosol forcing is represented
by differences in the treatment of aerosols in different models is
also unclear.

Although (1) and (3) are both important when considering cli-
mate change on the centennial timescale (Andreae et al., 2005),
their impact on shorter-term forecasts is expected to be smaller.
The importance of the aerosol issue (4) is more difficult to
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estimate; in any case we would expect it to be of concern primar-
ily in those parts of the world where major changes in aerosol
emissions are expected in the near future. The magnitude of sim-
ulated variability (2) is, however, definitely an important question
for the near-term forecasts whose uncertainty arises to a large
extent from natural variability.

Whether or not simulated interdecadal variability is realistic
is unfortunately not easy to assess, because the observational
record is short and affected by anthropogenic forcing. In princi-
ple, a negative bias in the simulated variability might be expected
because the models exclude in the 21st century simulations the
effects of solar variability and volcanic eruptions (even though
these factors are present in many of the 20th century simulations
that form the first part of the time-series used in our analysis).
However, although solar variability and volcanoes have been
found to affect the interdecadal variations of the global mean
temperature (e.g. Stott et al., 2000) and global land-area mean
precipitation (Lambert et al, 2004), their relative contribution to
climate variability on small horizontal scales is likely to be more
modest, simply because internal variability increases strongly
with decreasing scale. Thus, the key issue is probably the mag-
nitude of internal variability.

In an earlier study, Räisänen and Alexandersson (2003) ad-
justed simulated interdecadal variability based on a comparison
of simulated and observed variability on interannual timescales.
Here, we have excluded this adjustment partly for simplicity but
also because the basic assumption underlying this adjustment
(similarity of variability biases on different timescales) remains
to be verified. In our future research, we plan to assess the validity
of this adjustment technique in a cross-verification framework
and study the sensitivity of the probabilistic forecasts to such
adjustments and other choices in the methodology.
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10. Appendix. Dependence of cross-verification
statistics on ensemble size

Let E be a binary event with probability P. The forecast proba-
bility of E can be written as p = P + p’. Similarly, the observed

occurrence of E in a single forecast case (o = 0 or o = 1) can
be formally decomposed as o = P + o’. When the forecast data
and the verifying observations come from the same statistical
population, which is always the case in cross-verification, the
expected values of both o’ and p’ are zero. The expected value
of the Brier score becomes

ε(B) = ε(p − o)2 = ε(p′ − o′)2 = ε(o′2) + ε(p′2) − 2ε(p′o′).

(A1)

The two possible values of o’,−P and 1−P, have probabilities
of 1 − P and P, respectively. Hence,

ε(o′2) = (1 − P)P2 + P(1 − P)2 = P(1 − P). (A2)

On the other hand, if p is estimated from a forecast ensemble of
M independent simulations, p follows the binomial distribution
with mean P and variance

ε((p − P)2) = ε(p′2) = P(1 − P)/M . (A3)

Finally, the deviations p’ and o’ can be assumed to be uncor-
related, so that the last term in (A1) is zero. Thus

ε(B) = P(1 − P)

(
1 + 1

M

)
= B∞

(
1 + 1

M

)
, (A4)

where B∞ = P(1 − P). Because (A4) holds regardless of the
threshold used in defining E, a similar equation also holds for
the continuous ranked probability score CRPS.
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