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ABSTRACT
The DEMETER multi-model ensemble system is used to investigate the rationale behind the multi-model concept. A
comprehensive documentation of the differences in the single and multi-model performance in the DEMETER hindcast
data set is given. Both deterministic and probabilistic diagnostics are used and a variety of analyses demonstrate the
improvements achieved by using multi-model instead of single-model ensembles. In order to understand the reason
behind the multi-model superiority, basic scenarios describing how the multi-model approach can improve over single-
model skill are discussed. It is demonstrated that multi-model superiority is caused not only by error compensation but
in particular by its greater consistency and reliability.

1. Introduction

Using collective information for decision-making is common
sense in both everyday life and professional business. In par-
ticular, the greater the complexity of the involved processes,
the more input for our decision-making procedure can be help-
ful (Branzei et al., 2000). On the other hand, an overload of
possibly contradictory information can lead to suboptimal de-
cisions. It has been shown that in the real world of confusing
and overwhelming information, fast and frugal heuristics (i.e.
simple rules for making decisions) can be powerful tools that
do surprisingly well (Gigerenzer and Todd, 1999). That is, in
general decision-making theory, it is under debate whether more
information leads to more success or whether ‘simplicity rules
the world’.

The effect, that more information does not necessarily lead
to more success, has been demonstrated for the case of weather
forecasting by Heideman et al. (1993). Their results suggest that
‘the relation between information and skill in forecasting weather
is complex’ and that ‘greater improvement in forecasting might
be obtained by devoting resources to improving the use of infor-
mation over and above those needed to increase the amount of
information’. However, it is very important to note that this effect
generally holds only in the case of an individual forecaster, mak-
ing decisions based on different levels of information available
to her or him. It must not be confused with the attempt to improve
predictions by utilizing more than one decision-making system,
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of either subjective or objective nature. Many indications exist
that such multiple decision-making systems (a group of forecast-
ers/models) are generally superior to individual decision-making
systems (a single forecaster/model).

For example, in short- and medium-range weather forecast-
ing it has been demonstrated, in the early 1960s, that combining
different forecasts from individual forecasters can be beneficial.
Sanders (1963) analysed multiple-person forecasts and showed
that ‘the group-mean probability forecast is found to be a more
skilful statement than the probability forecast of the most skilled
individual’. His early findings were confirmed by later studies
(Sanders, 1973; Bosart, 1975; Gyakum, 1986), and the extension
of this concept from subjective multiple forecasters to objective
multi-model prediction systems has also been proven successful
(Clemen and Murphy, 1986; Fraedrich and Leslie, 1987). Com-
parisons of multi-model and single-model performance suggest
that ‘variations in model physics and numerics play a substan-
tial role in generating the full spectrum of possible solutions’
(Fritsch et al., 2000).

However, using more than one model addresses only one of
the two main sources of error. The second source of error, un-
certainties in initial conditions, can be addressed by running an
ensemble of forecasts from different initial conditions. This tech-
nique, known as ensemble prediction, is used with great success
at forecasting centres around the world (Tracton and Kalnay,
1993; Molteni et al., 1996). Richardson (2000) has shown that
probability forecasts derived from an ensemble prediction sys-
tem (EPS) are of greater benefit than a deterministic forecast
produced by the same model and that, for many users, the prob-
ability forecasts have more value than a shorter-range determin-
istic forecast.
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In order to take into account both model error and uncertainties
in initial conditions, the multi-model and ensemble techniques
can be combined to a new approach, known as the multi-model
ensemble concept (Harrison et al., 1995; Palmer and Shukla,
2000; Palmer et al., 2004). The idea of the superiority of multi-
ple source prediction systems is based on the ‘incontrovertible
fact that two or more inaccurate but independent predictions
of the same future events may be combined in a very specific
way to yield predictions that are, on the average, more accu-
rate than either or any of them taken individually’ (Thompson,
1977). However, how ‘incontrovertible’ and widely accepted is
this fact? Although many studies have demonstrated the suc-
cess of the multi-model approach in practice, parts of the scien-
tific community still dispute the general validity of the concept.
Some of these reservations are caused by apparent misconcep-
tions of the approach. Frequent questions in this context are the
following.

(i) How can a poor model add skill?
(ii) How can the multi-model be better than the average

single-model performance?
(iii) Why not use the best single model instead of the multi-

model?

In this paper we attempt to clarify such misconceptions in an-
swering the above questions and discussing in general the ratio-
nale behind the multi-model ensemble concept.

The study is based on the extensive data set of seasonal hind-
casts produced in the DEMETER project (Development of a
European Multi-model Ensemble System for Seasonal to Inter-
annual Prediction). DEMETER was conceived and funded as a
European Union (EU) Framework-V project in order to advance
the concept of multi-model ensemble prediction by installing
a number of state-of-the-art global coupled ocean–atmosphere
models on a single supercomputer, and to produce a series of six-
month multi-model ensemble hindcasts with common archiving
and common diagnostic software. A general description of the
project, the involved coupled models, the produced data set, as
well as the verification, downscaling and application of the data
is given in Palmer et al. (2004). Here, the DEMETER data set is
used to study specifically the advantages and limitations of the
multi-model ensemble approach in seasonal forecasting.

In its simplest form, a multi-model ensemble forecast is
produced by simply merging the individual forecasts with
equal weights. However, more complex methods of opti-
mally combining the single-model output have been described
(Krishnamurti et al., 1999; Pavan and Doblas-Reyes, 2000; Ra-
jagopalan et al., 2002). A substantial amount of effort has been
concentrated on assessing the performance of sophisticated tech-
niques for constructing optimal multi-model ensembles. How-
ever, neither a comprehensive demonstration of the superiority
of the multi-model approach for seasonal forecasting nor any
substantial work on the rationale behind its success can be found
in the literature. Motivated by this lack of groundwork, a com-

prehensive documentation of the improved performance of a
multi-model ensemble system compared to single-model ensem-
ble predictions will be presented here, and also an explanation
for the multi-model superiority is proposed.

In order to illustrate the improvements found when using an
‘equal-weight’ multi-model ensemble forecast system separately
from the likely improvements expected in optimal multi-model
ensembles, the paper is split into two parts. In the first part, the ba-
sic concept of the multi-model approach is discussed along with
results from the equal-weight multi-model ensemble, henceforth
referred to as the simple multi-model ensemble. All issues re-
lated to advanced methods for calibrating and optimally com-
bining models will be addressed in the second part of the paper.
A careful examination of simple multi-model ensembles results
is additionally motivated by the the following facts: (i) robust
optimal weights are difficult to calculate given the short samples
available to train the models (Kharin and Zwiers, 2002; Peng
et al., 2002), i.e. often the use of the simple multi-model is the
only practical way of utilizing the multi-model approach; (ii)
simple multi-model ensembles may be considered as a reference
method for optimal multi-model ensemble systems.

A description of the data set and diagnostic tools used can
be found in Section 2. In order to document the multi-model
superiority, a comprehensive comparison of simple multi-model
versus single-model results is presented in Section 3. A discus-
sion of the rationale behind the superiority of the multi-model
follows in Section 4, including some theoretical considerations
and practical examples. The conclusions are summarized in
Section 5.

2. Data and tools

2.1. DEMETER data set

The extensive multi-model ensemble seasonal hindcast data
set, produced by the DEMETER project, has been used for a
comprehensive assessment of the multi-model approach. The
DEMETER prediction system comprises the global coupled
ocean–atmosphere models of the following institutions: the
European Centre for Research and Advanced Training in
Scientific Computation, France (CERFACS); Centre National
de Recherche Météorologiques, France (CNRM); the European
Centre for Medium-Range Weather Forecasts (ECMWF); Is-
tituto Nazionale de Geofisica e Vulcanologia, Italy (INGV);
Laboratoire d’Océanographie Dynamique et de Climatolo-
gie, France (LODYC); Max-Planck Institut für Meteorologie,
Germany (MPI); UK Met Office (UKMO). In order to assess
seasonal dependence on forecast skill, the DEMETER hind-
casts have been started from 1 February, 1 May, 1 August and
1 November. The atmospheric and land-surface initial condi-
tions are taken from the ECMWF Reanalysis (ERA-40) data set.
The ocean initial conditions are obtained from ocean-only runs
forced by ERA-40 fluxes, except in the case of MPI that used
a coupled initialization method. Ocean observations have been
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assimilated only in the UKMO ocean-only run after 1987. Each
hindcast has been integrated for six months and comprises an
ensemble of nine members. All seven models have been run for
the common period of 1980–2001, although some of the models
have been integrated over an even longer period (1958–2001).
In order to compare single-model and multi-model results for
the same period, in this study only the 22 years of the common
period have been used.

2.2. Diagnostic and evaluation tools

The diagnosis of model results is a crucial step in assessing (and
improving) model performance. Many aspects of the model per-
formance are not independent of the chosen diagnostic. Thus,
in order to answer scientific questions such as those discussed
in the introduction, a broad range of diagnostic and evalu-
ation tools has to be applied. Furthermore, both determinis-
tic and probabilistic skill measures have to be considered. In
the DEMETER project, a comprehensive verification system
to evaluate the forecast quality of all DEMETER single-model
and multi-model ensemble systems has been developed at the
ECMWF. This system calculates a common set of verification di-
agnostics based on World Meteorological Organization (WMO)
standards. The basic set of diagnostics can be accessed on-
line (http://www.ecmwf.int/research/demeter/verification). This
website contains the following sections.

(i) Global maps and zonal averages of the single-model bias.
Hindcast anomalies are computed by removing the model clima-
tology for each grid point, each initial month and each lead time
from the original ensemble hindcasts. A similar process is used
to produce the verification anomalies.

(ii) Time series of specific climate indices, e.g. related to
area-averaged sea surface temperatures (SSTs), precipitation and
circulation patterns.

(iii) Standard deterministic ensemble-mean scores, such as
anomaly correlation coefficient (ACC), root mean square skill
score (RMSSS) and mean square skill score (MSSS).

(iv) Probabilistic skill measures, such as reliability diagrams,
relative operating characteristic skill score (ROCSS), Brier score,
ranked probability skill score (RPSS) and potential economic
value curves.

(v) Comparison of single-model and multi-model ensemble
skill using scatter diagrams of area-averaged skill measures and
probability density functions (PDFs) of grid-point skill scores.

All diagnostics shown in this study are based on results from
this verification system.

3. Multi-model versus single-model results

Before trying to find an explanation for the claimed superior-
ity of the multi-model, a comprehensive documentation of the
differences between the single-model and multi-model perfor-
mances has to be given. From a scientific point of view, it seems

that a fair comparison between single-model and multi-model
ensembles can only be made with same ensemble sizes. How-
ever, from an operational point of view, it also makes sense to
compare existing single-model forecasts (with an ensemble size
which can be afforded by a single operational centre) with a
multi-model consisting of pooling together various such sin-
gle models. That is, in an operational environment, the com-
parison of ensembles with different sizes makes sense, because
it demonstrates the integrated advantages of the multi-model
approach compared to using a single-model ensemble from a
single operational centre. However, in order to separate differ-
ences caused by the increased ensemble size of the multi-model
and differences caused by using more than one model, not only
the original nine-member ensemble single models are compared
to the multi-model, but also results of a single model with the
same number of ensemble members like the multi-model will be
studied.

3.1. Consistency

The scientific basis for seasonal prediction relies on the fact
that the lower boundary conditions can be a major source of
predictability in the atmosphere (Palmer and Anderson, 1994).
Therefore, a first step in assessing the performance of seasonal
forecast models is often to look at the skill of SST predictions,
in particular in the tropical Pacific. A simple deterministic skill
measure, such as the ACC, can give a first impression of gen-
eral model performance and specific differences in single-model
and multi-model skill. Comparing the single-model and multi-
model ACCs for different lead times in different seasons gives
a first hint of the range of possible improvements which can be
achieved with the multi-model (Fig. 1). For the case here consid-
ered, seasonal SSTs in the Niño-3.4 area, in general the differ-
ences are negative, i.e. mostly the multi-model ACC is superior
to the single-model ACC. The greatest relative differences can
be found for the hindcasts starting in February and May, which is
the period with least skill due to the well-known ‘spring barrier’
(e.g. Balmaseda et al., 1995). On average, the ACC of the single
models is around 10% below that of the multi-model, although in
particular for the three-month lead time summer hindcast (MJJ,
February start date) the relative differences vary much more and
reach values over −40% for the worst single model. For the
August and November start dates, the overall performance of
the models is already quite high, and the multi-model results
are mostly not much improved compared to the single models.
There are even cases in which the single-model performance is
better or equal to that of the multi-model.

Furthermore, when comparing only the best single model in
each season and lead time with the respective multi-model result,
the difference is at maximum −8%, which does not seem to be
a very significant improvement. However, two important points
have to be considered when judging the gain from using a multi-
model compared to a single model. First and most importantly,
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Fig 1. Relative difference between the
seasonal SST ACC of the seven single
models and the multi-model. Values are
calculated for the Niño-3.4 area and the start
dates from 1980 to 2001. Results for
one-month lead time (filled bars) and
three-month lead time (open bars) are shown
for each season corresponding to the four
start dates per year. The one-month and
three-month baseline values of the
multi-model are given on top of the figure.
The ranking of the seven single models is
added above their respective bars, with ‘1’
marking the best model, i.e. the single model
with the least difference to the multi-model
value (negative differences correspond to a
single-model ACC lower than the
multi-model ACC).

when comparing single-model and multi-model skill in this way,
we do not take into account that generally the identity of the best
single model varies between different seasons, lead times, etc.
For the eight cases of two lead times and four seasons considered
here, all single models, except model 6, are at least once the best
model. That is, it is very difficult to talk about the best single
model because the best model in one case can be the worst model
in another situation. For example, model 2 is the best model for
the three-month lead time November and August start dates but
the worst for the February start date. For a fair judgment, the
single model identified as the best model across the whole range
of cases should be compared to the multi-model. If, for example,
model 1, which is ranked the best in three cases, is chosen as the
best single model and compared with the multi-model in all eight
cases, much greater gains than the above-mentioned maximum
−8% can be found. That is, model 1 has a good performance in
many – but not all – cases, so that, for example, for the three-
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Fig 2. Relative difference between the ACC
of the seven single models and the
multi-model. Values are calculated for the
one-month lead time seasonal mean of the
May start dates from 1980 to 2001. Results
for the parameter SST (filled bars) and
MSLP (open bars) are shown for four
different areas (Niño-3.4, Tropics, North
America and Europe). The baseline values of
the multi-model are given on top of the
figure. The ranking of the seven single
models is added above their respective bars,
with ‘1’ marking the best model, i.e. the
single model with the least difference to the
multi-model value (negative differences
correspond to a single-model ACC lower
than the multi-model ACC).

month lead time February start date, a greater relative difference
of −30% occurs. This points out that the main advantage of
using a multi-model is not the small improvement compared to
the respective best single model in individual cases, but rather
the consistently better performance of the multi-model when
considering all aspects of the predictions.

Other aspects, besides the season and lead time of the fore-
cast, influencing the performance of the models and with it the
identity of the best single model, are the area considered and the
predicted parameter (Fig. 2). The first thing to note in Fig. 2 is
the increased relative difference when considering extratropical
areas. Although these improvements of up to 80% seem to be
very significant on first glance, it has to be kept in mind that
they are relative to a dramatically reduced overall skill. That
is, it can be questioned whether variations in the ACC with a
baseline around 0.3 are noteworthy or not. Apart from
these partly drastically increased differences, again only little
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Fig 3. Relative difference between single
and multi-model skill measures. Values are
calculated for the one-month lead time
seasonal mean of the May start dates from
1980 to 2001. The four skill measures (ACC,
RMSSS, RPSS and ROCSS) are shown for
the parameter SST (filled bars) and MSLP
(open bars). The baseline values of the
multi-model are given on top of the figure.
The ranking of the seven single models is
added above their respective bars, with ‘1’
marking the best model, i.e. the single model
with the least difference to the multi-model
value (negative differences correspond to a
single-model performance lower than the
multi-model performance).

improvement is achieved when the multi-model is only com-
pared to the respective best single model in each area and for
each parameter. However, considerable variability in the identity
of the best single model occurs here as well. Of particular interest
is the difference in the performance of model 6 for the different
parameters SST and mean sea level pressure (MSLP). Although
this model has a quite low skill in predicting SST anomalies for
most of the regions shown (and also for all seasons and lead
times; see Fig. 1), its skill for Northern Hemisphere extratrop-
ical MSLP predictions (especially Europe) lies in the range of
the most successful single models. Even if here the overall skill
level is only marginal, the changes in the relative ranking of the
single models point out that even an apparently poor model can
add skill in other aspects of the prediction.

The second important consideration when assessing the im-
pact of the multi-model approach is related to the choice of metric
used in the diagnostic. Until now, only one particular diagnostic,
the ACC, has been used to demonstrate the greater consistency
of the multi-model when considering different seasons, param-
eters, etc., of the forecast. However, a whole range of different
diagnostics exists and each of these scoring methods focuses on
different aspects of the model performance. That is, the rank-
ing of a model as best, second best, . . . , worst, depends also
on the chosen score (Jolliffe and Stephenson, 2003). In order
to demonstrate the degree of variability (or consistency) in the
ranking of the models when applying different skill scores, Fig. 3
shows the relative differences between single model and multi-
model for two deterministic measures (ACC and RMSSS) and
two probabilistic skill scores (RPSS and ROCSS) 1 for both SST
and MSLP. Some features of the ranking are consistent across

1Skill scores measure the quality of a forecast system relative to a refer-
ence system (here climatology), with positive/negative scores indicating
a performance better/worse than the reference. For a more detailed defi-
nition of skill scores and the RPS score and ROC skill score, in particular,
see, for example, Jolliffe and Stephenson (2003) and references therein.

the whole range of used skill measures. First, independent of the
score applied, the differences are always negative, i.e. the multi-
model results are in every case superior to all single models.
Secondly, the SST performance of model 6 is ranked the worst
with every diagnostic applied. However, some differences in the
ranking that depend on the metric applied can be observed. For
example, the ranking of model 7 varies between being the best
single model in terms of ROCSS and the second worst in terms
of RMSSS for the MSLP performance. The reason for the low
RMSSS values for model 7 (and model 6) lies in the overactivity
of these two models, which is strongly penalized by the RMSSS.

Another apparent feature in Fig. 3 is the greater relative im-
provement of the multi-model associated with the RMSSS and
RPSS. Again, these are the skill scores with the lower absolute
values compared to ACC and ROCSS. However, judging the gain
of using a multi-model based only on one metric can lead to very
different results. For example, relative differences of over 100%
(which occur three times for RMSSS and RPSS) correspond to
a reduction of the positive multi-model score to a negative value
for the single model. This in turn implies an improvement from a
non-skilful (worse than using climatology) single model to a skil-
ful (better than using climatology) multi-model, which cannot
be seen with the ROCSS diagnostic. Thus, for a comprehensive
assessment of model performance, it is absolutely necessary to
use more than one skill measure.

3.2. Reliability and resolution

The greater consistency of the multi-model is only one part
of the explanation of the improved multi-model performance.
Another, more specific aspect is the improved reliability of the
predictions, with reliability having a precise technical meaning
in this context. A forecast system is called reliable if the predicted
probability of an event matches its frequency of occurrence when
it was forecasted. That is, when considering all cases where an
event is predicted to occur with a 40% probability, this event
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Fig 4. Reliability diagrams for the positive anomalies of seasonal averages of the 2-m temperature in summer (May start date, one-month lead time)
averaged over the tropical band (±30◦) for the period 1980–2001. The straight horizontal and vertical lines display the average observed frequency
and forecast probability of the event. The size of the bullets represent the relative forecast frequency. The seven single model results are given in
(a)–(g), the multi-model reliability diagram is shown in (h).

should verify in exactly 40% of these cases, not less and not
more. As shown in the previous section, the multi-model superi-
ority caused by greater consistency is mainly achieved by taking
into account various aspects of the prediction such as season,
lead time, etc. In contrast to that, major improvements in reli-

ability can be found for each of these individual aspects of the
predictions. As one example (out of many), the reliability dia-
grams of the seven single models as well as the multi-model are
shown in Fig. 4 for the seasonal averages of the 2-m temperature
in summer (May start date, one-month lead time) averaged over
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the tropical band (±30◦). The reliability diagram displays the
accumulated proportion of forecast probabilities versus the ac-
cumulated observed frequency of the event. Every single-model
ensemble proves to be overconfident, which is characterized by
a too shallow slope of the line joining the points in the diagram
(Figs. 4a–g). On the other hand, the reliability diagram for the
multi-model ensemble fits much better the diagonal (Fig. 4h).
This implies that, given a prediction with a specific probabil-
ity, the multi-model will verify on average the same proportion
of observed events, while the single-model ensembles will as-
sign low (high) probabilities to cases that are observed a higher
(lower) proportion of times.

Another aspect of the quality of a probabilistic forecast system
is its resolution. In this context, resolution describes the ability of
a forecast system to discriminate between situations that lead to
different events in the future. The greater the difference between
the correctly assigned forecast probability and the climatological
probability of a particular event, the better is the resolution of
the forecast system. Both reliability and resolution are the main
components of the Brier score, which is the corresponding prob-
abilistic score to the RMS for deterministic forecasts. In order to
assess the performance of the single model and multi-model rel-
ative to the use of climatology, the Brier skill score (BSS) and its
reliability and resolution components (BSSrel, BSSres) are given
in Table 1 for the same case as in Fig. 4. It can be seen that
not only the reliability component but also the resolution of the
multi-model are improved compared to the single models. This
results in a significant improvement of the BSS with a distinct
value above zero.

In order to give a comprehensive comparison of the single-
model and multi-model performances, a number of BSSs (and
their reliability and resolution components) have been collected
and displayed in the three scatter diagrams in Fig. 5. The dia-
grams contain the values of eight different regions (Northern

Table 1. BSS, the reliability component of the BSS (BSSrel) and the
resolution component of the BSS (BSSres) for the seven single models
as well as the DEMETER multi-model. Values are calculated for the
seasonal averages of the 2-m temperature in summer (May start date,
one-month lead time) averaged over the tropical band (±30◦) for the
period 1980–2001

BSS BSSrel BSSres

Model 1 0.039 0.899 0.141
Model 2 0.039 0.899 0.140
Model 3 0.095 0.926 0.169
Model 4 −0.001 0.877 0.123
Model 5 0.065 0.918 0.147
Model 6 −0.064 0.838 0.099
Model 7 0.047 0.893 0.153

DEMETER 0.204 0.990 0.213
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Fig 5. Scatter plots of multi-model versus single-model diagnostics of
850-hPa temperature predictions, collected over eight regions
(Northern Extratropics, Tropics, Southern Extratropics, North
America, Europe, West Africa, East Africa and South Africa), four start
dates (February, May, August and November), two lead times
(one-month and three-month), and four events (prediction of
upper/lower tercile, positive/negative anomalies). (a) BSS; (b)
reliability component of BSS; (c) resolution component of BSS.

Extratropics, Tropics, Southern Extratropics, North America,
Europe, West Africa, East Africa, South Africa), all four start
dates, both one-month and three-month lead times, and four dif-
ferent events (anomalies in the upper/lower tercile and anomalies
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above/below the mean). In order to demonstrate that the multi-
model improvements are not confined to surface parameter, the
results for the parameter 850-hPa temperature have been cho-
sen. The superiority of the multi-model approach is overwhelm-
ing because most of the points (99%, 92% and 98% for BSS,
BSSrel and BSSres, respectively) are found below the diagonal,
which indicates higher scores and a better performance of the
multi-model. In addition, the BSS is in many fewer cases nega-
tive for the multi-model, i.e. many more cases with skill above
climatology exist for the multi-model (Fig. 5a). The magnitude
of improvements shows a high variability, from moderate im-
provements to some cases with an extraordinary increase in skill
(e.g. BSSrel rises from 0.4 for a single model to 0.9 for the
multi-model).

3.3. Ensemble size

In spite of the clear improvement of the multi-model ensem-
ble performance over the single-model ensembles, an important
question arises. Is the improvement in the multi-model ensem-
ble merely due to increased ensemble size or does the additional
information from different models add to the performance? In
order to separate the benefits that derive from combining models
of different formulation to those derived simply from the ac-
companying increase in ensemble size, a 54-member ensemble
hindcast has been generated with the ECMWF model alone for
the period 1987–1999 using the May start date. Figure 6 shows
the reliability diagram for the same case as in Fig. 4 (one-month
lead positive anomalies of 2-m temperature in summer over the
tropical band, ±30◦), but here for the 54-member single-model
ensemble and an equally sized multi-model ensemble. The multi-
model ensemble for this example was constructed by randomly
selecting 54 members out of the 63 available from the seven
single-model ensembles. Although the increase in ensemble size
in the single model results in improved reliability compared to
the nine-member ensemble predictions (Fig. 4), it still does not
outperform the multi-model with the same ensemble size. Both
reliability and resolution, as well as BSS are still below the values
of the multi-model (Table 2). This indicates that the additional
information coming from the other single models adds to the
improvement seen in the multi-model results.

The different rate of increase in skill related to adding more
ensemble members, either from different models or the same
model, can be seen in Fig. 7. As expected, and already demon-
strated in Kumar et al. (2001) for the case of single models, for
both single-model and multi-model hindcasts, the skill gener-
ally increases when adding more ensemble members. In the case
of the 18-member/two-model ensembles, the multi-model skill
varies considerably depending on the quality of the contributing
single models. Combining two of the poorer models leads to a
lower RPSS compared to the 18-member single-model ensem-
bles constructed from one of the best single models. However,
already in the case of the 27-member/three-model ensembles, the
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Fig 6. As Fig. 4 but for the period 1987–1999: (a) single model; (b)
multi-model. Both ensembles consist of 54 members.

Table 2. As Table 1, but for the period 1987–1999 and both
ensembles consisting of 54 members

BSS BSSrel BSSres

Single model (54 members) 0.170 0.959 0.211
Multi-model (54 members) 0.222 0.994 0.227

single-model and multi-model results are well separated. Every
multi-model combination of three single models beats all single-
model realizations with the same ensemble size. Furthermore, the
gap between single model and multi-model increases even more
when including further models into the multi-model, although it
seems to stabilize with six or more models included.

4. Rationale behind the multi-model superiority

4.1. Conceptual background

As documented in the previous section, the multi-model ap-
proach improves both deterministic and probabilistic perfor-
mances of seasonal predictions compared to single-model fore-
casts. This success of the multi-model approach requires clarifi-
cation of how and why the multi-model works.
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Fig 7. RPSS of one-month lead time summer precipitation hindcasts
for the period 1987–1999, calculated over the tropical band (±30◦).
The RPSS of the single models is given in the first column, each
horizontal bar representing the value of one single model with nine
ensemble members. The next columns of wide horizontal bars mark the
RPSS of all possible multi-model combinations composed of 2, 3, 4, 5
and 6 models. The slim horizontal bars beside the wide multi-model
bars mark the RPSS of a single model with the same ensemble size as
the respective multi-model (18, 27, 36, 45 and 54). For each
multi-model realization, a single model was constructed by randomly
choosing the same number of members as in the corresponding
multi-model.

Every attempt to represent nature in a set of equations, resolv-
able on a digital computer, inevitably introduces inaccuracy. That
is, although the equations for the evolution of climate are well
understood at the level of partial differential equations, they have
to be truncated to a finite-dimensional set of ordinary differential
equations, in order to be integrated on a digital computer. The in-
accuracies introduced by this process can in principle propagate
upscale and infect the entire spectrum of scales being predicted
by the model. The basic idea of the multi-model concept is to
account for this inherent model error in using a number of in-
dependent and skilful models in the hope of a better coverage
of the whole possible climate phase space. However, how, when
and why does this better coverage lead to improved predictions?
An idealized visualization of ‘how and when’ the multi-model
provides better results than a single model is provided in Fig. 8.
For the sake of simplicity, only two single models and three
ensemble members are included in this sketch.

Comparing the performance of single model and multi-model
in detail, three basic scenarios have to be considered. In the
first case, the single-model ensembles lie below and above the
verification, i.e. the resulting multi-model ensemble is improved
because of error cancellation (Fig. 8a). This is the most obvious –
but not only – reason for the multi-model superiority. Certainly,
this (for the multi-model) optimal situation does not occur all
the time. Thus, other reasons for the superiority must exist. The
second principle scenario is that one single-model ensemble pro-
vides the best prediction (Fig. 8b) and compared to this optimal

Fig 8. Idealized visualization of basic multi-model scenarios. For the
sake of simplicity, only two single models and three ensemble
members are included: model 1 (solid lines) and model 2 (dashed
lines). (a) The multi-model provides the best prediction; (b) a single
model provides the best prediction; (c) the verification lies outside the
model predictions.

solution, the multi-model ensemble can only be worse. However,
the multi-model is still improved compared to the other single
model, in this case model 2. The third general possibility is that
the verification lies beyond all single-model predictions, i.e. both
ensembles cover an area towards only one side of the verification
(Fig. 8c). In this case, the multi-model solution constitutes an im-
provement with regard to model 1 but a deterioration compared
to model 2. However, as demonstrated in the previous section,
the identity of the best model varies depending on which aspect
of the forecast is considered (i.e. it is also possible that the multi-
model is improved compared to model 2 but worse compared to
model 1). Note that for such individual cases, it is impossible
that the multi-model is worse than every single-model contri-
bution, because starting from the worst model, every additional
information always brings the prediction nearer to the verifica-
tion. Despite the fact that in reality many more variations of these
three basic scenarios occur (e.g. overlapping ensembles of single
models), the general conclusions from considering these cases
are still valid.
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When assessing the difference in the performance between
single model and multi-model, the diagnostic is calculated by
collecting cases over a certain area, time range, etc. The resulting
overall difference consists of five contributions related to the
above mentioned three basic scenarios:

�MSi = ai + bpi − bni + cpi − cni . (1)

Here, i is the index of the single model, �MSi is the difference
in performance between multi-model and single-model i, ai is
the difference caused by scenario a cases, bpi is the positive dif-
ference caused by scenario b cases, bni is the negative difference
caused by scenario b cases, cpi is the positive difference caused
by scenario c cases, and cni is the negative difference caused by
scenario c cases.

It is obvious that, as long as the cases with worse multi-model
scores than the particular single model (bni and cni) are balanced
by the contributions from the remaining scenarios (ai, bpi and
cpi), the overall difference in the performance will remain pos-
itive. For individual aspects of the forecast system, �MSi of a
particular model can be dominated by bni and cni and therefore
negative. However, when considering enough cases, even such
supposedly better models will have failures and benefit from
the then better performance of the other models. That is, the
main reason ‘why’ the better coverage leads to improved pre-
dictions is the greater consistency of the multi-model in the long
run.

4.2. Examples

In order to demonstrate how the above-outlined idealized sce-
narios are realized in the real data set, a typical example of each
scenario is given in Fig. 9. The data shown are not averaged
over larger areas or seasons, but represent the raw model out-
put of monthly anomalies at grid-point level. In the first exam-
ple (Fig. 9a), the ensemble members of the single models are
distributed around the verification in such a way that the multi-
model ensemble mean coincides exactly with the verification. In
terms of the simple deterministic ranking metric shown in the di-
agram (difference between ensemble mean and verification), the
multi-model scores the best. Also, when comparing the perfor-
mance in probabilistic terms, improvements in the multi-model
can be found. For example, four out of the seven single mod-
els assign zero (or negligible) probabilities to the value of the
verification, whereas the multi-model assigns nearly equal prob-
abilities for the anomaly to be above or below the verification
(Fig. 9b). This case is an example of an improvement caused
by error cancellation, i.e. some of the single models predict a
too weak anomaly, and the other models predict a too strong
anomaly, resulting in an improved multi-model prediction. Al-
though the multi-model PDF is not as sharp as the single-model
PDFs, it is much more likely to contain the verification when
considering more than one case.

This can be seen also in the example of the second idealized
case, in which two of the single models – but not the same as in
the above example – are superior to the multi-model (Figs 9c and
d). Here, models 6 and 7 give very good predictions, whereas
the remaining five single models do not cover the verification
at all and even predict an ensemble-mean anomaly of the oppo-
site sign. Due to these five unsuccessful predictions, the multi-
model performance – in deterministic and probabilistic terms –
is worse than models 6 and 7. However, compared to the five
unsuccessful single models, the multi-model performance is im-
proved, in particular in probabilistic terms. Imagine a user, whose
decision-making process is critically dependent on her knowl-
edge of whether the temperature anomaly will be above a certain
threshold (e.g. 1 K) or not. If this user were to use models 6
or 7, she would very confidently make the right decision be-
cause the models predict with 100% probability the anomaly to
be above 1 K. On the other hand, if the user were to base her
decision on one of the first five models, she would very confi-
dently make the wrong decision because none of these models
assigns any probability to an anomaly above 1 K. However, as
shown throughout the paper, the main point is that the iden-
tity of the best single model changes depending on the aspects
considered. Using models 6 or 7 results in the right decision in
this particular case, but can result in the wrong decision in an-
other case (Figs. 9a and b). The multi-model, on the other hand,
assigns – independently of which single model contains the ver-
ification – at least a certain probability to the event. That is, in
the long run, decision-making based on the multi-model predic-
tion (which, for example, in this particular case gives a proba-
bility of 30% for the anomaly to be above 1 K) will be much
more successful than basing the decision on only one particular
model.

Even in the third case, in which the verification lies beyond
all single-model predictions (Fig. 9e), similar conclusions can
be drawn. None of the single-model ensemble members predicts
the negative anomaly of SSTs below −1 K, and the best single-
model ensemble mean is only marginally negative. In this case,
the multi-model can never be better than the best single model.
On the other hand, the multi-model prediction will always be
better than the worse single models. In particular, the multi-
model probabilities are improved compared to the single-model
probabilities, with four single models having lower probabili-
ties for negative anomalies compared to only two single models
having higher probabilities and one single model with the same
probability as the multi-model (Fig. 9f).

The advantages of the probabilistic multi-model forecasts be-
come even clearer when comparing the maximum errors in the
predicted probabilities between single-model and multi-model
ensembles. Figure 10a shows the probability map of the occur-
rence of positive MSLP anomalies in the two-month lead time
January 1998 multi-model prediction. The typical El Niño pat-
tern can be seen in the high probabilities for positive MSLP
anomalies over the western Pacific, and low probabilities in the
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Fig 9. Practical examples corresponding to the idealized scenarios of the multi-model ensemble concept (Fig. 8). The vertical bold line in every plot
represents the verification. (a) One-month lead seasonal SST hindcasts for JJA 1988 at a single grid point in the tropical Pacific. The horizontal lines
represent the ensemble spread, with the vertical bars corresponding to the individual ensemble members and the open circles marking the ensemble
means. The ranking of the models (in terms of the absolute error of the deterministic ensemble mean) is added at the right-hand side of the graph. (b)
Corresponding cumulative PDFs to (a); the thick line marks the multi-model PDF. (c) As in (a) but for JJA 1987. (d) Corresponding cumulative
PDFs to (c); the thick line marks the multi-model PDF. (e) As in (c) but for a single grid point in the North Pacific. (f) Corresponding cumulative
PDFs to (e); the thick line marks the multi-model PDF.

eastern part. The main effect of pooling the single models to-
gether to the multi-model probabilities becomes obvious when
looking at the global maps of the differences between predicted
probabilities and the verification. In the case of the single mod-
els (Figs. 10b–h), large areas of extreme differences occur. Such

extreme differences correspond to situations when most of the
ensemble members of a single model predict negative anomalies
in spite of positive anomalies in the verification (dark blue ar-
eas) or vice versa (dark red areas). In contrast, many fewer cases
with such extreme misses occur for the multi-model probabilities
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Fig 10. (a) Probability map of the occurrence of positive MSLP anomalies in January 1998 (two-month lead of integrations with start date
November 1997) in the multi-model. (b)–(h) Difference between predicted probabilities and verification (0 = no occurrence; 1 = occurrence) for all
single models 1–7. (i) Same as (b)–(h), but for the multi-model ensemble.
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(Fig. 10i). In most areas the differences are at least below 70%
or even lower, and differences above 90% are extremely rare.
The reduction in the differences is caused by improving ‘poor’
single models with predictions from better models. That is, an
error seen in a particular single model can only be reduced when
other single models perform better. This is the case, for exam-
ple, for the strong negative error in the central Pacific for models
1, 2 and 6, which is reduced below 50% in the multi-model.
On the other hand, when all single models tend to have sim-
ilar patterns of errors, as for example in the tropical Atlantic,
only minor error reduction occurs. However, the comprehensive
analysis of various skill scores, showing the improved perfor-
mance of the multi-model, indicates that cases with error re-
duction prevail over cases in which no error reduction can be
achieved.

These practical examples of how the idealized cases are real-
ized and what are the effects, both in deterministic and proba-
bilistic terms, have demonstrated ‘how, when and why’ the multi-
model results can be superior to single-model results. However,
with these idealized cases and examples it has not been proven
that the multi-model concept gives improved results under all
circumstances. It is of course possible to construct a scenario
in which one model is superior to all other components of the
multi-model system in every aspect considered. In such a hypo-
thetical scenario, adding information of always inferior models
would lead to multi-model predictions worse than the always su-
perior single model. That is, the key to the success of the multi-
model concept lies in combining independent and skilful models,
each with its own strengths and weaknesses. On the other hand,
one might argue that today’s global models are not necessarily
independent of each other. However, the differences in the er-
ror characteristics, shown by the components of the DEMETER
multi-model system, support the assumption of sufficient inde-
pendence in this case. Therefore, when designing a multi-model
it seems to be worthwhile to test the level of independence and
skilfulness beforehand, although it might be difficult to exactly
define the level of skill and independence necessary for the sin-
gle models to be able to create a successful multi-model. If two
or more of the single models show a very similar error charac-
teristic, this particular error characteristic might gain too much
weight in a simple multi-model with equal weights. A possible
solution for this problem could be the use of non-equal weights.
Furthermore, if the forecast quality assessment detects a single
model that is consistently worse than the other contributions,
it should be excluded from the multi-model, although the defi-
nition of consistent lack of skill might depend on specific user
requirements. Therefore, as long as the individual components
are able to make a positive contribution to a relevant aspect of
the prediction, the multi-model will benefit from this additional
information. As such, the proof of the multi-model concept de-
pends on the components of the system and can only be given
in diagnosing real data sets, as has been done in the previous
section.

5. Summary

This study was motivated by the question ‘whether and why’
the multi-model ensemble concept can improve single-model
ensemble predictions. Since other studies (Doblas-Reyes et al.,
2000) have already investigated the question ‘whether’ multi-
model ensemble forecasts are superior to single-model ensem-
bles – although not in coupled seasonal mode – the focus of
this paper has been placed on the ‘why’. However, before trying
to find an explanation for the multi-model success, first a com-
prehensive documentation of its superiority was given. It was
demonstrated that the judgement of whether the multi-model
has a significantly improved performance depends strongly on
the method chosen for this assessment. The degree of improve-
ment that can be achieved with a multi-model depends not only
on the aspect of the prediction considered, (i.e. which season,
lead time, parameter, etc., is chosen for the assessment), but
even more on the choice of reference. That is, when the multi-
model is compared to the best single model in each individual
assessment, the improvement does not seem to be very signifi-
cant. However, when assessing the degree of superiority in such
a way, we do not take into account that the identity of the best
single model varies. For a fair comparison between single-model
and multi-model performance, the multi-model should always be
compared to the same single model (e.g. the best single model
over the whole range of aspects). In this way, the key argument
for employing a multi-model, its consistently better performance
across all aspects of the predictions, becomes much clearer.

Furthermore, the consideration of some idealized cases and
related practical examples enables us to answer the questions
posed in the introduction of this paper.

(i) How can a poor model add skill? Indeed, if a model is
consistently, over the whole range of aspects, worse than average,
it cannot contribute to the multi-model skill (except in cases of
error cancellation). However, it has been demonstrated that none
of the components of the DEMETER multi-model system is a
poor model in this sense. It has been argued that skill of the
single-model components is a prerequisite of the multi-model
concept. Under this assumption, the question is asked wrongly,
because in this framework, no ‘poor’ model exists.

(ii) How can the multi-model be better than the average
single-model performance? First, the relation between the aver-
age skill of the single models and the performance of the multi-
model is not linear, in particular when considering probabilistic
diagnostics. That is, averaging the skill of the seven single-model
forecasts does not correspond to the skill of the combined seven
single models, the multi-model forecast. Only when consider-
ing a linear metric, and if the verification always were to be
beyond the single-model predictions (Figs. 9c and e), the multi-
model performance would be similar to the average single-model
performance. In practice, however, mostly the verification lies
between different single-model predictions. Thus, error cancel-
lation and non-linearity of the diagnostics are the main reasons
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for the multi-model performance being superior to the average
single-model performance.

(iii) Why not use the best single-model instead of the multi-
model? Similar to the argument that none of the single models can
be defined as a poor model, it is difficult to define the best single
model. It has been shown that the identity of the best single model
varies depending on the aspect of the prediction considered. In
real life, a user has to decide beforehand which single model
to choose for the decision-making process. This single model
might have a better performance than the multi-model in some
situations. However, in the long run the multi-model will give
more reliable predictions.

All the above given conclusions have been made under the as-
sumption of using the simple equal weight multi-model. The key
argument for the success of the multi-model concept has been
that the combination of the single models, with all its strengths
and weaknesses, leads to more consistency and a more reliable
forecast system. A logical question arising from this argument
is, why do we have to combine strengths and weaknesses of the
single models? Is it not possible to eliminate the weaknesses
and keep only the strengths? In the above shown analysis of the
performance of the single models, it seemed that, for example,
the SST predictions of model 6 are often worse than average.
If this turns out to be a robust feature, giving a lower weight
to the SST forecasts of model 6 might be a way of improving
the multi-model ensemble even more. However, this concept of
applying different weights to the single models when combining
them to the multi-model ensemble forecast is not as straight-
forward as it might seem at first glance. Various methods of
finding optimal weights exist, and all constraints and pitfalls re-
lated to these methods will be the topic of the second part of this
paper.

Finally, returning to the starting point of this contribution,
whether more information leads to more success or ‘simplicity
rules the world’, it has been demonstrated that, in the case of the
multi-model ensemble system presented here, more information
– even if it is sometimes the wrong information – leads to more
success when considering the whole range of aspects of the fore-
cast system. However, this question can also be handed over to
the second part of the paper, where it will be investigated whether
more advanced methods, based on more information about the
past performance of the single models, can lead to an improved
system, or whether the simplicity of the multi-model with equal
weights can hardly be beaten.

Acknowledgments

This work was supported by the EU-funded DEMETER project
(EVK2-1999-00024). The authors would like to thank the whole
seasonal forecast group at the ECMWF for their invaluable sci-
entific and technical support throughout the whole project.

References

Balmaseda, M. A., Davey, M. K. and Anderson, D. L. 1995. Decadal and
seasonal dependence of ENSO prediction skill. J. Climate 8, 2705–
2715.

Bosart, L. F. 1975. Sunya experimental results in forecasting daily tem-
perature and precipitation. Mon. Wea. Rev. 103, 1013–1020.

Branzei, R., Tijs, S. and Timmer, J. 2000. Collecting informa-
tion to improve decision-making. http://ideas.repec.org/p/dgr/kubcen/
200026.html.

Clemen, R. T. and Murphy, A. H. 1986. Objective and subjective pre-
cipitation probability forecasts: some methods for improving forecast
quality. Wea. Forecasting 1. 213–218.
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