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ABSTRACT

Optimal extensions of the surface CO2 observation network have been determined using 15 global
transport models and a time-independent inverse model. The regional average CO2 flux estimate
uncertainty is minimized based on the TransCom-3 (level 1) framework. An ensemble model calculation
shows that the regional average CO2 flux uncertainties could be reduced to about 0.36, 0.32, 0.28 or
0.26 Gt C yr−1 per region, from about 0.53 Gt C yr−1 per region corresponding to the basic network,
after adding 5, 10, 15 or 20 optimally located stations, respectively. The additional station locations are
mostly found in continental South America and Africa. The distribution of the efficiency in estimation of
flux uncertainty reduction per station tends to become more uniform with the extension of the network.
We show that the multimodel approach to network design converges if a large enough extension is
considered; about 20 stations in this inverse model framework. The reduction in the flux uncertainty
for the first few stations depends on the model of atmospheric transport, and is nearly proportional to
the simulated signal from local emissions in the surface layer. In addition, it is seen that the simulated
spatial and temporal variability of CO2 concentration has significant influence on the distribution of
the additional stations as well as determining the regional flux estimate uncertainty.

1. Introduction

Fluxes of CO2 from the earth’s surface have tra-
ditionally been estimated from atmospheric observa-
tions of CO2 and carbon isotopes (e.g. Tans et al.,
1990; Francey et al., 1995; Ciais et al., 1995). Later,
the regional distributions of CO2 sources/sinks at con-
tinental scale were also targeted, but with somewhat
less success (Fan et al., 1998; Bousquet et al., 1999;
Gurney et al., 2002). Generally, fluxes from a large
fraction of regions cannot be estimated with a high
degree of confidence. This arises from the uneven dis-
tribution and restricted number of atmospheric obser-
vations available worldwide (GLOBALVIEW, 2000).
Many areas of land are not covered by measurements,
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which leaves the surface source estimations for those
regions underdetermined in atmospheric data inver-
sion studies. Such a lack of observations in certain re-
gions could also influence the estimation of fluxes from
other regions where measurements are available. The
estimation of fluxes is dependent on the model simu-
lation of CO2 transport and the resolution at which the
surface fluxes are to be estimated by the inverse model
(Gurney et al., 2002; Kaminski et al., 2001).

As stated above, CO2 sources and sinks for dif-
ferent geographic regions are estimated by using in-
formation from atmospheric observations and global
transport model simulations. The inversion technique
is described in detail elsewhere (e.g. Tarantola, 1987;
Enting et al., 1993). To achieve better inverse model
performance, it is desirable to model atmospheric
transport as accurately as possible and construct an
efficient enhancement of the network of atmospheric
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measurements. The extension of the CO2 measuring
network to obtain maximum constraint on inverse
model results was studied only recently (Rayner et al.,
1996; Gloor et al., 1999; 2000; Patra and Maksyutov,
2002). We focus our attention on an optimal extension
of the existing CO2 measuring network by using sim-
ulations from 15 models participating in TransCom-3.
The use of a statistically significant number of trans-
port models will allow us to propose an optimal net-
work for surface CO2 observations that is less depen-
dent on model transport and with a higher level of
confidence.

Simulated annealing (SA) is commonly used in var-
ious types of network design and was also employed
in earlier studies on optimal sampling of atmospheric
CO2 for improving performance of surface source
inversion (Rayner et al., 1996; Gloor et al., 2000).
This technique, however, is computationally expen-
sive and probabilistic by design. More recently an al-
ternative approach for optimal network design, Incre-
mental Optimization (IO), has been introduced (Patra
and Maksyutov, 2002). Although the theoretical basis
of IO is not so well evolved as compared to SA, the
practical implementation of IO is simple and unam-
biguous. This characteristic of IO often leads to a bet-
ter network optimization of surface CO2 observation
(Patra and Maksyutov, 2002). By using this method the
proposed station locations under study can be ranked
based on their positive influence on the flux estimate
uncertainty reduction, which will be discussed later.
Since IO is computationally very efficient, we use this
method to conduct different types of network design
experiments with several transport model simulations.

In Section 2 we briefly describe the materials and
methods used here. Results and discussion will be pre-
sented in Section 3. The main conclusions are summa-
rized in Section 4.

2. Materials and methods

2.1. Bayesian inversion

Assuming linearity of the forward transport prob-
lem, the source strengths are predicted by the least-
squares solution of the equation GS = D, where
D and S are the atmospheric CO2 data and surface
fluxes, respectively, and G represents the model trans-
port (Tarantola, 1987). In Bayesian synthesis inversion
(Enting et al., 1993), the following function is mini-
mized to reduce the mismatches between the atmo-

spheric observations and predicted responses, and the
a priori sources (S0) and predicted sources:[
(S − S0)C−1

S0
(S − S0)T

]
+ [

(GS − D)C−1
D (GS − D)T )

]
.

(1)

Here CD and CS denote the error covariances associ-
ated with atmospheric CO2 data and surface fluxes,
respectively. The parameters S and CS, pertaining to
a set of subdivided regions of the globe, will be opti-
mized to match the global distribution of CO2 through
the inversion. The solution of eq. (1) is (see Section
1.7 in Tarantola, 1987 for details):

〈S〉 = S0 + (
GT C−1

D G + C−1
S0

)−1

× GT C−1
D (D − GS0)

(2)

and the predicted flux covariances are given by

CS = (
GT C−1

D G + C−1
S0

)−1
. (3)

Our aim is to minimize �i CS(i , i) with model cal-
culated G and CD at the CO2 observation sites. Ac-
cording to eq. (3), the estimated source uncertainty is
strongly determined by the CO2 data variability CD

and simulated source signal G. The absolute estima-
tion of CD from the location specific data variability
has always been difficult, both from observations and
theory (Masarie and Tans, 1995; Gloor et al., 2000).
This parameter is supplied as a combined measure of
our ability to observe atmospheric CO2 at high ac-
curacy and to simulate the observations using global
transport models. The procedure for how to estimate
CD for the new measurement stations is described in
Section 2.2. It is similar to the one utilised in an earlier
study (Patra and Maksyutov, 2002). The inverse of the
matrix (GTC−1

D G + C−1
S0

) is determined by singular
value decomposition (SVD). The SVD of a matrix A
is factorization of form UλVT , where the columns of
U (left singular matrix) and V (right singular matrix)
are orthogonal, and λ is a diagonal matrix containing
the singular values (Press et al., 1992).

2.2. Atmospheric data and model simulations

We use the GlobalView-CO2 data (GLOBALVIEW,
2000) over 115 locations to create the ‘basic set’ of
atmospheric data. Secondly, a priori knowledge of the
surface fluxes (S0) and uncertainties (C S0 ) associated
with a set of subdivided regions of the globe are taken
from the TransCom-3 protocol (Gurney et al., 2002;
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Fig. 1. TransCom-3 divided land and ocean regions (11 each) of the world. The colour bar indicates the prior flux uncertainty
associated with each region. The whitened areas are not considered in the inverse model.

2003). Figure 1 shows the names and locations of
land and ocean regions for which the S0 and C S0 are
prescribed in the TransCom-3 inversion. Finally, re-
sponses for different flux types and regions are sim-
ulated using 15 global atmospheric transport mod-
els (see Table 1 for gross model configurations). The
model responses are sampled at measurement sites

Table 1. List of the global transport models participating in TransCom-3 projecta

SL Model Resolution Vertical
no. nameb Winds (lat × long) layers

1. UCB GISS GCM-II 4.0◦ × 5.0◦ 9
2. UCI GISS GCM-II 4.0◦ × 5.0◦ 9
3. UCI:s GISS GCM-II 4.0◦ × 5.0◦ 23
4. UCI:b GISS GCM-II 4.0◦ × 5.0◦ 9
5. JMA JMA GCM 2.5◦ × 2.5◦ 32
6. MATCH:CCM3 NCAR CCM3 2.8◦ × 2.8◦ 28
7. MATCH:NCEP NCEP 1990 2.8◦ × 2.8◦ 28
8. MATCH:MACCM2 MACCM2 5.6◦ × 2.8◦ 24
9. NIES:FRSGC ECMWF 1997 2.5◦ × 2.5◦ 15
10. NIRE:CTM-96 ECMWF 1995 2.5◦ × 2.5◦ 15
11. RPN:SEF GCM Online 2.8◦ × 2.8◦ 27
12. SKYHI GCM Online 3.0◦ × 3.6◦ 40
13. TM2 ECMWF 1990 7.5◦ × 7.5◦ 9
14. TM3 ECMWF 1990 4.0◦ × 5.0◦ 19
15. CSU GCM Online 4.0◦ × 5.0◦ 17
16. GCTMc ZODIAC GCM 2.4◦ × 2.4◦ 11

aThe basic meteorology used in the simulation as well as the horizontal and vertical resolutions of the models are also given
(see Gurney et al., 2003 for further details).
bFirst part denote the primary model names and the last part is to indicate the model variants, as appropriate.
cThe GCTM model (no. 16) because this work was started before that model simulation become available.

to form the sensitivity matrix G. The inverse mod-
eling framework is identical to that described in the
TransCom-3 experimental protocol (see Gurney et al.,
2003 for details). It considers four presubtracted emis-
sion maps, namely, for fossil fuels (1990 and 1995
scenario), neutral biosphere and the oceans. In addi-
tion, there are 11 terrestrial and 11 oceanic carbon
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basis function flux maps, which are to be adjusted by
inverse calculation.

Note that the predicted values of CS do not depend
on D but require a fair estimation of CD [eq. (3)]. The
analyses of atmospheric data errors have been made
with different models of the residual CO2 concentra-
tion variability or residual standard deviations (RSDs):
one for the GlobalView station network (observed)
and another for the set of candidate sites (modelled).
The elements of CD for the candidate sites are calcu-
lated from the high-frequency model outputs assuming
that these are primarily caused by the synoptic-scale
atmospheric transport. We used the daily output of
NIES (National Institute for Environmental Studies,
Tsukuba)/FRSGC global transport model (Maksyutov
and Inoue, 2000) for the combined CO2 sources from
fossil fuel combustion, the oceans and net ecosystem
production. The residuals are calculated by fitting the
CO2 seasonal cycle with a low-pass filter (Nakazawa
et al., 1997). As is seen from Fig. 2, the match be-
tween the modeled and ‘observed’ RSDs varies be-
tween good (South China Sea cruise) and poor (middle
and high latitudes in the Northern Hemisphere). The
over-prediction of the variability at Northern Hemi-
sphere stations in the model could be due to sampling
protocol differences between the model and the obser-
vation network. Measurements were made potentially
sampling background (usually oceanic) air, thus sig-
nificantly reducing the influence of nearby sources in
coastal sites. However, we do not see this as a ma-
jor problem for our analysis as long as most of our
proposed stations target continental signals, assuming
that those have to be observed regardless of the high
temporal variability.
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Fig. 2. Comparison of GlobalView RSDs and NIES/FRSGC global transport model derived RSDs for the stations list in basic
set (see Fig. 3d for station locations).

2.3. Incremental optimization algorithm

The algorithm used in Patra and Maksyutov (2002)
divides the optimization problem into several subprob-
lems and is referred to as Incremental Optimization
(IO). We begin with a ‘basic set’ (see Fig. 3d, open
diamonds), containing the measured values of D and
CD at 115 GlobalView locations and a set of 446 can-
didate stations, selected from the meteorological sta-
tions presently operating around the globe. At the first
iteration subproblems are constructed by adding one
of the candidate stations to the ‘basic set’ and the in-
verse calculation is performed on 446 data combina-
tions containing 116 stations. The data combination
that results in the greatest reduction in the average
source estimate uncertainty for an individual model
or averaged over 15 transport models (ensemble case)
is added to the ‘basic set’, and the newly introduced
station is removed from the list of candidate stations.
In the second step the next set of subproblems is con-
structed by adding remaining 445 candidate stations
to the new basic set. Thus the ‘basic set’ grows in size,
and the other set reduces. The process is continued
until the reduction of flux uncertainty due to a new
station become negligible.

3. Results and discussion

In this section, we will show the optimal network
extension based on response functions from the 15
TransCom-3 participating models for the sources de-
scribed in Section 2.2. We have used them both sepa-
rately and in combination as an ensemble in this work.
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The benefit of using a statistically large number of
transport models in the network design of CO2 ob-
servations to reduce the flux estimate uncertainty and
check robustness of network design is the major focus
of this section. Some of the model-specific features and
their influence on network design are also studied.

3.1. Model specific networks

Figures 3a–c show the network extensions obtained
by the IO for the individual transport models (five on
each panel). The station locations in the basic set and
15-model ensemble network is shown in Fig. 3d. The
network extensions for the individual models suggest
that Africa and South/Tropical America (for reference,

Fig. 3. Station networks for measuring surface CO2 concentration as obtained by using different models simulated response
functions (G): (a) models 1–5, (b) models 6–10 and (c) models 11–15. The model names corresponding to these numbers are
given in Table 1. The 115-station basic set (GlobalView, red symbols) and all-model averaged optimal network extended by
14 new stations (blue symbols) are also shown (d). The numbers associated with the symbols are to show the entry sequence
of a new station into the basic set.

cf. Fig. 1 for the names and locations of the TransCom-
3 inverse model regions) are the most poorly con-
strained regions in our inverse modeling framework:
up to 8 out of 14 new network stations were posi-
tioned in these two continents (Table 2). The other
regions that require more observations are Temperate
Asia, Tropical Asia, Boreal North America, Boreal
Asia and South Atlantic ocean. By establishing new
stations in these regions the average of flux estimate
uncertainties of the inverse model regions could be
reduced. This also means that there may be regions
that are loosely constrained, but a new station in that
region would not lead to a significant improvement
in the flux estimates, possibly due to large data er-
ror (CD). Earlier studies by Gloor et al. (2000) and
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Table 2. Summary of regional distribution of the new network stations (first 14) as identified by the individual
models and model ensemblea

Model number
Region Score Ens.
name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 - net.

L01: 0 0 0 0 1 0 1 0 1 1 1 1 2 1 1 0.7 1
Boreal N.
America

L02: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0 1
Temperate N.
America

L03: 2 1 2 2 1 1 2 2 2 3 1 1 1 2 2 1.7 2
Tropical America

L04: 1 3 3 2 1 1 2 1 2 1 2 2 1 2 2 1.7 2
South America

L05: 3 3 2 2 3 2 2 2 2 1 2 2 2 1 1 2.0 2
Tropical Africa

L06: 2 1 2 2 3 2 2 2 3 2 2 2 2 2 2 2.1 2
South Africa

L07: 1 0 1 1 1 1 1 1 0 1 2 1 1 1 1 0.9 1
Boreal Asia

L08: 1 3 2 3 2 2 1 1 2 2 1 2 1 1 1 1.7 1
Temperate Asia

L09: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0 1
Tropical Asia

L10: 1 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0.5 0
Australia

L11: 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0.3 0
Europe

O08: 1 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0.6 1
South Atlantic

aScore is defined by number of stations/region/model.

Patra and Maksyutov (2002) have also highlighted the
need for establishing new measurement sites in the
same geographical regions. Therefore, the results are
fairly consistent under different network optimization
approaches and different experimental setups. The po-
sitions of the new station locations are decided based
upon sparse data coverage within a particular region
and at locations with low CD and high G values, since
this reduces the source estimate uncertainty most ef-
ficiently. For example, to constrain the Boreal Asian
flux estimate a station is recommended close to the
Pacific coast of Siberia, i.e. in the Southeastern corner
of this region where CD values are substantially lower
than in the central Boreal Asia. Also the source sig-
nal G is higher in the areas located down-wind of a
region centre. Sometimes it is also noticed that a few
models choose this representative station to be posi-
tioned in the Boreal North America (cf. Figs. 3a–c).
The inverse model flux uncertainties for Boreal Asia or

Boreal North America are correlated, since the regions
are connected via atmospheric transport, and their total
flux uncertainty is lower than each of them individu-
ally. In this case the benefit of adding a new observation
point to either of the regions is comparable. This leads
to some scatter in placing a station in either regions by
different models (Table 2). Unlike in Boreal Asia or
Boreal North America, we do not see new stations in
the European outflow region. This can be attributed to
higher data variability over the continent, which leads
to a smaller flux uncertainty reduction by the observa-
tions in this area. For the South and Tropical Africa,
IO selects stations in the area of maximum regional
signal. In Tropical America, the proposed stations are
located in the Northern and Eastern part, and those
for South America are positioned in the region centre
of maximum signal as well as in the East coast re-
gion of relatively weak signal accompanied by very
low CD.
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In general, there is a lot of similarity between the
networks produced with different individual transport
models and that by using the model ensemble (see
Table 2 for details). The extended networks using sep-
arate model simulations indicate that the same regions
require more observations for better surface source
estimation, with minor differences in the relative im-
portance of particular sites. The good agreement orig-
inates in the similarity in pattern of regional source
signals simulated by the transport models. The dif-
ferences in the optimized networks can be attributed
not only to differences in model transport but also to
model resolution and interpolation of the gridded re-
sponse functions to station locations. As in the ba-
sic TransCom-3 protocol, the simulated signals at grid
points nearest to the stations were taken as concentra-
tions at the sites, leading to scatter in the assumed
station location. The simulated data variability CD,
however, was produced only with the NIES/FRSGC
model, which has a finer grid, and this causes some
phase mismatch between the horizontal distribution of
G and CD when used with coarser grid models in areas
of sharp signal gradients. For example, such an effect is
evident on the area adjacent to Chile’s coastline, where
some models place the station closer to the coast than
others. We have also seen that the gross features in CD

distribution do not change significantly from model
to model. The CD derived from high-frequency data
variability for the stations in the basic set show a good
correlation (with a coefficient of about 0.8) among the
transport models.

3.2. Ensemble network

Next we use the models together to estimate an av-
erage flux estimate uncertainty and perform an IO cal-
culation to find an optimally extended network. Unlike
for the model-specific networks, we have used the av-
erage flux estimate uncertainties over all models and
regions to find the impact of candidate stations on the
inverse model results. This network is also shown in
Fig. 3d (open circles), and is referred to as the ‘ensem-
ble network’. A consensus optimal network is found
for the model ensemble, which also consistently po-
sitions the new CO2 measuring stations in the poorly
constrained regions of high flux estimate uncertainty.
However, some differences in the locations of the sta-
tions are seen, the station in South America (ranked
2) being the most prominent one. A detailed look at
the vertical and horizontal cross-sections of the signal
structures simulated by the transport models suggest

that the positioning of station 2 by the model ensem-
ble is uncertain and is associated with a mismatch
in the horizontal resolution of the transport models.
The models simulate a steep gradient in the signals
across the Andes mountain range. The model simu-
lated source signal is weak on the Chilean side and
stronger on the Argentinian side. Thus the NIES model
places the network station in the region interior while
the model ensemble places it on the Chilean side. The
majority of the University of California (UC) models
favour the coastal location, which corresponds to the
signal from (53◦W, 26◦S) because of different hori-
zontal resolution of the models.

3.3. Uncertainty reduction

Figure 4 shows the variations of average regional
source estimate uncertainties, defined as

� =
√

1

n

n∑
i=1

CS(i, i)

in Gt C yr−1 per region (n is the number of in-
verse model regions), with varying network size. The
changes in � are fairly uniform over the different mod-
els with the number of CO2 observation stations. The
model-averaged value of � is rapidly reduced from
∼0.53 Gt C yr−1 per region, estimated with the Glob-
alView basic set of 115 stations, to about 0.32 Gt C
yr−1 per region by introducing 10–15 new observation
stations. Further decreases in CS reach a plateau at
about 0.26 Gt C yr−1 per region after about 20 addi-
tions. On the contrary, the basic set could be reduced,
without � deteriorating significantly (less than 5%),
to about 75 stations if the observational sites are posi-
tioned optimally in the inverse modeling perspective
for minimizing � only (not shown). Since the inverse
model setting has quite a coarse horizontal resolution,
we find that some of the regions have redundant CO2

observations. It should be made clear that the intention
of this exercise is not to suggest a reduction in CO2

observations from the same or closely located sites,
but to compare the effectiveness of the network exten-
sion against the present CO2 measurement network
used in inverse modelling. In fact, overlapping mea-
surements from some sites are strongly recommended
in order to keep the inter-laboratory systematic biases
under control, which arise mainly due to the calibra-
tion offsets and their drift with time (Masarie et al.,
2001). Apart from this, the optimal network extension
changes rapidly as the resolution of the inverse model
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Fig. 4. Variations in average regional flux uncertainty with the additional CO2 measurement stations obtained for each model
by IO. The legend indicates the primary model names and the model variants.

is increased (Gloor et al., 1999). However, it is not an
easy task to increase the spatial resolution considering
the known deficiency of the present observational net-
work for CO2. Theory suggests that about 10 randomly
located surface observations per region are needed to
keep the regional flux uncertainties at a level of 0.1 Gt
C yr−1 per region (Gloor et al., 1999). For a small net-
work, Gloor et al. also showed that optimal networks
are many times more efficient than random networks in
constraining flux uncertainties for a 17-region source
inversion case. The factors are estimated to be about
10, 4 and 1.25 times for worldwide networks with 40,
80 and 160 stations, respectively.

3.4. Stability of the networks

As seen from eq. (3), the scaling of CD has a direct
effect on the flux estimate uncertainty. The implica-
tions of choosing different ‘effective’ data uncertainty
(Du; where CD = D2

u) maps on the optimal network
extension is illustrated in Fig. 5. We have shown the
networks for two distinct cases: using averaged value
of flux uncertainties from (1) the NIES/FRSGC model
and (2) all models with three different Du maps (Du

= 0.5 ppm, Du = RSD and Du = 2 × RSD) for the
candidate stations. The networks corresponding to the
use of different Du values differ significantly from one
another. There are several interesting changes when
uniform Du values (0.5 ppm) are used in contrast to

using Du = RSD. First, new stations were positioned
in coastal regions in Temperate North America and
Tropical/South America using model derived RSDs
(circles), but the new stations move inland using uni-
form Du (plus symbols). When uniform Du values are
used the new stations are shifted towards the stronger
downwind regions in Boreal and Temperate Asia; the
station in northern India is moved to eastern China,
while the Troickoe station (49◦N, 137◦E) is moved to
Yakutsk (62◦N, 129◦E) with a much higher priority.
These changes are not surprising considering that new
preferences are located where the signal strength is
larger, but while the supplied Du values are as low as
that in the other parts of the globe. Since the source
signal is stronger in the preferred regions and Du is
low, we find a sharper gradient in � with the increase
in observational network size (Figs. 5c and d). On the
contrary, when Du = 2 × RSD is used, we find that
most of the 14 optimal stations are concentrated in the
tropical regions, and the reduction in � becomes much
slower compared to the other two cases for data un-
certainty models. By assigning larger Du values to the
atmospheric CO2 data, more observations are needed
to constrain the regional flux uncertainties. Also, the
lowest possible � is raised to about 0.35 Gt C yr−1

per region for Du = 2 × RSD from those of 0.26 and
0.18 Gt C yr−1 per region, respectively, for the en-
semble networks with 49 optimal stations using Du =
RSD and Du = 0.5 ppm. Hence, it is suggested that the
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locations of new stations require a balance between the
surface source signal strength and atmospheric data
variability.

The robustness of the resulting networks was
checked by comparing the reduction in � from each
model with that for the single ensemble network. The
results are shown in Fig. 6a. The general features ob-
served are similar to those shown in Fig. 4. However,
a careful examination of the results reveals a number
of interesting model-to-model differences. In Fig. 6b
the difference between the � obtained for model spe-
cific networks and the ensemble network is shown.
Most models are sensitive to the location of the first
few additional stations, suggesting that the transport
mechanism, in particular the vertical mixing, of some
models are quite different in the tropical region. More
discussion on the transport model disparity will be
given in the next subsection. Another interesting point
is the convergence of the uncertainty reduction after
adding 17–20 stations to the existing network. The
differences in � between the model-specific networks
and the ensemble network agree within 20% (equiv-
alent to a spread of about 0.017 Gt C yr−1 per re-
gion) for all the models. This suggests that differences
in the transport models become less important when

the network extension is large enough to saturate the
flux uncertainty reduction. After adding about 15 sta-
tions to the basic observation network, all the inverse
model regions in the tropics have at least two stations.
Therefore, the results of network design studies can
be significantly model-dependent in a scenario where
a large number of regional source estimations are un-
derdetermined. In agreement with the small optimized
networks (∼40 stations globally for 17 region source
inversion) of Gloor et al. (1999), this study indicates
that only a few stations per region are needed to keep
the flux estimate uncertainty around 0.3 Gt C yr−1 per
region.

3.5. Model-to-model differences

Further analysis of the differences in CO2 measure-
ment network design between models are made by
comparing � after adding six tropical stations to the
basic set with the average of regional source signals
near the surface. Two sets of tests are conducted here
by sampling signals (1) at the ensemble network sta-
tions, and (2) at the central part of the TransCom-3
regions, where the signal strength is assumed to be
the strongest. The results are shown in Figs. 7a and
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Fig. 6. The upper panel (a) is the same as Fig. 4, but with the ensemble network stations used in place of the model-specific
optimal stations. The lower panel (b) is the difference between Figs. 6a and 4.

b, respectively. The vertical profiles of signals show
that there is a significant difference between models
in transporting the regional source signal near the sur-
face in low-latitude areas (not shown here). Stronger
surface-level signals can be related to a lower rate of
vertical mixing in the lower troposphere. This differ-
ence has not been addressed explicitly before in model
validation or calibration studies (such as Jacob et al.,
1997 for radon; Denning et al., 1999 for SF6), be-
cause there is a lack of reference tracer observations
over the continental tropics, and thus vertical mixing
in the lower troposphere in the models is not well con-
strained. We speculate that the difference originates in
the values of effective planetary boundary layer (PBL)
height and the way mixing in the PBL connects to
vertical transport in the middle troposphere. We find
that the model efficiency in constraining the sum of

regional flux uncertainties is related to the average
surface signal over five regions (L03, L04, L05, L06
and L08). The compact relationship shown in Fig. 7
reveals clearly that models with strong surface level
signals over tropical continents provide lower flux un-
certainty with the extended network in both cases.

An important implication for transport model design
is that vertical mixing and tracer transport in the tropics
has to be studied in further detail to provide confident
regional flux estimates from CO2 observational data
in low-latitude continental areas, once observations
become available.

3.6. Spatial Structure of � reduction

In order to better understand the spatial structure
of � associated with the candidate stations and its
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Fig. 7. The average signal of regional sources plotted vs. � after adding first six ensemble network stations (a). In the lower
panel (b) signals are sampled near the centre of each TransCom-3 regions. For (a) and (b) residual � values are taken from
Figs. 4 and 6a, respectively. The annotated numbers with each symbol indicate the transport numbers. Compact relations are
obtained in both the cases as shown by the straight lines with high correlation coefficients (see legends).

change with the size of the network we first define
a station ranking. The initial ranking is calculated by
the difference between � with the basic set with or
without the ith candidate station and are expressed
in Mt C yr−1 per region. Station rankings with the
basic network and with five additional stations are
shown in Figs. 8a and b, respectively. This ranking
was done only with the response functions G produced
by the NIES/FRSGC model to ensure consistency be-
tween the horizontal grid and CD. It is clear that most
of the 446 candidate stations (before any extension)
are ranked very high (values exceeding 50) if they
are located in South America and Africa (Fig. 8a).
However, the picture changes rapidly after optimal ex-
tension of the basic set. For example, after introduc-
ing an additional five stations, those with a two-digit
ranking are seen only rarely (Fig. 8b), and a station
in northern India (Amritsar; 32◦N, 75◦W) scores the
highest rank. In other words, Amritsar ranks sixth in
this study. It is also important to note that the rank-
ing is dynamic, i.e., with each increment of the basic

set the rankings are remapped. For instance, once a
new station is introduced in Tropical America (Mitu;
1◦N, 70◦W), the ranking of the stations around it re-
duces in the following step and thus the next station
is selected from Africa (Dilolo; 11◦S, 22◦E), even
though this was ranked lower than another station
in South America (Equals; 4◦N, 74◦W) in the first
step.

We have also tested the extended network of candi-
date sites by adding elevated levels such as at 1000
and 3000 m altitude. The results do not show that
there is much advantage to elevated sampling over sur-
face level sampling, which is understandable as surface
source signals decrease faster than noise (variability)
with altitude. It should be noted that the use of up-
per tropospheric measurements on board commercial
airliners flying between Tokyo and Sydney has an im-
pact on reducing the flux uncertainties, particularly for
regions in the Asian subcontinent (Maksyutov et al.,
2003). However, a justifiable conclusion of compara-
tive usefulness of elevated sampling from aircraft or
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Fig. 8. Rankings of all the candidate stations in terms of their contribution to the reduction of average flux estimate uncertainty.
For this calculation we have used only the NIES/FRSGC model simulations. The upper panel (a) shows the ranks at the
beginning of the IO procedure, and the lower panel (b) depicts the distribution (much uniform) after adding five stations at
the optimal locations.

mountain sites can only be drawn after taking into the
account all the components in the signal-to-noise ratio.
In particular, the diurnal variability and daily change of
the surface fluxes should be taken into account together
with a proper sampling protocol for time-independent
inversion of annual mean concentration.

4. Conclusions

A detailed analysis of the present CO2 measurement
network has been carried out with the help of simula-
tions from 15 global tracer transport models within an
inverse model framework. Based on the incremental
optimization technique and using 15 transport model
results, we have analysed optimal extensions of the

present CO2 observation network. The average uncer-
tainties in the regional flux estimates are reduced from
about 0.53 Gt C yr−1 per region to 0.36, 0.32, 0.28
or 0.26 Gt C yr−1 per region after adding 5, 10, 15
or 20 new stations to the basic set, respectively. Both
rankings of the candidate stations, in terms of reduc-
tion in average flux estimate uncertainty, and optimal
network design suggest that South and Tropical Amer-
ica, Africa, Boreal North America, Temperate and
Boreal Asia and Tropical Asia are the least well con-
strained regions under this particular inverse modeling
framework. A sensitivity study of network extension
with three different data uncertainty models indicates
that regions with high surface source signal and low
data uncertainty are the most preferable sites for new
measurements. These regions also have large source
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estimate uncertainties at present. The multi-model
approach to this network design study also indicates
that a robust network will have to be sufficiently large
(by about 20 more optimally located stations) to con-
strain the regional surface sources independent of the
differences among transport models. It is also noted
that models with larger signals near the ground pre-
dict a larger reduction of the regional and global flux
estimate uncertainty.
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