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ABSTRACT

Some 30 years of physical and chemical marine aerosol data are reviewed to derive global-size
distribution parameters and inorganic particle composition on a coarse 15°×15° grid. There
are large gaps in geographical and seasonal coverage and chemical and physical aerosol charac-
terisation. About 28% of the grid cells contain physical data while there are compositional data
in some 60% of the cells. The size distribution data were parametrized in terms of 2 submicro-
meter log-normal distributions. The sparseness of the data did not allow zonal differentiation
of the distributions. By segregating the chemical data according to the major aerosol sources,
sea salt, dimethylsulfide, crustal material, combustion processes and other anthropogenic
sources, much information on mass concentrations and contribution of natural and anthropo-
genic sources to the marine aerosol can be gleaned from the data base. There are significant
meridional differences in the contributions of the different sources to the marine aerosol. Very
clearly, we see though that the global marine surface atmosphere is polluted by anthropogenic
sulfur. Only in the case of sulfur components did the coverage allow the presentation of very
coarse seasonal distributions which reflect the spring blooms in the appropriate parts of the
oceans. As an example of the potential value in comparing the marine aerosol data base to
chemical transport models, global seasonal meridional MSA distributions were compared to
modelled MSA distributions. The general good agreement in mass concentrations is encouraging
while some latitudinal discrepancies warrant further investigations covering other aerosol
components such as black carbon and metals.

1. Introduction general picture emerged of low number concentra-

tions in the central parts of the oceans and increas-
Over the past decades, there have been numer- ing values towards the downwind coast of the

ous reviews of our knowledge of the marine aero- continents. However, before the advent of com-
sol. Each of these reviews had a specific focal mercial digital condensation particle counters in
point which was in line with the authors research the 80s, such reviews were hampered by the incom-
interest or with specific issues at hand. Many patibility of sensors with different measuring
attempts focused on global distributions of principles and calibration standards. The size dis-
number concentration (Jaenicke, 1987) and related tribution of marine aerosols has been the subject
properties (Cobb and Wells, 1970; Hegg and of several reviews (Fitzgerald, 1991; O’Dowd et al.,
Hobbs, 1992; Podzimek, 1980; Shiratory, 1934). A 1997). Inlet losses, particle size and concentration

calibrations and compatibility of measuring prin-

ciples are the prime problems of size distribution* Corresponding author.
email: jost@tropos.de measurements in the atmospheric aerosol. Even
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today, they have not been overcome completely limited extent of the physical data base, all sources
of data were collected in Table 1.in either marine or continental aerosol

experiments. Because particle size distributions are measured

as the number concentrations within a series ofA first comprehensive physico-chemical review
based on state of the art experimental techniques finite diameter increments, the results are multivar-

iate data sets in time and space with 10 to 100was given by Junge (1972). The best data coverage

at that time (and still today) was reached in the concentrations at each location which represents
on the order of 1-h average. Measurement andNorth and South Atlantic. A first review of ele-

mental composition with some marine coverage analysis techniques were not standardised, thus,

the fundamental data are not comparable. Tocan be found in Rahn (1976). At that time, how-
ever, the sensitivity of many analytical methods overcome this difficulty, the data were generally

fit by a multimodal, log-normal function either byprecluded their use in the low concentration

marine aerosol. Consequently, Rahn (1976) could the original investigators or secondary analysis.
In the marine boundary layer, the size distributionnot include many marine locations in his data

base. In a series of research flights, wider marine is generally confined to 3 distinct modes: an Aitken

mode with a geometric number mean diametercoverage was reached with physical and chemical
aerosol measurements (Hogan and Mohnen, 1979; around 50 nm, an accumulation mode with a

mean diameter around 150 nm and a coarse orHuebert and Lazrus, 1980; Patterson et al., 1980).

However, with aircraft data, there are large and sea salt mode with a mean diameter above 400 nm.
At times, there were other smaller modes belowunresolved inlet and calibration issues. These

issues, and the fact that those global flights concen-
trated on the free troposphere excluded them from

Table 1. Sources of data on aerosol concentrationthe present surface aerosol review. Comprehensive
and number-size distributionreviews of the atmospheric aerosol system

(Prospero et al., 1983) and of the organic aerosol
Geographical area/

(Duce et al., 1983) do not show any global maps Source experiment
of aerosol composition. The AEROCE* (Arimoto

Bates et al., 1998b Tasman Sea, Southernet al., 1992) network of island stations supplied
Ocean, ACE 1much information on the bulk composition of the

Covert et al., 1996b Arctic, IAOE91marine aerosol. Consequently, many of the results
Covert et al., 1996a Central Pacific, MAGE

are included in the present review which focuses
Covert et al. Equatorial Western Pacific,

on the surface marine aerosol and combines avail- (unpublished data) CSP
able physical and chemical information to produce Davison et al., 1996a Southern Ocean

Heintzenberg and Leck, Arcticglobal distributions of aerosol parameters which
1994can be used in comparisons with chemical trans-

Jaenicke et al., 1992 Southern Oceanport models and in assessments of global aerosol
Jensen et al., 1996 North E Atlantic, ASTEX

effects.
Leaitch et al., 1996 NW Atlantic
Quinn et al., 1990 Central N Pacific, MAGE
Quinn et al., 1993 Central Eastern Pacific,

2. The data base MAGE
Quinn et al., 1995 Central Pacific, MAGE
Quinn et al., 1996 Central Pacific, MAGE2.1 Physical data
Raes et al., 1997 Tenerife
Van Dingenen et al., North AtlanticParticle concentration and particle number-size

1995distribution data were taken from reviewed literat-
Van Dingenen et al. Tenerife, ACE 2ure or in some cases from similar but unpublished

(unpublished data)
data from these same investigators to extend the

Wiedensohler et al. Tasman Sea, Southern
global and seasonal coverage. Because of the very (unpublished data) Ocean, ACE 1

Nowak et al. North and South Atlantic,
(unpublished data Indic, AEROCRUISE

1999
* AEROCE: atmosphere/ocean chemistry experiment.
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30 nm (ultrafine and small Aitken) or larger sea (Lannefors et al., 1983; Leck et al., 1996; Leck and
Persson, 1996; Maenhaut et al., 1996). Mostsalt modes above 1 mm. For the purposes of this

review, 4 modes were considered, the 3 dominant research cruise data cover the North Atlantic

region (Berresheim et al., 1991; Church et al., 1991;ones and the ultrafine. This modal nature and its
consistency facilitated analysis and simplification Church et al., 1990; Gravenhorst and Jendricke,

1974; Hansen et al., 1990; Kim et al., 1995; O’Dowdof the results. For each mode, a number concentra-

tion, geometric number mean diameter and stand- and Smith, 1993; Pszenny et al., 1990; Van
Dingenen et al., 1995; Véron et al., 1992; Véronard deviation of the mode were calculated, giving

up to 12 defining parameters. The total number and Church, 1997; Whelpdale et al., 1990). For

the summer of 1997, the ACE-2 experiment pro-concentration was also tabulated. Where data was
available as hourly or less than hourly averages, vided a large aerosol data base in the region

Portugal, Canaries, North Africa (Andreae et al.,24-h averages were calculated and assigned to the

cell statistics. Otherwise, some cells and experi- 2000; Bates et al., 2000; Neusüß et al., 2000;
Novakov et al., 2000; Putaud et al., 2000).ments would be weighted more heavily with data

that is not independent. The data base contains 8 experiments on

Tropical and South Atlantic cruises (Andreae(1) Completeness. Only data covering at least 1
decade of size and at least 1 complete size mode et al., 1995; Berresheim et al., 1989; Bravo et al.,

1982; Crozat et al., 1973; Pszenny et al., 1993;were accepted.

(2) Methodology. Only data that were taken Pszenny, 1992; Putaud et al., 1993; Rahn, 1976).
From the Western Pacific Ocean the data basefrom instrumentation calibrated with respect to

geometric size were included. Thus, much optical contains the ship-borne experiments reported in
(Andreae et al., 1983; Clarke, 1989; Clarke et al.,particle counter data was not included. Only data

taken at a measured relative humidity of less than 1987; Hirose et al., 1983; Huebert et al., 1993;

Quinn et al., 1998; Tsunogai et al., 1988). The40% RH were accepted as a matter of minimising
the effect of hydration on the size distributions. Eastern Pacific Ocean is covered by ten reports

(Bates et al., 1992; Bravo et al., 1982; HoffmanThis then reduced the data set largely to distribu-

tions determined via mobility or aerodynamic et al., 1969; Maenhaut et al., 1983; Parungo et al.,
1987; Parungo et al., 1986; Patterson and Duce,sizing techniques. (Differential Mobility Particle

Sizers, DMPS (Hoppel, 1978) and Aerodynamic 1991; Quinn et al., 1998; Quinn et al., 1993;

Saltzman et al., 1986a). In the Indic data fromParticle Sizers, APS (Agarwal et al., 1982.)
(3) Representativeness. Only data covering at several Indian and US research cruises, were

included (Clarke, 1989; Krishnamurti et al., 1998;least two days within a given cell were accepted

to minimise local, short-term meteorological and Rhoads et al., 1997; Sadasivan, 1983; Savoie et al.,
1987; Siefert et al., 1999). These results are comple-source influences.

(4) Redundancy. Only data with some dual mented by unpublished data from the Indian

Ocean Experiment (INDOEX) and other recentmeasure of particle concentration were accepted,
e.g., size independent number concentration or research cruises in the Indian Ocean area

(A. Johansen, D. L. Savoie and J. M. Prospero,2-particle counters which overlapped for part of

their effective size range. personal communication).
As a first complement, other cruise data from

ships of opportunity were added. Most of these

ships covered routes between Europe and
2.2. Chemical data

Antarctica (Andreae, 1983; Bürgermeister and
Georgii, 1991; Davison et al., 1996a; Davison et al.,Compared to the physical data base, many more

chemical data have been published since the six- 1996b; Losno et al., 1992; Losno et al., 1989;
Osadchii et al., 1980; Völkening and Heumann,ties. Ideally, only ship data from dedicated aerosol

experiments with rigorous sample control should 1990) and between Japan and Antarctica (Koga
et al., 1991). As a further complement we addedgo into a marine aerosol data base. However, in

the data base, research cruises fulfilling these aerosol data from airborne marine boundary layer

flights (Berresheim et al., 1990; Hansen et al., 1990;requirements covered only a small fraction of the
world oceans. Four Arctic reports were included Harrison et al., 1996a).
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Island data were added to increase geographical and Winchester, 1982; Hoffman and Duce, 1972;
Hoffman et al., 1972; Hoffman et al., 1969;coverage in areas not covered by research cruises

or by ships of opportunity. These data greatly Patterson and Duce, 1991) and Samoa data pre-

sented in Maenhaut et al. (1981) and Savoie et al.enhanced the seasonal coverage, because they
often included data from several years. The island (1994). Marine metal data from the north-western

coast of the US were taken from Vong et al.data were complemented by coastal data taken at

research stations with air mass analyses excluding (1997). Antarctic coastal and island data from 9
reports were used (Artaxo et al., 1991; Artaxolocal or land contamination. In the Arctic, these

data cover the Svalbard region (Heintzenberg et al., 1992; Dick, 1991; Harvey et al., 1991; Koga

et al., 1999; Legrand et al., 1998; Minikin et al.,and Covert, 1987; Heintzenberg et al., 1981;
Heintzenberg and Leck, 1994; Li et al., 1993; 1998; Savoie et al., 1993; Wolff and Cachier, 1998).

Marine areas which are mostly surrounded byMaenhaut et al., 1994), Northern Greenland

(Heidam et al., 1999; Heidam, 1983) and Point land, such as the Baltic, the Mediterranean and
the Sea of Japan were excluded from the review.Barrow, Alaska (Li and Winchester, 1989), (Li

et al., 1993; Li and Winchester, 1990). In the Furthermore, marine samples from the heavily

trafficked European waters and from coastal sta-Atlantic region, data from Iceland (Prospero et al.,
1995), the Faroes (Kemp, 1984; Prahm et al., tions on the central European mainland east of

5°W were not used. The total data base spans a1976), the Shetland Islands (Keane and Fisher,

1968; Peirson et al., 1973), Frøya and Lista, period of more than 30 years, beginning in 1966,
and ending in spring 1998.Norway (Isakson et al., 1997), Scotland (Davison

and Hewitt, 1992), Bermuda (Chen and Duce, Additionally, data sets from the AEROCE,
ACE*-1 (Bates et al., 1998a), ACE-2 (Raes et al.,1983; Ellis Jr. et al., 1993; Hastie et al., 1988;

Meinert and Winchester, 1977; Wolff et al., 1986), 2000) and INDOEX experiments were made avail-

able by the respective investigators. Some of theseMace Head, Ireland (Cooke et al., 1997; Francois
et al., 1995) and Prospero and Savoie (personal had not been published before or only had been

published in summary form. Of the many chemicalcommunication), the Azores (Harrison et al.,

1996b), Madeira Islands McGovern (personal components which have been analysed in marine
aerosol samples, a subset was selected which ful-communication) Portugal (Pio et al., 1996),

Barbados (Ellis Jr. et al., 1993; Savoie et al., 1989; filled the following requirements.

(1) Completeness. Only components with dataZhu et al., 1997), and Sal Island (Savoie and
Prospero, 1977), were included. in both hemispheres were accepted.

(2) Specific, calibrated analytical methodology.In the Indic, a report from Amsterdam Island

(Liousse et al., 1996), and from Kashidoo, Results of ion chromatography, capillary electro-
phoresis, flame photometry, Particle-inducedMaldives (Prospero and Savoie, private commun-

ication) was used. From the Western Pacific, we X-ray emission and Instrumental Neutron

Activation Analysis were accepted. Results of filteradded data reported for Cheju Island (Arimoto
et al., 1996; Carmichael et al., 1996; Chen et al., ashing were not used. A compromise was made

with black carbon (BC), the most important tracer1997; Kim et al., 1998), the Ogasawara Islands

(Matsumoto et al., 1998), the islands Onna, of combustion sources in order to achieve better
global coverage. Results from aethalometerChichijima and Hachijojima (Suzuki and

Tsunogai, 1988), Enewetak (Duce et al., 1980; (Hansen et al., 1982) and other photometric

methods (Andreae et al., 1983; Bond et al., 1999;Settle and Patterson, 1982), Cape Grim, Tasmania
(Ayers et al., 1986; Heintzenberg and Bigg, 1990; Heintzenberg, 1982; Heintzenberg, 1988) were

accepted even though there are calibration discrep-Huebert et al., 1998), New Zealand (Allen et al.,

1997; Wylie and Mora de, 1996), and for Christmas ancies between these methods (Heintzenberg
et al., 1997).Island (Huebert et al., 1996),

Time series reaching from Shemya, North (3) Representatives of all major natural and
anthropogenic aerosol sources. Tracers for seaPacific to New Caledonia, South Pacific reported

by Saltzman et al. (1986b) and Arimoto et al.
(1996) were used. For the Eastern Pacific, there * ACE: international global atmospheric chemistry’s

aerosol characterization experiment.are several reports of Hawaiian coastal data (Darzi
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Table 2. L ist of chemical components in the data base

# 1 2 3 4 5 6 7 8 9 10

Component Na Mg Cl nssSO4 MSA BC Fe Si nssCa nssK
n 727 319 575 1164 847 1413 208 55 373 310
m (ng m−3 ) 3600 440 5800 1010 36 150 550 770 210 58
sea salt X X
crustal X X X
anthropogenic X X

# 11 12 13 14 15 16 17 18 19 20

Component Al ncMn V Cr Ni Cu Zn Cd Pb BaP
n 182 106 91 58 65 76 124 49 131 14
m (ng m−3 ) 630 1.6 1.0 1.1 2.1 3.9 7.6 0.10 1.4 0.0012
crustal X
anthropogenic X X X X X X X X X

BaP=benz(a)pyrene; BC=black carbon; m=mass concentration; MSA=methanesulfonate; n=number of samples
in data base; nc=non-crustal; nss=non-sea-salt; nssSO4=non-sea-salt sulfate; X indicates which component was
used as tracer for sea salt, crustal and anthropogenic sources.

salt were Na, Mg, Cl, for marine biogenic 3. Data processing
(Methanesulfonate, MSA), for crustal material (Fe,
Si, nss*Ca). For anthropogenic particle sources Because the prime objective of the exercise was
BC, V, Benz(a)pyrene (BaP), nc**Mn, Cr, Ni, Cu, the generation of marine aerosol data for aerosol
Zn, Cd, and Pb were available. Non-sea-salt sulf- modelling purposes, the input data were to be
ate (nssSO4 ) is a mixed tracer, the concentration aggregated in a global grid. Due to the sparseness
of which is affected by marine biogenic emissions of data, a 15°×15° grid was chosen (cf. Fig. 1) for
and by the combustion of biomass and fossil fuel. which simple aerosol statistics were calculated.
Non-sea-salt potassium (nssK) is also a mixed The aerosol data came from many experiments of
tracer of marine and terrestrial biological material. very different character. Ship cruises usually last
Aerosol components with strong and variable from 3 to 6 weeks while island and coastal data
partitioning between gas phase and condensed cover weeks to years. Ideally, each cruise sample
phase such as nitrate and organics were excluded is characterised by start and stop position and
from the review. date. Many results, however, were reported at

(4) Redundancy. In order to increase internal single sample positions (even if the ship was
consistency and global coverage, more than one moving). Besides grid-average concentrations,
tracer for each aerosol source was incorporated. standard deviations were calculated.
However, tracers with less than 10 samples were According to its date, each sample was sorted
excluded. into the 4 seasonal periods: January–March,

Table 2 lists the 20 chemical aerosol components April–June, July–September and October–
which were included in the data base. December. However, because of the sparseness of

The 4264 geographical positions of all 6860 the data, most aerosol parameters did not allow
chemical results in the data base are shown in a discussion of seasonal variabilities.
Fig. 1b. Each entry in Fig. 1b stands for mass All mass concentrations are given in ng/m3.
concentrations of one or several of the components Non-sea-salt fractions of sulfate and potassium were
listed in Table 2. calculated with sodium as reference element from

average sea water composition (Wilson, 1975). With
the average crustal composition taken from Taylor* nss: non-sea-salt.

** nc: non-crustal. (1964), non-crustal fractions of calcium were calcu-
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Fig. 1. (a) Grid cells with physical data at marine positions marked by a square in the center of each cell.
Superimposed is a 15°×15° latitude, longitude scale. Coastal data which met the acceptance criteria sometimes
appears inconsistentently to be a continental grid point. (b) Positions of all samples in the chemical data base.
Superimposed is a 15°×15° latitude, longitude scale.

lated with either iron, silicon or aluminum as refer- shown that the abundancies of many of the soil

elements in aerosol samples can deviate substan-ence element (depending on availability in the
specific sample). Total sea salt and total crustal tially from that of bulk soil (Holmes and Zoller,

1996). However, such elemental information ismass concentrations were calculated from the same

compositional tables with the mass concentrations available at a few marine locations only. Thus, we
refrain from applying individual soil signatures inof the respective tracers marked in Table 3. Averages

were formed whenever more than one tracer was our global review.
Chlorine was excluded from the calculation ofavailable for sea salt or crustal material in any

individual sample. We are aware of the limitations total sea salt concentrations because of potentially

large losses due to displacement reactions in acidicof this simplistic global usage of sea salt and crustal
elemental signatures. Marine aerosol studies have aerosols or on the aerosol filters during sampling

Tellus 52B (2000), 4
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Table 3. Global meridional statistics of the physical aerosol data

Aitken Geometric Geometric Accumulation Geometric Geometric
Latitude mode mean standard mode mean standard
range number diameter deviation N number diameter deviation N

75 90 160 45 1.5 2 60 170 1.6 1
60 75 0 0
45 60 230 31 1.5 4 110 200 1.6 4
30 45 210 45 1.5 9 250 180 1.4 10
15 30 250 44 1.4 10 170 170 1.4 10
0 15 280 46 1.6 7 240 160 1.5 7
0 −15 150 47 1.5 10 160 170 1.5 10

−15 −30 390 40 1.4 7 220 160 1.4 7
−30 −45 600 36 1.4 7 200 150 1.4 7
−45 −60 300 31 1.4 3 110 140 1.5 3
−60 −75 310 35 1.4 9 70 150 1.6 5
−75 −90 0 0

Number concentrations in cm−3. N=number of cases.

(Hitchcock et al., 1980; Klockow et al., 1979;
Martens et al., 1973). The global average
chlorine/sodium ratio in Table 2 illustrates this

problem. For sea water this ratio should be 1.8
but a value of only 1.6 was found on average.

4. Results

4.1. Physical data

Aerosol concentration and number-size distri-
bution data which fit the acceptance criteria could

Fig. 2. Global annual average, meridional distributionbe found for only 28% of the 15° by 15° grid cells
of total particle number concentrations in units of par-(cf. Fig. 1a). Major gaps occur in the Indian Ocean
ticles per cm3. A one standard deviation range of variabil-

and the latitude band 60° to 75°N, where no data
ity is shown for each meridional set.

were available. The ultrafine and sea-salt size

ranges were less well represented and could not
be included in a meaningful global distribution. four modes for each latitudinal cell where data

was available.Concentration and size parameters are presented

for those modes where they were available but The total particle number concentration varied
from about 200 to 800 cm−3 and there was nolatitudinal distributions are not presented.

Otherwise, the resulting latitudinal profile of lon- significant interhemispheric difference (cf. Fig. 2).

There were maxima in concentration in the midlat-gitudinally averaged data is not biased by large,
unequal geographical weighting. There are no itudes, a general minimum in the equatorial region

and again toward the poles. However, this pictureobvious biases from continentally or locally influ-

enced data. Figs. 2–4 show the longitudinal pro- of total number concentration is not a good
representation of the aerosol since it is the sum offiles of total number concentration and, for the

Aitken and accumulation sizes, modal number the Aitken and accumulation modes which are
largely independent in terms of source, transportconcentration and geometric number-mean dia-

meter. A one standard deviation range of variabil- and removal processes. The longitudinal average

of the separate Aitken and accumulation modesity is shown for each meridional set. Table 3
presents the size distribution parameters for all (cf. Figs. 3, 4) illustrates the difference in the
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distribution data west of the date line, measure-
ments of total concentration along 170°W showed
a midlatitude maximum presumably from Asian
sources.

The geometric mean diameter of both the Aitken
and accumulation modes is larger in the northern
hemisphere by about 25% (cf. Fig. 4). The com-
bination of increased concentration and increased
mean diameter for the accumulation mode results
in a volume concentration ratio of about 2 : 1
between the northern and southern hemispheres.
This is similar to the ratio of non-seasalt sulfate
reported below. Other chemical components suchFig. 3. Global annual average, meridional distributions
as submicrometric seasalt, MSA and organic com-of particle number concentrations for Aitken and accu-
pounds that are more evenly distributed latitudin-mulation mode in units of particles per cm3. A

one standard deviation (stdev) range of variability is ally may make the total hemispheric mass
shown for each meridional set.V=Aitken+stdev; 1= difference less than that of sulfate. The size distri-
Aitken−stdev; +=accumulation+stdev; C= bution data do not reflect the large sulfate mass
accumulation−stdev.

in the chemical data in the equatorial region. This
results from the lack of size data in the equatorial
Atlantic associated with biomass burning. Table 3
gives summary statistics of the physical data.

These latitudinal trends may be due to natural
and anthropogenic continental sources. From the
point of view of aerosol dynamics, an increased
particulate volume or surface area in the northern
hemisphere from either source may reduce new
particle formation and thus have a controlling
effect on the particle concentration and modal
diameter of the Aitken mode.

While the ‘‘goodness of fit’’ of the lognormal
parameters to the original data and the uncer-
tainty in the original data cannot in general be
quantified due the multitude of data sources, the

Fig. 4. Global annual average, meridional distributions
uncertainty in data derived from Bates et al.,of modal diameters for Aitken and accumulation mode
Covert et al., Quinn et al. and Van Dingenen et al.in units of nm. A one standard deviation range of variab-
can be estimated. The uncertainty in number andility is shown for each meridional set.

mean diameter have been estimated as ±10%
and ±2.5% respectively. The uncertainty in the

latitudinal profiles of the parameters of these
geometric standard deviation of the modes due to

modes. In this view of the aerosol parameters,
instrumental and fitting errors are on the order of

there are hemispheric differences and latitudinal
±0.1. Except for the standard deviation the errors

trends in both concentration and mean size. Aitken
in the lognormal parameters are small compared

mode concentration in the southern hemisphere is
to the uncertainty of the underlying data. The

300 to 600 cm−3 compared to 150 to 300 cm−3
differences between the fitted results and the ori-

observed in the northern hemisphere. By contrast,
ginal data may be much larger for higher moments

accumulation mode concentration is similar in the
of the size distribution.

northern and southern hemispheres. Maxima were
observed in the mid- and tropical- North Atlantic

4.2. Chemical data
and Indic Oceans downwind of continental

sources. Similar maxima can be expected in the Of the available marine 15° by 15° data cells,
adequate chemical data could be found for 65%north-western Pacific. Although there is no size
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of them. Major gaps occurred in all oceans south A global meridional distribution of crustal con-
of 15°S and in the eastern Pacific region where centrations in the marine aerosol is also shown in
few data were found. Many questions can be posed Fig. 5. As a result of the major African subtropical
of the data base of processed chemical information source region and related wind regime, the aerosol
about the marine aerosol. Beginning with the in the latitudinal belt between 0° and 30°N is
distribution of natural components in the aerosol strongly affected. Only relatively few samples with
we face the first problems with sea salt. In many crustal components were available in the Indic
studies, sea-salt components were analysed and (Sadasivan, 1983; Siefert et al., 1999) and in the
used in order to derive non-sea-salt sulfate but Western Pacific (Arimoto et al., 1996; Chen et al.,
then not explicitly reported. The relaxation of the 1997) where the spring time Kosa dust phenom-
requirement of defined coarse particle inlet charac- enon in the region 30°N to 45°N is a regular
teristics for the sake of increased data coverage source of continental aerosol material (Hirose
leads to great uncertainties concerning the et al., 1983). Significant crustal aerosol concentra-
sampled mass fraction of sea salt. Also several tions were found in the marine aerosol in the
data sets appear to be strongly affected by site- Antarctic as well as in the tropical and subtropical
specific characteristics. On ships, very high sea- regions. The overall latitudinal distribution, which
salt concentrations can be measured during strongly differs from that for sea salt, reflects the
stormy weather or whenever bow-generated sea distribution of the major continental dust sources
spray affects the samples. Similar problems occur in the northern hemisphere.
at coastal sites within a few hundred meters of the MSA is another natural component of the
shoreline, which can be strongly affected by the marine aerosol which has been analysed in many
local surf conditions. With all these caveats, we marine studies of the global sulfur cycle. Its pre-
present in Fig. 5 global average meridional distri-

cursor dimethylsulfide (DMS) is produced by
butions of total sea salt concentrations. Within a

marine micro-organisms and thus has a strong
factor of two the data agree with the results of a

seasonal cycle as well as latitudinal trends. After
recent sea salt model study (Gong et al., 1997b).

sulfate and Black carbon (BC) MSA has the
The sea-salt maximum in the southern hemispheric

highest number of data points (cf. Table 2).
‘‘roaring forties and sixties’’ is not seen as strongly

Consequently, we display in Fig. 6 seasonal aver-
as expected from the models. It is suspected that

ages of global meridional MSA distributions which
this is partly due to the lack of data and also

reflect the spring blooms in the appropriate parts
because aerosol samples in this latitudinal belt

of the oceans. The northern hemispheric spring
often have been taken during fair weather condi-

blooms appear to yield highest MSA concentra-
tions only.

tions. Storms and surface cooling mix the surface

water in this region, replenishing the nutrient

supply from deeper waters.

A first comparison of the experimental MSA

data was made with model results for MSA derived

with a global chemical transport model (Mian

Chin, personal communication). For 1990 emis-

sions and meteorological fields, this model calcu-

lates particulate sulfur components in a 2°×2°
grid (reduced to 1°×1° at the last 1° at each pole).

Average zonal and seasonal means of gridded

MSA model results are plotted in Fig. 6. For

seasons 2 and 3 (April through September) concen-

tration levels and meridional distributions of

model and experimental results agree very well.
Fig. 5. Global annual average meridional distributions

For the months October through March, theof total sea salt and crustal aerosol mass concentrations
southern hemisphere maxim is shifted north byin ng m−3. The bars indicate the variability of the data

by ±one standard deviation. about 30° compared to the experimental findings
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Fig. 6. Seasonal averages of global meridional data of methanesulfonate (MSA) and from a global chemical transport
model for 1990 (Chin et al., 2000) in ng m−3, DMS in surface water in rel. units (from Kettle et al., 1999), see text
for details. 1=January–March, 2=April–June, 3=July–September, 4=October–December. The dashed MSA data
in the southernmost cell of season 3 mark offscale MSA values in season 4. The bars indicate the variability of the
data by ±one standard deviation.

but the concentration levels are still in good 1999). Zonal and seasonal averages of these DMS

values were calculated for the 15° resolution gridagreement.
A second comparison can be made with the resolution of our aerosol data base. There is no

simple relationship between the amount of DMSglobal fields of the MSA precursor DMS for which

a recently compiled data gives monthly values in in sea water and corresponding concentrations in
surface air. For the comparison with aerosol con-surface sea water on a 1°×1° grid (Kettle et al.,
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centrations, we calculated a least square fit of the We note that particle densities between 1.5 g cm−3
and 2 g cm−3 are more frequently applied to theannual mean meridional distributions of DMS

and MSA with which we scaled the DMS distribu- atmospheric aerosol. Assuming these densities

would indicate that on meridional average nssSO4tions of the four seasons, the result of which we
added to Fig. 6. only explains between 61% and 46% of the sub-

micrometer mass, respectively, leaving room forWith the exception of the polar regions, latitud-

inal distributions of DMS and MSA track well. other aerosol components such as sea salt and
carbonaceous material.In the Antarctic region, both MSA and DMS data

are very patchy and highly variable (cf. also Fig. 16 BC is a good tracer of both biomass and fossil

fuel combustion (Cachier et al., 1985). Vanadiumin Kettle et al., 1999), in particular during the
productive austral summer half year (seasons 1 is mostly due to oil combustion (Rahn and

Lowenthal, 1984). Several metals in the data baseand 4). During the productive season of the north-

ern hemisphere, (seasons 1 and 2), there is an can also be used as more general tracers of anthro-
pogenic emissions (components 13–19 in Table 2).increasing disagreement between measured and

modelled MSA data on one hand and the DMS However, their global average concentrations vary

over several orders of magnitude (cf. Table 2).field with latitude north of 45°.
Several tracers in the data base can be used to Therefore we normalised their global meridional

distributions by their respective meridional max-illustrate the influence of anthropogenic emissions

on marine aerosol composition. Non-sea-salt sulf- imum concentrations and plotted their aver-
age relative meridional distribution in Fig. 7.ate (nssSO4 ) is a mixed tracer with a large anthro-

pogenic fossil and biomass fuel component and a Chemically related to the polyaromatic character
of BC is BaP which also is emitted mainly frombiological oceanic component. The interpretation

of its information content is further complicated fossil fuel combustion. The distribution given in

Fig. 7 stems from two meridional profiles derivedby the findings of Li-Jones and Prospero (1999)
indicating chemical reactions of SO2 on dust par- during one cruise from Europe to Antarctica and

back, January through April 1977 (Osadchii et al.,ticles yielding sulfate. Non-sea-salt sulfate has

regionally and seasonally varying marine biogenic 1980). No other data on this unique tracer were
found in the literature.DMS-derived components. For want of biogenic

sulfate data nssSO4 is plotted in Fig. 7 together The distribution of nssSO4 is broadened by

biogenic contributions, mainly in the southernwith biogenic sulfate for the modelled year 1990
(Mian Chin, personal communication). It is obvi- hemisphere but to a small extent also in the

Arctic/subarctic region. The concentrations inous that the global marine boundary layer is

polluted by anthropogenic sulfate. We recall here the northern hemisphere maxima are within a
factor of two of the summer North Atlanticthat the data set includes coastal experiments with

the restriction to samples with on-shore air flow. concentrations given in a recent global aerosol

climatology (Koepke et al., 1997) which doesThe global average contribution of the modelled
biogenic sulfate is 31%. not show any marine details in the southern

hemisphere. The relative metal distributionThe consistency of physical and chemical meri-

dional distributions was checked after calculating shows 2 maxima in the northern hemisphere.
The southern maximum may have some contri-total mass concentrations from the sum of the

third moments of the two submicrometer modes bution from biomass burning while the northern

one is due to fossil fuel combustion in theusing the modal parameters in Table 3. They are
displayed as dashed line (Msubm) in Fig. 7 after midlatitude industrial regions. We note though

the large variability of the results in the respect-multiplying the volume concentrations with an

assumed particle density of 1 g cm−3. In the north- ive meridional columns.
Some information on source distributions canern hemisphere a good agreement between Msubm

and nssSO4 is found while in the southern hemi- be gleaned from the hemispheric distribution of
the tracers displayed in Fig. 7. The broad distri-sphere the physical data indicate more mass than

explained by nssSO4 between 75°S and 15°S. A bution of nssSO4 is reflected by a ratio of

southern-to-northern hemispheric concentrationtotal of 82% of the meridional sum of Msubm is
explained by the corresponding sum of nssSO4 . integrals of 0.42 (cf. the corresponding ratio of
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Fig. 7. Global annual average meridional distributions of non-sea-salt sulfate (nssSO4), modelled biogenic sulfate
from a global chemical transport model for 1990 (Mian Chin, personal communication), black carbon (BC) anthropo-
genic metals (average relative meridional distribution of components 13–19 in Table 2) and Benz(a)pyrene in the
marine aerosol in ng m−3. The bars indicate the variability of the data by ±one standard deviation. For comparison,
the dashed line Msubm shows the total mass concentration that was calculated from the physical parameters of the
two submicrometer modes of the aerosol using an assumed particle density of 1 g cm−3.

land surfaces of 0.41). The corresponding integ- largely concentrated in northern midlatitudes.
The hemispheric concentration ratio for metalsral concentration ratio for BC is only 0.13.

While both tracers come from combustion (taken from their average relative distribution)

is 0.26, again indicating a somewhat broadersources BC is more specific for diesel-powered
surface traffic which for the past decades was latitudinal source distribution than that for BC.
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5. Conclusions tions were compared to modelled MSA distribu-
tions (Mian Chin, personal communication). The
general good agreement in mass concentrations isA review of some 30 years of marine aerosol

data reveals that there are large gaps in geograph- encouraging while some latitudinal discrepancies
warrant further investigations.ical and seasonal coverage and physical and chem-

ical characterisation. Nevertheless, on a coarse In similar ways, the gridded aerosol data should

be compared to results of other global chemical15°×15° grid much information on submicro-
meter size distribution, mass concentrations and transport models such as for sea salt (Erickson

et al., 1986; Gong et al., 1997a), crustal materialcontribution of natural and anthropogenic sources

to the marine aerosol can be gleaned from the (Tegen and Fung, 1994), sulfur (Langner and
Rodhe, 1991), and black carbon (Liousse et al.,data. The lack of adequate sampling in most of

the existing marine aerosol studies prevented a 1996) and global aerosol climatologies such as the

one by Koepke et al. (1997) The metal data incompilation of representative supermicrometer
data. This shortcoming could affect the concentra- particular can serve to validate models such as

that presented by Pacyna et al. (1984) for metaltions of several species marine and crustal species

including nssSO4 . Other major gaps in marine emissions over Europe the results of which then
only were compared to atmospheric data at aaerosol data that are indicated by their absence

in this review are size-differentiated chemical par- single Norwegian station or global emission

inventories such as given by Nriagu (1979) whichticle composition and aerosol data under high
wind conditions, which are prevalent in the north- was not validated by atmospheric data.

ern and southern mid latitude regions.
There are significant meridional differences in

the contributions of the different sources to the 6. Acknowledgements
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