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ABSTRACT
In a reduced-order adaptive filtering approach, we demonstrate a possibility to overcome two major difficulties in
estimating oceanic circulation: a very high dimension of the system state and uncertainties in specification of the model
error statistics. This approach is based essentially on the assumption that a particular parametrized gain matrix has been
selected and the tuning parameters are adjusted by minimizing the mean prediction error. In the present paper we apply
a reduced-order adaptive filter for solving the problem of assimilating altimetric sea surface height into a primitive
equation model: the Miami isopycnic coordinate ocean model (MICOM). A gain structure is described which is proven
to be very efficient in the twin experiments. The assimilation algorithm to be employed in the identical twin experiment
is a reduced-order filter whose reduced state consists of the layer thickness. The velocity update is calculated from
the geostrophic hypothesis. The gain structure for the non-adaptive filter is obtained on the basis of three principal
hypotheses: (H1) analysis error for the system output is cancelled in the case of noise-free observations (as is done
naturally in a standard Kalman filter for noise-free observation); (H2) conservation of linear potential vorticity; (H3) no
correction for the velocity at the bottom layer. The initial values of the parameters in the gain will be selected in such
a way that the filter behaves exactly as the Cooper–Haines filter (CHF) at the first data update step. It is shown that the
adaptive filter, which relaxes one or several of the above hypotheses, is capable of producing the better estimates for the
ocean state (layer thickness and velocity) compared to that produced by the CHF in all layers, surface or subsurface.
Numerical experiments demonstrate the excellent capacity of the adaptive filter to extract useful information from
surface observations for inferring the oceanic circulation in the MICOM.

1. Introduction

Recently, there has been great interest in developing advanced
assimilation methods for operational ocean monitoring and pre-
diction systems, especially for assimilating sea surface height
(SSH) into oceanic models. Theoretically, the minimum vari-
ance solution to the linear filtering problem, under the assump-
tion on Gaussian noise processes (model and observation errors),
can be obtained by the Kalman filter (KF; e.g. Jazwinski, 1970;
Anderson and Moore, 1979). However, due to the non-linearity
of the model equations, to the very high dimension of the ocean
state (and on uncertainty in specification of the model error statis-
tics), the KF is impossible to properly employ because it requires
a linearization and a solution of the algebraic Riccati equation
(ARE) for the forecast error covariance matrix (ECM; see Dee,
1991; Fukumori et al., 1993; Fukumori and Malanotte-Rizzoli,
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1995). For a review of efforts to overcome these computational
difficulties, see Todling and Cohn (1994). In fact, implementa-
tion of the Kalman-like filters for very high-dimensional systems
requires inevitably introducing approximations to the solution of
the ARE. In this regard it is of interest to cite Cohn and Todling
(1996), who approximated the solution of the ARE using a lead-
ing part of the singular value decomposition (Golub and Van
Loan 1993) of the linear tangent or a leading part of the eigende-
composition of the forecast (propagated analysis) ECM. Alter-
natively, Courtier (1993) proposed an approximation in retaining
the leading modes of the analysis ECM. In the singular evolutive
extended Kalman (SEEK) filter (see Pham et al. 1997) the prop-
agated analysis ECM is approximated by a singular low-rank
matrix and most often the reduced-rank subspace is initialized
from an empirical orthogonal function (EOF) analysis of the free
model variability. As for the ensemble Kalman filter (EnKF; see
Evensen, 1994) the ECM is proposed to be calculated from an
ensemble of model states obtained by integrating the numerical
model. Thus, the rank of the approximated ECM is at most equal
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to the number of simulated ocean states. It is seen that all the
cited sequential approaches deal with the problem of reducing
the dimension of the space representing a solution of the ARE.

Roughly speaking, at each assimilation step, the KF requires
(n × p) elements of the gain matrix where n and p are the
dimensions of the system state and the observation vector, re-
spectively. From the computational point of view, a less expen-
sive way is to apply the adjoint equation (AE) method in which
the initial state (of dimension n) is chosen as a control vector,
which reduces significantly the number of elements to be deter-
mined (3D-VAR, 4D-VAR; see Le Dimet and Talagrand, 1986;
Talagrand and Courtier, 1987). Data assimilation then reduces
to a problem of finding the best fit to the data, and for a noise-
free linear system this algorithm is equivalent to the KF. The
AE method, however, suffers from the assumption of a per-
fect numerical model. A possibility to take into account the
model error in the variational method was recently elaborated in
Bennett et al. (1997) and Amodei (1995). Note that, as in the KF
approach, the AE has difficulty in the specification of the ECM
of the background, which is equivalent to the forecast ECM in
the KF. It should be emphasized that, due to the non-linearity of
the model equations, both KF and AE methods are never truly
optimal in the real case.

Alternatively, an adaptive filtering approach is proposed and
developed in Hoang et al. (1997a; 1997b; 2000; 2001) to over-
come the difficulties mentioned above. Two features distinguish
this approach from others: (i) the optimality of the filter is under-
stood in the minimum mean prediction error (MPE, see Ljung,
1987, page 171) sense (misfit between the observations and the
forecast of the system output); (ii) the performance of the filter is
optimized (in the MPE sense) by adjusting some parameters of
the gain. In this way, the filter gain is a function of observations
and is adaptive. As elements of the gain vary dependent on the
values of the tuning parameters, the stability of the filter, even
under the most favourable conditions, might not be ensured if we
do not impose several constraints on the structure of the gain. It
is well known (see Kailath 1980) that the stability of the filter is
a most important issue in the design of any filter. This question
is a subject of the study in Hoang et al. (2001; 2002). For exam-
ple, in Hoang et al. (2001) for a time-invariant linear system, it
is shown that under detectability of the input–output system, a
stable filter can be obtained by projecting the innovation on to a
subspace spanned at least by all unstable and neutral eigenmodes
of the system dynamics (necessary and sufficient conditions for
the existence of a stable filter). As for time-varying systems, it
is demonstrated in Hoang et al. (2000) that one can construct
a stable (L2 norm) filter under s-detectability of the system (all
the left and/or the right unstable and neutral singular vectors
of the system dynamics are observable). By choosing a priori
a particular stabilizing gain structure, no ARE that constitutes
an essential computational burden in evaluating the KF is in-
volved in the determination of the gain of the adaptive filter
(AF). This major advantage allows us to implement the filter for

very high-dimensional systems. As there is no need to specify
the statistics of the model and observation errors, all efforts are
concentrated on enhancing filter performance by adjusting the
tuning parameters in the gain to minimize the MPE. Flexibility
of the parametrization of the gain allows us to drastically reduce
the number of tuning parameters in the gain (or in other terms,
control variables). However, the cost of the technique based on
the computation of a set of leading singular modes/eigenmodes
is probably still too high for its immediate application.

It is worth mentioning that historically the idea of selecting
simplified gains to assimilate data into oceanic (and meteoro-
logical) numerical models is not new (see Ghil and Malanotte-
Rizzoli, 1991 for a review of the development of assimilation
methods, such as direct insertion, optimal interpolation (OI),
etc., in meteorology and oceanography). The aim of our study
is to demonstrate that it is possible to exploit the robust and
simple techniques already existing in the field of data assim-
ilation, to seek a structure of the gain and its parametrization
which is inexpensive, efficient and easy to implement. With the
SSH observations, for example, there exists in particular a sta-
tistical method (i.e. OI) in which the gain has a form similar
to that of the Kalman gain, with the difference that the forecast
ECM is prescribed or calculated approximately from the numer-
ical models or from a sequence of historical observations such
as correlations (e.g. De Mey and Robinson 1987; Mellor and
Ezer 1991). Related to the Miami isopycnic coordinate ocean
model (MICOM), Gavart and De Mey (1997) have presented
a computation of isopycnal empirical modes for the North At-
lantic in the MICOM. These modes allow us to represent in
a simplified way the vertical variability of the ocean. These
suboptimal schemes are proven to be efficient in many exper-
iments (with generated or real data). However, all these schemes
rely upon pre-derived correlation coefficients with the SSH for
assimilation.

Another interesting approach to be taken into consideration
as a starting point in the present paper was developed initially
by Haines et al. (1993) and later by Cooper and Haines (1996),
based on the conservation principle. They have shown that con-
siderable success can be achieved when assimilating SSH data
if the subsurface potential vorticity (PV) is conserved at assim-
ilation instants. This technique has been tested with success in
the twin experiment in Cooper and Haines (1996) for assimi-
lating surface pressure data into a 21-level, eddy-resolving Cox
model in a double-gyre configuration. This simple and efficient
scheme, referred to as a Cooper–Haines filter (CHF), will be first
formalized in this paper following a standard OI approach. Three
principal hypotheses are formulated from which we obtain the
equations serving after to seek a set of tuning parameters. The
non-adaptive version (with appropriate guess values for tuning
parameters) will coincide exactly with the CHF. As shown in
this paper, the AF, which is designed to offer a tracking capacity
(minimization of the prediction error), will improve significantly
on the performance of the filter in producing both forecast and
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analysis estimates of the ocean state, for all model variables and
in all layers, in comparison with that produced by the CHF.

We will evaluate the performance of the proposed AF in the
twin experiments for SSH data assimilation in the primitive equa-
tion model, MICOM, with four layers. It will become clear that
the appropriate parametrization of the gain allows us to drasti-
cally reduce the number of tuning parameters in the gain. This
approach for the AF is computationally realizable for solving
data assimilation problems in complicated oceanic numerical
models.

The paper is organized as follows. In Section 2, we outline a set
of partial differential equations describing the oceanic circulation
used in the twin experiment with the MICOM. The numerical
model, MICOM, and the set of initial and boundary conditions
for simulating the ‘true’ oceanic circulation, as well as that to be
initialized in the AF, will also be given. In Section 3, we derive a
non-adaptive version of the filter that is closely related to the OI
scheme. The equations deduced from the constraints imposed
by three hypotheses are obtained. In Section 4, we derive dif-
ferent sets of tuning parameters by relaxing one or several men-
tioned hypotheses. We show how the tuning parameters should
be initialized to meet exactly the conditions required in the CHF.
The numerical results of the twin experiment are presented in
Section 5 for the set of noise-free observations, as well as the
set of noisy observations. In Section 5.2, for the set of noise-
free observations first, we simply integrate the MICOM to pro-
duce the ocean circulation, without assimilation. The results ob-
tained by this simple integration are compared to those generated
by the CHF. Here, we see the excellent capacity of the CHF to
infer the subsurface circulation using the SSH observations. As
for the AF, we apply here two adaptive versions, one of which re-
laxes only the hypothesis on no correction for the velocity at the
bottom and the other preserves only the hypothesis that the filter
would produce the analysis field for the system output identical
to the observed SSH. A comparison between the performances
of the AF and of the CHF is given also in this section. Assim-
ilation with the set of noisy observations is presented briefly in
Section 5.3. It can be seen that by adjusting tuning parameters,
the AFs are capable of improving significantly on the forecast
and analysis performances of the estimates for all variables of
the model (layer thickness and velocity), in all layers and at all
assimilation instants. Concluding remarks and future works are
finally discussed in Section 6.

2. Primitive equation model: MICOM

The oceanic numerical model to be used in the twin assimilation
experiments is a primitive equation model, MICOM (isopycnic),
which has been developed at the University of Miami (Bleck,
1998). The MICOM has achieved great success in the USA as
well as in Europe (e.g. Chassignet, 1992; Baraille and Filatoff,
1995). The model relies on one prognostic equation for each
component of the horizontal velocity field and one equation for

mass conservation, per layer:
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Here, index i refers to the ith layer, ρ 0 is an average in space
and time of the density, δ i,j is the Kroenecker symbol, ∇ is the
two-dimensional gradient operator, u and v are the two horizon-
tal velocity components, hi is the thickness of the ith layer, φ =
∂v/∂x − ∂u/∂ y is the relative vorticity, f is the Coriolis param-
eter, τ x and τ y are the wind stress forcings, and µ is an eddy
viscosity coefficient.

The pressure Pi is a linear combination of the layer depths
(hydrostatic hypothesis). Denoting by N the number of layers,
we have

Pi = g

(
i−1∑
k=1

ρkhk + ρi

N∑
k=i

hk + ρiηb

)
(2)

where g is the gravitational acceleration, ρ i is the density of the
ith layer, ηb is the bottom slope, and

∑0
i=1(·) = 0 by definition.

The MICOM does not filter the external barotropic grav-
ity waves as in the rigid lid approximation (Bryan, 1969). It
splits the original equations between a barotropic part integrated
with a small time-step and a set of baroclinic equations numeri-
cally constrained by a Courant–Friedrichs–Lewy (CFL) criterion
based on the internal gravity wave velocity.

Introducing the new variables

u =
∑N

k=1 ρkhkuk∑N
k=1 ρkhk

v =
∑N

k=1 ρkhkvk∑N
k=1 ρkhk

u′
i = ui − u v′

i = vi − v hi = (1 + η)h′
i (3)

where η is the dimensionless quantity

η =
∑N

k=1(ρk − ρ0)hk + ρ0ξ1

ρ0
∑N

k=1 hk − ρ0ξ1

(4)

and ξ 1 is the SSH, we define the product h′
bη by

h′
bη =

N∑
k=1

(ρk − ρ0)hk + ρ0ξ1. (5)

Finally, we obtain a new set of equations for the variables
u, v, h′

bη, u′
i , v′

i and h′
i.
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Approximating (1 + η) by 1, we obtain the barotropic system
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and the baroclinic equations
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The term ∂u�/∂t ensures that u′
i = 0. Note that this term is

never calculated in the MICOM. For the definitions of u� and
v�, see Hoang et al. (1997b). After some basic algebra, it can be
shown that the sea surface elevation ξ 1 is related to the prognos-
tic variables of system (7) by (a detailed derivation is given in
Baraille and Filatoff, 1995)

ξ1 = h′
bη/ρ0 −

(
1 + h′

bη

h′
b

) N∑
k=1

(
ρk

ρ0
− 1

)
h′

k . (8)

Relation (8) involves the depth-independent quantity h′
bη and

all the layer thicknesses h′
k.

3. Description of the adaptive filter

3.1. Adaptive filter formalism

It is seen from the description of the MICOM in the previous
section that the ocean state X(t) at each time instant t is composed
of three variables distributed in space: the layer thickness, h, and
two velocity components, u and v. In the discretized form, we
have [h(xi, yj, zk; t)]ijk, [u(xi, yj, zk; t)]ijk and [v(xi, yj, zk; t)]ijk

where i ∈ I I , j ∈ J J and k ∈ K K . We assume that a set of
observations modelled by sea surface elevation ξ 1 is available
every 10 d at all horizontal grid points. As usual, the purpose of
the assimilation experiment is to estimate as precisely as possible
the system state X(t) using these altimeter observations. We will
implement here two algorithms: one is the well-known CHF and
the other is an AF, which is identical to the CHF if no adaptation
procedure is applied.

To be more precise, let us describe here a structure of the filter.
The filter, in fact, is of a reduced-order type whose reduced state
is composed only of layer thickness h. The velocity correction
(δu, δv) is computed from the geostrophy hypothesis (GH) on
the basis of the layer thickness correction δ h. Symbolically, the

filter is of the form

ha(t + 1) = hf(t + 1) + δ̂h(t + 1),

δ̂h(t + 1) = K hζ (t + 1), ζ (t + 1)

= z(t + 1) − zf(t + 1),

[ua(t + 1), va(t + 1)] = [uf(t + 1), vf(t + 1)]

+ G H [δ̂h(t + 1)]. (9)

z(t + 1) is the SSH observed at the time instant (t + 1). The
operator GH symbolizes the operation of computing (δu, δv)
from δh on the basis of the GH, and ζ (t + 1) is an innovation
vector. The subscripts ‘a’ and ‘f’ denote the analysis and forecast
estimate for corresponding variables.

As seen from structure (9), the most important and difficult
task in the design of a filter is concerned with determining the
gain Kh. In what follows, let the horizontal grid points (xi, yj),
i = 1, . . . , I I ; j = 1, . . . , J J of the mesh be ordered in some
way. For a function f (xi, yj) defined in the horizontal mesh, the
notation f also means its vector representation (if it does not
lead to misunderstanding) whose components are the values of
f (xi, yj) ranged in the order mentioned above.

The AF to be applied in this paper takes the CHF as a depar-
ture point. As the CHF is constructed on the basis of hypotheses
such as conservation of the linear PV (for more details, see Sec-
tion 3.2), it will be clearer to begin the description of the filter in
the space of vertical displacement interface (VDI) variables. Let
ξ := (ξ 1, . . . , ξ 4) (in the experiments with the MICOM we have
KK = 4) be a vector composed from VDI variables in all layers
(see Fig. 1 for schematic representation of VDI variables). We
have then the following relationships

hk = h̄k + ξk − ξk+1, k = 1, . . . , 4 (10)

where h̄k is the (temporal) average of hk (
∑

k h̄k is the mean of
the sea level). In practice, we can take h̄k as a climatology. This
definition gives the observed SSH z = ξ 1 and for the flat bottom

SSH

VDI variable

VDI variable

VDI variable
layer thickness

layer thickness

layer thickness

average layer thickness

average layer thickness

average layer thickness

Fig 1. Schematic representation of VDI variables.
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(which is the case in the experiment), ξ 5 = 0. Hence, we can
write

h̃ = T ξ, h̃ = h − h̄, h = (h1, . . . , h4)T ,

T =
IN −IN 0 0
0 IN −IN 0
0 0 IN −IN

0 0 0 IN

. (11)

IN is a unit matrix of dimension N = I I × J J – the total number
of horizontal grid points.

Because
∑

k h̃k = ξ1 = z we have

z = Hξ ξ, Hξ = [IN , 0, 0, 0] (12)

where H ξ denotes the observation operator in the space of VDI
variables. Formally, the filter for VDI variables takes the form

ξa = ξf + K ξ ζ, ζ = z − Hξ ξf (13)

where ξ a and ξ f are the analysis and forecast estimates for
ξ , and ζ is an innovation vector. Let Bξ be the ECM for ξ f.
Then the optimal gain is given by K ξ = B ξ H T

ξ K +
ζ where

K ζ = H ξ B ξ H T
ξ + R is the ECM for the innovation vector,

and K+
ζ is the pseudo-inversion of K ζ (Albert, 1972). We have

then

K ξ =
K ξ (1)
K ξ (2)
K ξ (3)
K ξ (4)

, K ξ (k) = Bξ (k, 1)[Bξ (1, 1) + R]+ (14)

where Bξ (k, l) is the (k, l) block of Bξ .
The filter written for displacement variable ξ now takes the

form

ξa = ξf + δ̂ξ , δ̂ξ = K ξ ζ. (15)

In the space of layer thickness variables h, we have

T ξa = T ξf + T δ̂ξ or h̃a = h̃f + K hζ,

or

ha = hf + K hζ, K h = T K ξ , K h =
K h(1)
. . .

K h(4)
, (16)

K h(k) = K ξ (k) − K ξ (k + 1), k = 1, 2, 3; K h(4) = K ξ (4).

3.2. Simplifications

To see how the gain of the CHF is derived, let us introduce
some simplifications. First, assume that R and Bξ (k, l) are spa-
tially homogeneous, R = σ 2

r IN , σ 2
r > 0, B ξ (k, l) = bk,l IN . Then

we have

K ξ =
γ

ξ

1 IN

γ
ξ

2 IN

γ
ξ

3 IN

γ
ξ

4 IN

, γ
ξ

k = bk1

b11 + σ 2
r

, k = 1, . . . , 4 (17)

K h(k) = γ h
k IN , γ h

k = γ
ξ

k − γ
ξ

k+1, 1 ≤ k ≤ 3,

γ h
4 = γ

ξ

4 . (18)

3.2.1. Geostrophy and no motion hypothesis at bottom. As
seen in the previous section, the filter for the reduced state allows
us to project the SSH anomaly to recover the subsurface correc-
tion for layer thickness. Having obtained these corrections, the
current updates are derived from the GH as follows. For a given
hi, i = 1, . . . , 4,

uk =
4∑

i=1

βk,i∂hi/∂x, vk = −
4∑

i=1

βk,i∂hi/∂ y, (19)

βk,i = gρi/ f0ρk, i ≤ k − 1; βk,i = g/ f0, i ≥ k − 1

where f 0 is the Coriolis parameter and g = 980.6 cm s−2 is the
gravity constant. If we assume in addition that the pressure at
the bottom is not altered (level of no motion), then the velocity
update at the bottom satisfies δu4 = δv4 = 0. We have

δu4 =
4∑

k=1

β4,k∂(δhk)/∂x

and for δhk = δ̂hk = K h(k)ζ it follows from δu4 = 0 that

δu4 =
4∑

k=1

β4,kγ
h
k (∂ζ/∂x) = (∂ζ/∂x)

4∑
k=1

β4,kγ
h
k = 0

because (∂ζ/∂x) does not depend on k. As this relation must
be satisfied for any function (∂ζ/∂x) [and for any function
(∂ζ/∂ y)] this constraint leads to the equation

4∑
k=1

β4,kγ
h
k = 0. (20)

3.2.2. Cooper–Haines filter. Let us first return to eqs. (17)
and (18). Following the principle of water mass rearrangement, if
we choose the gain so that all water parcels in a particular water
column are displaced vertically by the same amount, then the
linear PV is conserved (Cooper and Haines 1996). This technique
corresponds to the choice of subsurface parameters

γ
ξ

2 = γ
ξ

3 = γ
ξ

4 = γ = const. (21)

Substituting eqs. (21) and (18) into eq. (20) yields the equation[
γ (β4,4 − β4,1) + γ

ξ

1 β4,1

] = 0,
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from which the value of the parameter γ , which ensures that the
bottom pressure is not altered, is

γ = − β4,1γ
ξ

1

β4,4 − β4,1
. (22)

For noise-free observations, σ 2
r = 0, hence γ

ξ

1 = 1, the com-
putation yields

γch = − β4,1

β4,4 − β4,1
= −184.964 966 (23)

for the ocean configuration in the MICOM to be implemented in
the twin experiment. The CHF takes thus a simple form

ha = hf + δ̂h, δ̂h = K h
chζ, ζ = z − zf,

K h
ch(1) = (1 − γch)IN , K h

ch(2) = 0, K h
ch(3) = 0,

K h
ch(4) = γch IN , γch = −184.964 966,

(ua, va) = (uf, vf) + Q H (δ̂h). (24)

This CHF will be applied in the following to assimilate the
SSH data in the MICOM, which serves as a reference to be
compared with the results generated by the AF.

Comment 3.1. For a practical application of the CHF (24), it
is necessary to introduce the constraints of the type of thresh-
old for displacement to ensure a non-negativity of layer thick-
ness (see Gavart, 2001). In the twin experiments presented
in this paper, the positiveness of layer thickness is checked
during the assimilation process and never this condition is
violated.

Comment 3.2. In practice, the realistic ocean models have
up to 30–40 layers and, as the bottom layers are the most stable
layers, only several first layers are updated by assimilation. For
the DYNAMO configuration (North Atlantic) of the MICOM
(see Gavart, 2001), for example, the displacement modes are
updated only at the first 15 layers (up to about 3000–4000 m).
The thickness of the sixteenth layer is of the order of 2000 m
and there are practically no changes in the velocity calculated by
geostrophy from this layer.

Subject to the assumption σ 2
r = 0, the CHF provides an anal-

ysis SSH, which is the same as the observed SSH. Really due to
definition (12), Hh = TH ξ = [IN , . . . , IN], hence

Hh(ha − h̄ ) = Hh(hf − h̄ ) + Hh K h
chζ,

Hh K h
chζ =

4∑
k=1

K h
ch(k)ζ = γ

ξ

1 IN ζ = ζ

for γ
ξ

1 = 1. Thus, ξ 1,a = ξ 1, f + ζ = z.
In summary, the gain in the CHF (24) is obtained on the basis

of three hypotheses, as follows:

H1 – the filter produces an SSH analysis estimate, which is the
same as the observed SSH;

H2 – conservation of linear PV;
H3 – no motion at the bottom level.

4. Parametrization of the gain
in the adaptive filter

In this section we concentrate our attention on the derivation of
the different possible parametrized gain structures needed for
the adjustment procedure in the AF. As the gain in the CHF is
constrained by three hypotheses (H1, H2 and H3), the main idea
to be followed here is to examine the possibility of removing one
(or two, or all) of these constraints to release free parameters to
be adjusted. To attain this goal, we reformulate the constraints
(H1, H2 and H3) in the form of equations from which we can
identify the set of free parameters appropriate for adaptation.

4.1. Relaxing hypothesis H1

First, let us begin by examining hypothesis H1. We denote by h∗
k

the true layer thickness at the kth layer.
As seen from eq. (10)

∑4
k=1(h∗

k − h̄k) = ∑4
k=1 h̃∗

k = ξ ∗
1 where

ξ ∗
1 denotes a true SSH. In general, the observed SSH z = ξ o

1 is
different from ξ ∗

1 (in the noisy observation case) and ξ o
1 = ξ ∗

1 +
vξ . For ξ f,1 (SSH forecast), we have ξf,1 = ∑4

k=1 h̃f,k . Substitut-
ing from both sides of the filter eq. (9), ha,k = hf,k + δ̂hk , and the
value h̄k yields h̃a,k = h̃f,k + δ̂hk . For δ̂hk = K h(k)ζ, K h(k) =
γ h

k IN we have

ξa,1 =
4∑

k=1

h̃a,k =
4∑

k=1

(h̃f,k + δ̂hk)

=
4∑

k=1

h̃f,k + ζ

4∑
k=1

γ h
k = ξf,1 + ζ

4∑
k=1

γ h
k .

Hypothesis H1 requires ξ a,1 = ξ o
1 and, from the last equation,

ξ o
1 − ξf,1 = ζ = ζ

∑4
k=1 γ h

k from which follows

k=4∑
k=1

γ h
k = 1 or γ h

1 = 1 −
k=4∑
k=2

γ h
k . (25)

Constraint (25) thus ensures that the SSH analysis errors are
equal to zero, i.e. the SSH analysis is the same as the observed
SSH, independent of whether the observations are noisy or not.
Evidently this constraint is reasonable only if observations are
noise-free. For noisy observations, a weaker constraint should
be taken into consideration. As seen from eq. (22) we have Kh =
γ

ξ

1 K h
ch and we can choose λ = γ

ξ

1 as a tuning parameter. Let us
look at λ = (b11/b11 + σ 2

r ). As σ 2
r ≥ 0, the value of λ lies in

the interval λ ∈ [0, 1]. For satellite SSH observations, with small
positive σ 2

r the value of λ must be close to 1 (if b11 is relatively
large in comparison with σ , i.e. usually the case in the beginning
of the assimilation period). The difficulty we have here is that we
do not know about b11. However, as the value σ ζ (t) = b11(t) + σ 2

r

is estimated well by the filter (variance of innovation vector), and
for satellite SSH observations we are given with high precision
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σ 2
r , the parameter λ can be estimated adaptively by the formula

λ(t) =
[
σ 2

ζ (t) − σ 2
r

]
σ 2

ζ (t)

. (26)

Equation (26) will be used in the experiment with noisy ob-
servations in Section 5.3.

4.2. Relaxing hypothesis H2

As seen from Section 3.2.2, hypothesis H2 is the most important
in the construction of CHF, which is based on the principle of
water mass rearrangement. This simple rearrangement allows
us to greatly simplify the application in real applications and it
has proven to be efficient in many works concerned with SSH
data assimilation. On the other hand, as shown in Gavart and De
Mey (1997), the computation of isopycnal empirical modes in
the Azores current region shows that there is a slight departure
of the dominant empirical mode from that of the CHF. In fact,
it is argued that even if the PV is not uniform, it is still a very
useful constraint to apply during altimetric assimilation (Haines
et al., 1993).

It should be mentioned that, in practice, due to the lack of
space–time measurements on the ocean state, we are never able
to extract exactly the vertical dependence between SSH variation
and that of subsurface interface displacements. It is therefore of
interest to search for a possibility to identify, when the hypothesis
H2 is no longer valid, the dependence between SSH variation
and variations of interface displacements. We describe here one
possibility to relax hypothesis H2. Let us return to eq. (20). We
have

β4,1

(
1 −

k=4∑
k=2

γ h
k

)
+

k=4∑
k=2

β4,kγ
h
k = 0 or

k=4∑
k=2

ak−1γ
h
k = −β4,1, ak−1 = β4,k − β4,1.

(27)

To express this equation in the space of displacement variables
γ

ξ

k , it is enough to remember the relationship (10) betweenγ h
k and

γ
ξ

k . From eqs. (10) and (27) after some algebraic manipulations
we come to

cT γ ξ = −β4,1, cT = (c1, c2, c3),

c1 = a1, c2 = a2 − a1, c3 = a3 − a2 or

ck = β4,k+1 − β4,k, k = 1, 2, 3. (28)

Because the number of unknowns in eq. (27) is three (for each
horizontal grid point), there exists an infinite number of solutions
and the set of all solutions of this equation can be represented in
the form (Albert, 1972)

γ ξ (y) = −cT ,+β4,1 + Ay, A = [I − cT ,+cT ], (29)

where cT,+ = c/||c||2 is the Moore–Penrose pseudo-inverse of
cT , and y is any vector of dimension 3. The solution γ

ξ

0 = γ ξ (y =
0) is known as a solution of minimal norm. Thus, for whatever

y ∈ R3, the filter with the gain specified by γ ξ = γ ξ (y) will
produce the analysis layer thickness estimate satisfying H1 and
H3. By varying the control variable y, we have the possibility
to relax the hypothesis on conservation of the linear PV. Let ych

be such that −cT,+β 4,1 + Aych = γ
ξ

ch (the element ych exists
as seen in the next section). Then, representing y = y ch + δy
gives γ ξ (y) = γ

ξ

ch + Aδy = γ
ξ

ch + δγ ξ . Thus, correction to
the Cooper–Haines displacement modes takes the form δγ ξ =
Aδy, i.e. it belongs to the null space of cT . The vector δy can
now be considered as a control vector to be adjusted in the filter,
which should be initialized as δy = 0. The adaptation is aimed
at improving the performance of the CHF by altering only the
hypothesis on conservation of the PV.

Comment 4.1. From Hoang et al. (2001) there is a constraint
for δ y. To see, let us look at the constraint for the elements of the
matrix � for ensuring a stability of the filter. In fact, K ξ (k; θ ) =
θ kγ

ξ

ch IN , and the constraint is θ k ∈ [b, 2 − b], b ∈ (0, 1). Writing
γ

ξ

k = θ kγ
ξ

ch = γ
ξ

ch + δγ
ξ

k , δγ
ξ

k := (1 − θ k)γ ξ

ch, we see that δγ
ξ

k

∈ [1 − b, 2 − b − 1]. Thus, the component of Aδy has the order
of δγ

ξ

k . For example, for b = 0.5 we have ||akδy || ∈ [ −0.5|γ ξ

ch|,
0.5|γ ξ

ch|], where ak is the kth row of A. These relations can serve
as a constraint to check whether the estimate δ̂y is ‘reasonable’.
Of course, the more important index is the achievement of the
MPE minimization process, which can be observed during the
assimilation process.

4.3. Relaxing hypothesis H3

Consider a possibility to relax hypothesis H3 but conserving H1
and H2.

As shown above (and in Cooper and Haines, 1996), one simple
way to conserve the PV is to displace all water parcels vertically
by the same amount. This requirement, in terms of γ ξ , is equiv-
alent to saying that the displacement modes γ ξ must belong to
the linear subspace R[13] generated by the vector 13 = (1, 1,
1)T. From a mathematical point of view, this physical constraint
imposed for the members of eq. (29) is justified only if we can
show that there exists an element of the subspace R[13], which
is also a member of the set of solutions (29). Let γ ξ ∈ R[13]
have the form γ ξ = γ 13 where γ is some constant. Substituting
γ ξ = γ 13 into eq. (28), it is seen then that this equation now is
led to

γ cT 13 = γ

k=4∑
k=2

(β4,k − β4,k−1) = −β4,1 or

γ (β4,4 − β4,1) = −β4,1. (30)

For γ = −β 4,1/(β 4,4 − β 4,1) the vector γ ξ is now a solution
of eq. (28) and the requirement on displacing all water parcels
vertically by the same amounts is acceptable. In fact, this is the
solution we have already assigned to the gain of the CHF (see
eq. 23). Let us write γ = θγ ch. We see that to relax hypoth-
esis H3 from the CHF, it is sufficient to allow θ to vary from

Tellus 57A (2005), 2



160 H. S . HOANG ET AL.

θ = 1. Following the approach in Hoang et al. (1997b), the AF
then seeks an optimal element θ∗ in R[13], which minimizes the
prediction error

J [θ ] = E[�(ζ )] → minθ , �(ζ ) = ||ζ ||2. (31)

As J[θ ] is unknown (we do not know, for example, the dis-
tribution functions of the model and observation errors or their
statistics), the optimization problem in eq. (31) can be solved
only by a stochastic optimization (SA) technique (e.g. Tsyp-
kin 1971). This technique will use a gradient of the sample
objective function � (ζ ) to search optimal parameters. In the
present case, the AF is very simple to implement because there
is only one tuning parameter θ and the gradient can be eas-
ily estimated, for example, by two integrations of the direct
model, without the need to have an adjoint code associated
with the linear tangent of the numerical model. This filter (de-
noted AF1) will be applied in the twin experiment in the next
section.

4.4. Other classes of adaptive filters

Each of the three classes of AFs presented in the previous sec-
tions corresponds to weakening one of the three hypotheses H1,
H2 or H3. Evidently other possibilities can be considered by
moving more than one hypothesis. For example, one interesting
class of AF is to remove two hypotheses H2 and H3. In this situ-
ation only constraint (25) must be hold. We write eq. (25) in the
form

aT γ h = 1, aT = (1, 1, 1, 1). (32)

The set of all solutions of eq. (32) is expressed as

γ h(y) = aT ,+ + Ay, ∀y, A = [I − aT ,+aT ],

a+ = aT /4. (33)

Thus, whatever y is, the filter will produce the analysis layer
thickness estimate satisfying H1.

Similar to what was done in Section 4.2, we first represent
the vector y = y0 + δy, where y0 is a vector such that aT,+

+ Ay0 = γ h
ch, γ h

ch = (1 − αch, 0, 0, αch)T . By varying the
control variable θ = δy we have a possibility to relax simul-
taneously two hypotheses H2 and H3. The correction to the
Cooper–Haines gain matrix belongs to the null space of aT . The
vector δy should be initialized as θ = 0. This filter (denoted
AF2) will be used in the experiment with the MICOM in next
section.

Finally, we want to stress that the choice of a particular struc-
ture for the AF is dictated by a specific problem we have at
hand, but not by the intention to increase as much as possible the
number of free parameters to be adjusted.

5. Twin experiments with the MICOM:
numerical results and discussion

5.1. Parameters

In this section we report on the results of a set of experiments on
altimetric data assimilation using the primitive equation model,
MICOM. The model configuration used in the experiment is
described in Chassignet (1992) and it is an idealized descrip-
tion of the Gulf Stream circulation on a beta plane. It is con-
figured in a flat bottom rectangular oceanic basin (1860 ×
2380 × 5 km3) driven by a zonal symmetric wind forcing:
−→τ = [−τm cos(2π y/L), 0] where τ m = 10−4 m2 s−2. The wind
energy input is compensated by both lateral biharmonic viscos-
ity (A4 = 8 × 1010 m4 s−1) and a linear bottom drag (µ =
2.65 × 10−7 s−1). Free-slip boundary conditions are imposed
on each side of the basin. The mesh grid spacing is constant in
both horizontal directions, and equal to around 13 km. In the
vertical, the spacing (four layers) is non-uniform and the aver-
age layer thicknesses (from top to bottom) are 440, 608, 978
and 2974 m, respectively, with corresponding density values of
1000, 1001.70, 1002.91 and 1003.61 kg m−3. The first baroclinic
deformation radius is 44.7 km. The Coriolis parameter f linearly
varies with latitude according to f = f 0 + β y with f 0 = 0.93 ×
10−4 s−1 and β = 2.0 × 10−11 m−1 s−1 (40◦ mean north latitude).

The standard model configuration used here is a domain sit-
uated in the North Atlantic from 30◦N to 60◦N and 80◦W to
44◦W; the exact model domain is shown in Fig. 2a. Grid spacing
is about 0.2 in longitude and in latitude, requiring 25 200 (140 ×
180) grid points × four vertical modes. The model time-step is
18 min. The problem is to produce the estimate for the ocean
state at each assimilation instant. Note that the system state con-
sists of three variables (h, u, v), which are two-dimensional fields
defined at four vertical modes. Thus, the dimension of the state
is equal to 302 400.

The model, initialized at a state of rest, has been spun up
for 10 yr. The resulting circulation essentially consists of two
gyres (a counterclockwise one in the north and a clockwise one
in the south) separated by a mid-latitude eastward jet whose
amplitude decays from the western boundary into the interior
of the domain. This jet forms unstable meanders and creates
rings which propagate westward to the boundaries under the
beta effect. For a complete study of ring formation process and
ring statistics in this model, see Chassignet (1992).

Next, we integrate the model over 2 yr and time average the
states produced during these 2 yr, giving a so-called climatol-
ogy. The ‘true’ ocean state, used as a reference to be compared
with estimates produced by different filters, is obtained by in-
tegration of the model from the climatology during the next
350 d. Every 10 d, the state, composed of (h, u, v), is stored
and the SSH is calculated as a linear combination of displace-
ments of four modes. Thus, the computed set of SSHs available
at all surface grid points will be used as a set of observations,
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Fig 2. (a) SSH resulting from the true ocean state at May 31, 1993, which is used as an initial condition in the MODEL (no observations being
assimilated), CHF and AF. (b) The difference between the SSH in (a) and that resulting from the true ocean state at January 1, 1993.
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Fig 3. Longitude and latitude averages of the mean SSH obtained by
averaging 35 SSH observations.

denoted SO(1), for assimilation experiments in Section 5.2. In
total, we have a time sequence of 35 observations (350 d). In all
experiments, the filters are initialized by the true state at day 150.
The SSH calculated from this true state is shown in Fig. 2a. The
difference between the initialized SSH and the true SSH at the
beginning of the assimilation procedure is shown in Fig. 2b. In
Fig. 2a we see a double-gyre structure with a positive SSH level
to the south and a negative SSH area to the north. To examine
whether such a structure is typical for the observed true SSH, let
us first calculate the mean SSH from the sequence of observed
SSHs (over 35 observations) and, afterwards, average the ob-
tained SSH over longitude. The procedure of latitude average
is also performed for this mean SSH. In Fig. 3 we display the
two curves derived from these averaging procedures. One sees
that the transition from a negative level to positive level occurs
in the mid-latitude. The latitude average curve has a mildly neu-
tral characteristic, with two positive picks at nearly 70◦W and
60◦W. Note that the mean layer thickness (computed from the
sequence of true states) at the first and fourth layers has a ten-

dency to grow from the north to the south, whereas the inverse
tendency is observed at the second and third layers. Computa-
tion of the mean velocity revels that the u-velocity component is
more homogeneous than the v-component (Figs. 4a and b).

In fact, the u-component is significant only along the west-
ern boundary (near the longitude 80◦W). The v-component has
a strip structure along the longitude, but only up to the mid-
longitude. The strip width is about 280 km and the v-component
has opposite signs in neighbourhood strips. The deeper the layer
is, the smaller the velocity is. We have also calculated the rms
distribution resulting from the sequence of true states (around
the mean state). The layer thickness rms is most strong at the
first layer (see Figs. 4c and d), especially in the area of (80◦W,
70◦W) and (40◦N, 48◦N). Layer thickness variability is nearly
uniform at the second and third layers, but it remains still sig-
nificant at the fourth layer. Perhaps this is the reason why the
AF1 based on relaxing hypothesis H3 is capable of considerably
improving its performance compared to that of the CHF (Sec-
tion 5.2.2). For the velocity, for example, the rms is much bigger
in the area (80◦W, 70◦W) and (40◦N, 48◦N), especially at the
two first layers (and for the v-component). In the fourth layer, it
becomes more or less uniform.

In general, the rms becomes smaller as the layer becomes
deeper. Note that the rms of thev-component is higher than that of
the u-component. All these statistics suggest that in comparison
with the u-component, the v-component will be more difficult
to estimate precisely.

To test the optimality of the tuning parameters found by the
AF from assimilating the observations from SO(1), as well as
to see how the AF works in the more realistic situation of noisy
observations, we simulate two other sets of observations: SO(2)
(noise-free observations) and NSO(2) (noisy observations). The
set SO(2) of SSH observations is calculated from the model states
obtained in the last 2 yr of the sequence of the 20-yr integration of
the model from a state of rest. As for NSO(2), it is obtained from
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Fig 4. Mean velocity components u (a) and v (b) at the first layer. Note that the u-component is more homogeneous than the v-component. The
corresponding rms (around the mean) is shown for (c) the u-component and (d) the v-component.

SO(2) by adding to the observations from SO(2) the uncorrelated
(temporally and spatially) Gaussian noise with zero mean and
variance 16 cm2. For more details, see Section 5.3.

5.2. Numerical results from assimilation of SO(1)

In this section we present the experiments based on the set SO(1)
of noise-free observations.

5.2.1. Cooper–Haines and adaptive filters. Figure 2b shows
the difference between the true SSH (the SSH resulting from the
true initial system state) and that to be initialized in the filters
(Fig. 2a). It is seen that a significant difference is observed in the
domain 70◦W–80◦W and 40◦W–54◦W (the maximum values are
about 160 and 130 cm). On average, the rms of this difference is
about 32 cm.

First, we present in more detail the results of the AF1 described
in Section 4.3, which relaxes hypothesis H3 on no motion at
the bottom level. We have chosen this filter because it is very
simple to implement (with one tuning parameter) and hence is

very promising for future applications. The performance of AF2
will be summarized only briefly in Table 3 to compare with that
generated by the AF1.

Thus, the filter has the form

ha,k = hf,k + K h(k)ζ,

K h(1) = (1 − θγch)IN , K h(2) = 0, K h(3) = 0,

K h(4) = θγch IN , γch = −184.964 966 (34)

where θ is a scalar parameter to be adjusted to minimize the
prediction error (see eq. 31). As the CHF corresponds to θ = 1,
in the AF the parameter θ is initialized at the beginning of the
assimilation process as θ = θ (0) = 1. The value of θ = θ(t) at the
assimilation time instant t will change according to a multistage
SA algorithm (See Polyak, 1990)

θ ′(t + 1) = θ ′(t) − ν(t)∇θ (t){�[ζ (t + 1)]},

θ (t) = 1

t

τ=t∑
τ=1

θ ′(τ ). (35)

Tellus 57A (2005), 2



ADAPTIVE FILTER FOR ALTIMETRIC DATA ASSIMILATION 163

Here, ν(t) is a parameter providing a convergence of the algo-
rithm, ν(t) = c/(tα + p), where c and p are positive constant,
α ∈ (0.5, 1), ∇ θ (t)[�] is the gradient vector of the sample ob-
jective function � evaluated at the point θ (t), �(ζ ) = ||ζ ||2,
and ||ζ || is the L2-norm. Note that algorithm (35) possesses a
convergence rate equivalent to the second-order SA procedure
(Polyak, 1990).

5.2.2. Numerical results: Cooper–Haines filter and AF1. In
the following formulae, the bar over a character denotes the time
average. To evaluate the performances of the filters, we introduce
the following quantities to express estimation errors.

(1) For the objective function

eζ (t) = 1

Nh

∑
i, j

ζ (t, i, j)2, (36)

Nh = I I x J J is the number of horizontal grid points

ēζ (t) = 1

t

t∑
τ=1

eζ (τ ).

Thus, eζ (t) is the horizontal average of the innovation vector and
ēζ (t) is its temporal average.

(2) For the layer thickness forecast error (for some kth com-
ponent of h and for h),

ehk
f (t) = 1

Nh

∑
i, j

∣∣ehk
f (t ; i, j)

∣∣,
ehk

f (t ; i, j) = hf,k(t ; i, j) − h∗
k (t ; i, j),

ēhk
f (t) = 1

t

t∑
τ=1

mhk
f (τ ), eh

f (t) = 1

4

4∑
k=1

ehk
f (t),

ēh
f (t) = 1

t

t∑
τ=1

eh
f (t). (37)

Note that eh
f and ēh

f are vertical averages. Similar quantities are
introduced for the analysis errors.

(3) Analogously for the velocity component u, we introduce

euk
f (t) = 1

Nh

∑
i, j

[
euk

f (t ; i, j)
]2

,

euk
f (t ; i, j) = uf,k(t ; i, j) − u∗

k (t ; i, j),

ēuk
f (t) = 1

t

t∑
τ=1

euk
f (τ ), eu

f (t) = 1

4

4∑
k=1

euk
f (t),

ēu
f (t) = 1

t

t∑
τ=1

eu
f (τ ). (38)

Similar quantities are defined for the analysis error for u. It
is evident how to write the same error indices for forecast and
analysis errors for the v component.

Thus, for example, eζ (t) represents a sample objective func-
tion normalized by the number of horizontal grid points (hori-
zontally averaged), and ēζ (t) is the estimated objective function
(the ensemble average is estimated by a time average over the
interval [1, t].)

Before applying the filters, we first examine the model sim-
ulation without use of the observations (denoted MODEL).
Fig. 5a shows the errors in reproducing the forecast SSH by
the CHF and simply by running the MICOM (initialized by the
same state as in the CHF). It is seen that the MODEL itself can-
not reduce the errors for SSH (the errors remain nearly stable
during the whole assimilation period). The CHF, as expected,
improves significantly on what the MODEL alone could gener-
ate. In Fig. 5b, the objective functions resulting from the CHF
and AF1 are plotted. It is seen that in the AF1 the objective func-
tion decreases quickly from the beginning up to day 170, and it
is stabilized thereafter. The time series of the tuning coefficient
in the AF1 is plotted in Fig. 5c. Let us look at estimation errors
for the system state (h, u, v). We remark from Table 1 that al-
though the MODEL itself reduces the forecast estimation error
for layer thickness, with rms from about 31.1 m at the beginning
to 16.7 m at the end of the assimilation period (this happens since
the initial condition used in the MODEL is too far from the true
initial ocean state. For better initial estimates (climatology, for
example), this forecast error may increase but it converges to the
same error level at the end of the assimilation period as reported
in Table1), nothing is similar to the case of estimating the fore-
cast SSH by MODEL as seen in Fig. 5a (and also of estimating
the velocity (u, v) plotted in Fig. 6a).

The CHF, in turn, reduces the initial error for h to about 11.7
m, or with the gain of about 30% compared to the no-assimilation
procedure. Finally, the AF1 yields at the end of the assimilation
period the rms error which is equal to 9.8 m, or with the gain of
16% compared to the CHF (see Table 1) and 41% compared to
the MODEL (not shown in Table 1). In Table 1 we present also
the time-average rms errors for different variable estimates. For
example, in time average the AF1 reduces 22% of the rms of the
innovation vector compared to that of the CHF, 8.8% (rms) for
the layer thickness estimate and 21% for the velocity estimates.

As seen here, the MODEL has difficulty reducing the error
in estimating the velocity. This means that it is very important
to make a correction to the layer thickness forecast to reduce
the error for velocity estimate, because without assimilation the
MODEL is incapable of reducing this error. Fig. 6b displays the
rms for estimation errors for the analysis estimates obtained in
the CHF and the AF1. In general, we see here that the differ-
ences between the CHF and the AF1 (in terms of estimation
errors) become more and more significant as more observations
are assimilated; this proves the optimality of the tuning coeffi-
cient found in the AF1.

In Table 2 we summarize the performances of the CHF and
the AF1 in terms of analysis estimation errors at the end of
the assimilation period. We see that, as in the case of forecast
estimates, the AF1 produces better analysis estimates in com-
parison with those generated by the CHF. In time average, at the
end of the assimilation period the performance gain obtained by
the AF1 in comparison with the CHF is of the order of 9.2%,
19% and 16.6% for h, u and v estimates, respectively. Looking
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Fig 5. Time series of sample objective
functions mζ (t) (in cm2; see eq. 34) resulting
from a simple model run (initialized by the
same state as in the CHF and AF) and that of
the CHF. We see here that the MODEL
cannot reduce the error in forecasting the
SSH (a). The CHF reduces considerably the
forecast SSH error. It is curious to note that
the forecast SSH error in CHF began to
(slightly) increase after day 260 (the same
picture is observed for the MODEL case).
The same time series of sample objective
functions, but for the CHF and AF1, are
shown in (b). The tuning parameter θ ,
initialized as θ (0) = 1, is adjusted in time to
optimize the filter performance, and its
evolution is shown in (c).

Table 1. Estimation errors (differences between forecast estimates and true ocean states) produced by the CHF
and the AF1 in the experiment with SO(1). The AF1 was run subject to the initial value of θ = 1, which
corresponds to applying the CHF at the first assimilation instant. The MODEL, CHF and AF1 were initialized by
the same state, which is the ‘true’ state at day 150. Column 5 presents a comparison between the CHF and AF1

MODEL CHF AF1 Improvement by AF1

√
eζ (35) 29.2 (cm) 10.6 (cm) 5.1 (cm) 52%√
ēζ (35) 32.5 (cm) 13.6 (cm) 10.6 (cm) 22%

eh
f (35) 16.7 (m) 11.7 (m) 9.8 (m) 16.1%

ēh
f (35) 21.5 (m) 16 (m) 14.5 (m) 8.8%

√
eu

f (35) 18.7 (cm s−1) 8.52 (cm s−1) 5.5 (cm s−1) 35 %√
ēu

f (35) 19.4 (cm s−1) 9.8 (cm s−1) 7.5 (cm s−1) 21.2 %

√
ev

f (35) 16.4 (cm s−1) 8.1 (cm s−1) 5.2 (cm s−1) 35.7%√
ēv

f (35) 17.9 (cm s−1) 9.2 (cm s−1) 7.2 (cm s−1) 21.2%

at the forecast and analysis rms errors for velocities (u, v) re-
sulting from the AF1, it is seen that important performance im-
provements are observed at the beginning of the assimilation
process, which correspond to the period when there are large
corrections in the adjustment of the tuning parameter. This fact
is also a consequence of the large difference between the initial-

ized state and the true system state, which pushes the filter to
make a large correction for the velocity forecast. To see how the
corrections to forecast made by the CHF and the AF1 can reduce
forecast rms errors, we calculate averaged forecast and analysis
rms errors for two velocity components (u, v) in two filters. It
is found that, in time average, the gain matrices in the CHF and
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Fig 6. The rms for forecast velocity (u, v) in
the CHF and MODEL (a). For the velocity,
the MODEL itself is incapable of reducing
the forecast error, as it can do for the
layer thickness case. We observe here a
slight growth of this error for the CHF
estimate after day 260. This growth of
velocity corresponds to the increase of
variance of SSH forecast error, as seen in
Fig. 5a. The same rms for forecast velocity,
but for CHF and AF1, is shown in (b).

Table 2. The same as in Table 1, but for the analysis estimates

CHF AF1 Improvement by AF1

eh
a 11.49 (m) 9.68 (m) 15.7%

ēh
a 15.27 (m) 13.86 (m) 9.2%

√
eu

a (35) 5.27 (cm s−1) 3.57 (cm s−1) 32.3 %√
ēu

a (35) 6.12 (cm s−1) 4.96 (cm s−1) 19 %

√
ea(35) 4.46 (cm s−1) 3.76 (cm s−1) 31.2%√
ēa(35) 6.07 (cm s−1) 5.06 (cm s−1) 16.6%

Table 3. Forecast and analysis performance of the AF2 (at the end of
the assimilation period)

Estimation error Forecast Analysis

bζ (35) 15.76 (cm2) –
b̄ζ (35) 109.4 (cm2) –

bh
f,a(35) 9.17 (m) 9.2 (m)

b̄h
f,a(35) 14.49 (m) 13.86 (m)

√
bu

f (35) 4.54 (cm s−1) 3.12 (cm s−1)√
b̄u

f,a(35) 7.26 (cm s−1) 4.78 (cm s−1)

√
bf,a(35) 4.51 (cm s−1) 3.39 (cm s−1)√
b̄f,a(35) 7.08 (cm s−1) 4.88 (cm s−1)

the AF1 allow us to reduce 29% and 32% rms forecast errors,
respectively.

5.2.3. Numerical results: AF1 and AF2. To examine whether
it would be useful in relaxing simultaneously two hypotheses H2
and H3 to enhance a performance of the AF1, we apply here the
AF2 described in Section 4.4. The assimilation results of this
experiment are summarized in Table 3. Comparing the results
in Table 3 with those in Tables 1 and 2 shows that the AF2 is

effectively able to generate better layer thickness and velocity
estimates (for both forecast and analysis) than the AF1. The
difference is more obvious for forecast estimates. At the end of
the assimilation period, the value of the sample objective function
produced by the AF2 is 15.8 cm2, which is much lower than that
of the AF1 (26.5 cm2). This fact shows that there is really an
interest in relaxing simultaneously two hypotheses H2 and H3,
although it will be (much) more expensive than the AF1 if the
adjoint code is not available.

During the experiment we observe that the filter is very sensi-
tive to departure from hypothesis H2, and hence a large departure
from that hypothesis can lead to very poor state estimates or even
to filter divergence (see also Comment 4.1). A careful choice of
the gain parametrization (see eqs. 32 and 33, for example) as
well as that of the amplitude of initial correction are important
for guaranteeing a high filter performance. As the AF2 makes
corrections to the layer thickness forecast at the second and third
layers, it is interesting to examine what happens at these layers
during assimilation. Figure 7a shows two curves representing the
corrections to layer thickness analysis at the second and third lay-
ers, at the center of the domain, at the grid point (70, 90). Note
that these corrections are equal to zero in the CHF. We found here
large corrections at the beginning of the assimilation period. As
seen in Fig. 7b, the gain components of the AF2 at the second
and third layers are of opposite signs, positive for the third layer
and negative for the second layer. The amplitudes of correction
are larger at the third layer (about three to four times, after day
60) and converge more slowly compared to those observed in
the second layer. To explain this, let us first look at the velocity
errors introduced at the beginning of the assimilation period in
these two layers. As seen in Table 4, the rms for velocity errors
is bigger at the third layer compared to that at the second layer;
they are 11 and 6.6 cm s−1 for the u-component and 7.9 and 5.3
cm s−1 for the v-component.

At the end of the assimilation period, the AF2 reduces these
initial errors in the third and second layers to 3.4 and 2.5 cm
s−1, respectively, for the u-component, or a reduction of 69% of
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Fig 7. (a) The corrections, in cm, at the
horizontal grid point (70,90), to layer
thickness forecast estimates (at the second
and third layers) made by AF2. Note that in
the CHF these corrections are equal to zero.
(b) The time series of gain components
Kh(2) and Kh(3) at the second and third
layers in the AF2.

Table 4. The rms for analysis velocity errors at the second
and third layers generated by the AF2 and the CHF

Estimation t = 1 AF2 (t = 35) CHF (t = 35)
error (cm s−1) (cm s−1) (cm s−1)√

mu2
a (t) 6.6 2.5 3.1√

mu3
a (t) 11 3.4 5.3

√
mv2

a (t) 5.3 2.6 3.5√
mv3

a (t) 7.9 3.7 5.7

the initial error in the third layer and 62% in the second layer.
Similarly, for the v-component, we observe here a reduction
of 53% and 51% of the initial errors in the third and sec-
ond layers. Thus, by making larger corrections at the third
layer, the AF2 is able to reduce more estimation errors at the
third layer than in the second layer. As for the CHF, the rms
for the u-component is equal to 5.3 and 3.1 cm s−1 at the
third and second layers (and 5.7 and 3.5 cm s−1 for the v-
component) at the end of the assimilation period. The reduc-
tions of the initial errors are hence 51% and 53% for the u-
component, and 28% and 34% for the v-component, at the
third and second layers, respectively. Thus, contrary to the
AF2, the CHF reduces more velocity errors in the second layer
than in the third layer. Note also that the amplitudes of correc-
tions become smaller and smaller as the assimilation progresses.
This does not mean that the gain components Kh(2) and Kh(3) in
the AF2 tend to zero (see Fig. 7b), but it is a consequence of the
fact that the forecast SSH error becomes smaller and smaller.

5.3. Noisy observation experiments

In this section we present briefly some results on the assimilation
of noisy SSH observations. The model is first spun up during
20 yr from the state of rest, as done in Section 5.2. During the
last 2 yr, years 19 and 20, the variables h, u and v are stored
each 10 d, which will be used as the known ‘true’ ocean state

to evaluate filter performances. The set of 70 noise-free SSH
observations, SO(2), is first calculated from the sequence of true
system states. The set of noisy observations, NSO(2), is obtained
by adding a Gaussian noise having zero mean and variance σ 2

r =
16 cm2 (temporally and spatially uncorrelated) to the noise-free
observations from SO(2). The reason we have used a greater
number of observations (in comparison with the experiments in
Section 5.2) is that this enables us to check whether there really
is a convergence of the adaptation algorithm for a long period of
observations. In all the filters used in the experiments, the initial
state is the mean of the sequence of true states.

5.3.1. Experiments with the set of noise-free observation,
SO(2). For the set of noise-free observations, SO(2), the follow-
ing filters are used: CHF, AF1 and CHF1. The CHF and the AF1
are of the forms described in Section 5.2. The filter CHF1 is of
the form of the CHF with the difference that instead of γ ch =
−184.964 966 (see eq. 23) now θ∗γ ch where θ∗ = 0.6567 is the
value of the parameter θ obtained by the AF1 in the experiment
in Section 5.2 with SO(1). Thus, the value θ∗ has been obtained
by the AF1 on the basis of the observations SO(1), which is
completely disconnected with the set of SO(2). This experiment
has the goal of checking whether the performance improvement
of the AF1 over the CHF observed during the adaptation pro-
cess, as done in the experiment in Section 5.2, has a transient
character or not. These results will be used also to compare with
the performances of the CHF and AF for the noisy observations
case.

5.3.2. Experiments with the set of noisy observations NSO(2).
For the set of noisy observations, the following filters will be
used.

(1) The CHF, which is the filter described in Section 4.1 for
the case of noisy observations. Thus, we have the gain

K h
nch = λch K h

ch. (39)

We specify λch = 0.91 (this is equivalent to assuming that the
observation error is 10 times less that the SSH forecast error).
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Fig 9. Comparison between the CHF1 and
the AF1. (a) Ratio of rms for cost functions
and layer thickness forecast errors. (b) The
same ratios of rms but for forecast errors for
velocity estimates.

(2) The AF. Let Kh
af1 be the gain for AF1 (see eq. 34). Then

the new AF has a gain

K h
af = λK h

af1. (40)

For this AF, two parameters are adjusted during assimilation
process: λ and θ . The initial values for λ and θ are equal to 0.91
and 1, respectively (they correspond to the initialization of the
AF as the CHF, eq. 39). The parameter λ is updated using eq. (26)
in Section 4.1. The value σ 2

ζ (t) = eζ (t) is obtained by the filter
and is defined by eq. (36). The value σ 2

r is mis-specified and is
equal to σ 2

r = 14 cm2.
5.3.3. Numerical results: noise-free observations. First, we

present the performances of AF1 and CHF for the set SO(2). We
introduce for the cost function the ratio

r (cost) = √
ēζ (t)(af1)/

√
ēζ (t)(chf).

Similarly, for the forecast and analysis errors of the layer thick-
ness h and velocity (u, v) estimates, we let

r (h) = ēh(t)(af1)/ēh(t)(chf),

r (u) = √
ēu(t)(af1)/

√
ēu(t)(chf),

r (v) = √
ēv(t)(af1)/

√
ēv(t)(chf)

(the subscripts ‘f’ or ‘a’ signifying ‘forecast’ or ‘analysis’ are
omitted). The curves in Figs. 8a and b calculated for the analysis
errors confirm, as in Section 5.2, the superiority of the AF1 over
the CHF. The improvement is more significant for the velocity
estimates shown in Fig. 8b. At the end of the assimilation pe-
riod, in time average, in comparison with the CHF, the AF1 has
reduced about 25% and 45% analysis errors for layer thickness
and velocity, respectively. As for the forecast errors, these re-
ductions are 25% and 35%. These results are much better than
those observed in the experiment with SO(1) (see Tables 1 and
2), where the reduction of forecast errors is of the order of 9%
for h and 21% for velocity (and 9% and 18% for analysis er-
rors). Probably, this occurs because the ocean is more or less
in a steady-state regime and the data sequence is longer. These
conditions are ideal for the SA procedure to seek an optimal
parameter(s).

Next, in Figs. 9a and b, we compare the results produced by the
CHF1 and the AF1 for the forecast errors. It is seen that although
the AF1 has improved considerably the quality of the forecast
estimates in comparison with those of the CHF, the CHF1 is
proven to be more efficient compared to the AF1, especially at
the beginning of the assimilation process. Note that their rela-
tive performances become more and more identical at the end
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Fig 10. Noisy data set NSO(2). (a) Time
evolution of two parameters λ and θ in the
AF. (b), (c) The same ratios as shown in
Figs. 8a and b, but for the set NSO(2).

of the assimilation process. This seems to be natural because in
the AF1 the parameter θ is initialized at the beginning as done
in the CHF as θ = 1, whereas in the CHF1 it is assigned the
value θ∗ for the whole assimilation period. The adaptation al-
lows the AF1 to approach the CHF1 at the end of the assimilation
period. These results prove that the value θ∗ is not so far from
the optimal one. This fact shows also that the performance im-
provement of the AF1 over the CHF, observed in Section 5.2,
is not simply due to the transient character of the adaptation
process. The ‘optimality’ of the value θ∗ thus has the sense of
‘statistical average’ over the physical processes under consid-
eration, but not only has a ‘local’ character for the particular
set SO(1).

5.3.4. Numerical results: noisy observations case. First, note
that when the observations are noisy, the performance of the CHF
with λ= 1 seriously degrades in comparison with the assignment
λ = 0.91. This is the reason why we put λ = 0.91 in the CHF for
assimilating the noisy observations. Secondly, the adjustment of
the parameter λ plays a very important role in performance im-
provement of the AF for assimilating noisy observations. This
fact is observed from the results of the experiment with noisy
observations in which only one parameter θ is adjusted, as done
in AF1 (these results are not shown here due to the space limi-

tations of the paper). We observe a much less significant perfor-
mance improvement of the AF over the CHF compared to the
case of simultaneous adjustment of λ and θ . The time evolution
of the two tuning parameters λ and θ in the AF is presented in
Fig. 10a. As seen here, the parameter λ contributes a large cor-
rection for the analysis estimate. Figures 10b and c show the
comparison of analysis performances of the CHF and AF. As for
the case of noise-free SO(2), the improvement is more significant
for the velocity estimation. In time average, the AF is capable
of reducing 25% errors for the analysis velocity estimate (and
15% errors for the layer thickness estimate). This reduction is
less significant compared to the case of noise-free observations
SO(2) reported in the previous section.

6. Concluding remarks

The AF presented in this paper for assimilating SSH observa-
tions is based on the adaptive approach developed in previous
work (Hoang et al., 1997b, 2001), which is aimed at overcom-
ing two major difficulties related to the very high dimension of
the state of oceanic numerical models and to the uncertainty in
specification of the model and observation error statistics. The
main features of this approach are as follows. (i) The objective

Tellus 57A (2005), 2



ADAPTIVE FILTER FOR ALTIMETRIC DATA ASSIMILATION 169

function is to minimize the mean prediction error. (ii) The tuning
parameters are chosen as some parameters of the gain matrix.
This approach is simple to implement because it is numerically
inexpensive and does not require much a priori information on
relevant statistics of the model error. In fact, at each data up-
date iteration only one forward integration of the direct model
and one backward integration of the AE are to be performed for
adjusting the parameters.

A most important and difficult step in applying this method is
concerned with the selection of the structure of the gain and its
parametrization. One of the natural criteria for this selection is
related to the stability of the closed-loop filtering system (Hoang
et al., 2000; 2001). Experiments with the adaptive filtering con-
structed on the basis of leading singular modes or eigenmodes
of the linear tangent are under way to be implemented with the
MICOM, and will be reported in forthcoming papers.

In the present paper we have developed a technique for con-
struction of the filter gain for assimilating SSH observations,
which satisfies some physical constraints required in modelliza-
tion of the oceanic circulation. These constraints are proven to
be reliable and to ensure a stability of the oceanic circulation,
as proven in many research works on dynamical oceanography
(Cooper and Haines, 1996) as well as in the present work. These
constraints define in fact a subspace on to which the innovation
is projected to find a correction to be aided to the system fore-
cast. The adaptation made by adjusting the tuning parameters is
equivalent to seeking the correction lying in the neighbourhood
of this subspace.

As seen from Section 2, first the structure of the gain is pre-
sented in a form of the optimal interpolation approach. Under
the assumption of homogeneity of the forecast ECM and of the
observation covariance matrix, the elements of the gain are spec-
ified in such a way that three hypotheses H1–H3 are satisfied.
By relaxing one or several of these hypotheses, it becomes clear
how one can select appropriate tuning parameters to optimize
filter performance by adaptation. If it is relatively easy to choose
tuning parameters by removing hypotheses H1 (noise-free ob-
servation) and H3 (no correction for the velocity at the bottom),
relaxing only hypothesis H2 requires more careful examination
of the set of all solutions satisfying H3 (or the set of all solutions
satisfying H1 if we want to meet only H1).

Numerical experiments with noise-free and noisy observa-
tions presented in this paper illustrate the success and high effi-
ciency of the proposed adaptive filtering in the academic context.
By adjusting only one or several parameters, the adaptive filter-
ing is capable of improving significantly on the forecast and
analysis performance of the filter (for all system variables, layer
thickness and velocity), in all layers. These experiments demon-
strate also that the proposed technique is presumably useful for
enhancing the performance of SSH data assimilation systems.

There remain many questions to be studied in more detail in
order to make the adaptive filtering efficient for solving realistic
data assimilation problems. For example, this is a question re-

lated to the hypothesis on horizontal spatial homogeneous ECM.
One possibility to remove this hypothesis is to seek the best repre-
sentation of the parameter function in some functional subspace.
In this regard, we have tested the adaptive filtering where the
parameter function is found in the subspace of polynomial func-
tions of second and third orders. By representing the parameter
function as a linear combination of these polynomials, the tuning
coefficients are adjusted to minimize the prediction error. The
obtained numerical results (not shown in this paper) justify this
approach; really, in this way the adaptive filtering can produce
a better performance in comparison with the case of homoge-
neous error covariance structure. Another possibility to choose
a functional subspace is concerned with the widely used method
of empirical orthogonal functions (see De Mey and Robinson,
1987; Pham et al., 1997) where several dominant eigenvectors
of the forecast ECM, for the system state calculated from avail-
able observations as well as from model simulations, are used to
approximate the true forecast ECM. The questions arising here
are, to what extent and how better to combine the thus approx-
imated ECM with the constraints required by H1–H3? Similar
experiments are planned to be implemented in cooperation with
Dr P. De Mey at LEGOS, Toulouse.
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