The 1982–1983 El Niño: a 6 billion ton CO₂ release

By ANDRÉ GAUDRY*, PATRICK MONFRAY, GEORGES POLIAN* and GÉRARD LAMBERT, Centre des Faibles Radioactivités, Centre National de la Recherche Scientifique, Av. de la Terrasse, B.P. 1, 91190 Gif/Yvette, France

(Manuscript received February 21, in final form June 2, 1986)

ABSTRACT

The atmospheric CO_2 concentration at Amsterdam Island showed important variations of the increase rate during the 1982-1983 El Niño. After elimination of the weak local and regional interferences, the main feature of the CO_2 record is a slower than normal increase rate at the beginning and at the end of this El Niño, i.e., from April to December 1982, and from July 1983 to April 1984, and higher than usual from December 1982 to July 1983. In the whole, the CO_2 increase curve is shifted upwards by 1 ppm, which corresponds to a supplementary input into the atmosphere of about 6 billion tons of CO_2 .

1. Introduction

The study of different factors able to modify the long-term trend of atmospheric CO₂ is fundamental in order to account for past depletions during ice ages, as well as for the increase observed since the last century, in connection with human activities, and finally to forecast possible future levels of CO₂. Changes in the rate of the atmospheric concentration have already been observed and very generally related to changes in the sea surface temperature (SST) of the Pacific Ocean (Newell et al., 1978; Bacastow, 1979; Machta et al., 1977). More particularly, Komhyr et al. (1985) found that El Niño Southern Oscillation events of 1972, 1976 and 1982-1983 were associated with slower than normal atmospheric CO₂ increase during the first year, followed by very rapid CO₂ increase in the following year.

In a previous paper, Ascensio-Parvy et al. (1984) observed similar results at Amsterdam Island from data obtained in 1980-1983. An additional year of measurements gives a much

better idea of the relationship between the 1982-

2. Site and methods

The station located at Amsterdam Island, 37°47′S, 77°31′E, is included in the Background Atmospheric Pollution Monitoring (BAPMON) network of the World Meteorological Organization (WMO). Since October 1980, atmospheric CO₂ has been continuously measured. The measurement techniques have already been described by Gaudry et al. (1983), but some important details are summarized here. The station is located on the edge of a 55 m high cliff, the sampling point being at an elevation of 9 m from the soil. The air is dried by means of a -55°C cooling trap and CO₂ continuously determined by a non-dispersive infrared device.

The carrier gas effect has been determined by two scales of standard gases: one with standards in N₂, and one in synthetic air. The CO₂ in N₂ concentrations were provided by the CO₂ Central Laboratory of the World Meteorological Organisation (Scripps Institution of Oceanography, SIO), and sent to Amsterdam Island. The

¹⁹⁸³ SST anomaly and variations of the atmospheric CO₂ increase rate.

^{*} Also "Terres Australes et Antarctiques Françaises/O.R.S.T.O.M.", Paris.

CO₂ in air standards were composed of a set of 14 concentrations produced by a French manufacturer through an accurate gravimetric method (accuracy: 0.25 ppm). A first subset of 4 concentrations, ranging from 332.7 to 354.1 ppm were determined by the SIO. Although the adjusted 1985 SIO Mole Fraction Scale and the French Mole Fraction Scales agree within 0.25 ppm, we only used the adjusted 1985 SIO scale, and recalculated the 10 concentrations of the second subset. This last one was sent to Amsterdam Island. Due to such an indirect determination of the carrier gas effect, an accumulation of several uncertainties occurs, leading to a global uncertainty for the results of about 0.25 ppm, at a 64% confidence level. However, it is worthy to note that the reproducibility of the analytical system is better than 0.1 ppm.

Several selection criteria have been retained to obtain data in strict background conditions: only wind direction between 300° and 040° with velocities greater than 5 ms⁻¹, and wind direction between 260° and 300° with velocities greater than 8 ms⁻¹ per second have been taken into account. Since Amsterdam Island is also included in the parallel network coordinated by the National Oceanic and Atmospheric Administration/Global Monitoring for Climatic Change (NOAA/GMCC), an intercomparison was needed and has recently been achieved between continuous measurements and flask data. The main result is that by considering only the period when an electrical portable sampler, pressurizing the air in the flasks, has been used at the station and by selecting only background conditions, the long-term intercomparability, determined by Gaudry et al. (1986), defined by (NOAA minus CFR) differences, is close to -0.02 ppm with a standard deviation of 0.35 ppm.

3. CO₂ long-term trend and discussion

The monthly mean values of CO₂, calculated from selected data, according to the method described above, are shown in Table 1 and Fig 1. This figure shows that the increase rate of CO₂ varied during the period under study, and more particularly in 1982-83. Beside local causes of variations, which are supposed to be eliminated by our data selection, two possible regional

Table 1. Monthly mean CO₂ concentrations at Amsterdam Island for wind blowing from the sea, without correction

Month		CO ₂ concentration (ppm)
October	1980	338 ~
November	1980	338
December	1980	338.3
January	1981	338.4
February	1981	338.5
March	1981	338.4
April	1981	338.3
May	1981	338.4
June	1981	338.2
July	1981	338.4
August	1981	338.9
September	1981	338.8
October	1981	338.8 -
November	1981	338.9
December	1981	339.1
January	1982	339.2
February	1982	339.4
March	1982	339.4
April	1982	339.2
May	1982	339
June	1982	339.2
July	1982	339.4
August	1982	340
September	1982	340
October	1982	339.8
November	1982	339.7
December	1982	339.7
January	1983	339.9
February	1983	340.3
March	1983	340.3
April	1983	340.6
May	1983	340.8
June	1983	341.2
July	1983	341.7
August	1983	342
September	1983	341.9
October	1983	341.8 -
November	1983	341.8
December	1983	342.3
January	1984	341.9
February	1984	341.6
March	1984	341.7
April	1984	341.6
May	1984	341.6
June	1984	341.9
July	1984	342.4
August	1984	343
September	1984	343.1
October	1984	342.8 -

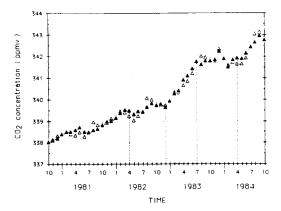


Fig. 1. Monthly mean CO_2 concentrations at Amsterdam Island: A (\triangle) , for wind blowing from the sea, without correction; B (\triangle) , same results after correction of the seasonal effect. Vertical dashed lines correspond to reference dates (see text).

causes of variations have to be considered. Monfray et al. (1987) pointed out that, in the latitudinal band of Amsterdam Island, both pCO₂ in superficial sea water and the sea-air transfer piston velocity which is driven by the wind velocity, vary with the season. In the same way, the anthropogenic source of CO₂ and the continental biomass activity are also seasonally variable. Moreover, the contribution of continental sources and sinks to CO2 concentrations measured at Amsterdam Island is dependant on the advection of continental air masses towards this station, which is also seasonally dependant (Polian et al., 1986). Finally, all of these effects result in a seasonal variation of the CO₂ atmospheric concentration with a maximum in August, a minimum in April-June, and a peakto-peak amplitude of 0.7 ppm. The monthly mean values of CO₂, corrected for this seasonal variation, are also shown in the same Fig. 1.

It is clear that the CO₂ increase rate was very small (and sometimes even negative) from April to December 1982, and from July 1983 to April 1984, and higher than usual from December 1982 to July 1983. Fig. 2 shows that the period from April 1982 to January 1984 was characterized by a strong SST anomaly (El Niño) reaching up to +5°C (NOAA's Climate Diagnostics Bulletin) for the most affected area in the vicinity of the Peruvian coast (0°-10°S, 80°-90°W). A correlation can be seen between this SST anomaly and

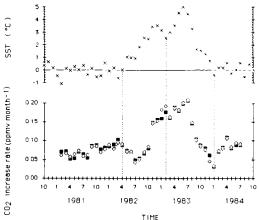


Fig. 2. El Niño 1982-1983 and atmospheric CO₂ at Amsterdam Island: A (×), sea surface temperature (SST) anomaly deduced from NOAA's climate diagnostics bulletin (area: 0°-10°S, 80°-90°W); B (○), CO₂ monthly increase rate derived from an 11-month running mean calculated after correction of the seasonal effect; C (■), same results by using only CO₂ concentrations corresponding to ²²²Rn concentrations <1 pCi m⁻³. Vertical dashed lines correspond to reference dates (see text).

the monthly CO₂ increase rate, derived from an 11-month running mean (5 months preceding and following the considered month) of the CO₂ concentrations.

The slower than normal atmospheric CO₂ increases observed during the first period of the 1982-83 El Niño could be attributed to a reduction of the flux to the atmosphere from the entire equatorial oceanic region. In effect, in lack of upwelling, the carbon content of the superficial water should be lower than usual, as actually observed by Feely and collaborators (1986, private communication). However, changes in the SST were associated with drastic changes in the climate of very large areas as mentioned by Rasmusson and Wallace (1983). Such a climatic effect, and its consequences for the continental biomass, can combine with air-sea exchange modifications to account for the rapid CO2 increases observed in 1982-1983.

The rapid advection of air masses from South Africa to Amsterdam Island are well-displayed by their high concentrations of ²²²Rn. This natural radioactive gas is injected into the atmosphere almost only from the continent soil.

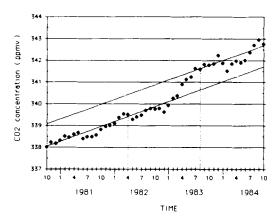


Fig. 3. Monthly mean CO₂ concentrations after correction of the seasonal effect and for ²²²Rn concentrations <1 pCi m⁻³. Both straight lines were drawn with the same slope. They happen to differ by 1 ppm. Dashed lines correspond to reference dates (see text).

Polian et al. (1986) have shown the existence, particularly in winter, of sharp peaks in ²²²Rn due to the drawing in of continental air from South Africa towards Subantarctic areas. It was pointed out by Gaudry et al. (1983) that these rapid long-range transports of continental air frequently corresponded at Amsterdam Island to maxima of CO₂ concentrations about 0.5 to 1.3 ppm higher than typical values.

Following the 1982-1983 El Niño, we observed at Amsterdam Island ²²²Rn average concentrations a little higher than usually, and more especially, very important peaks of ²²²Rn during the winter 1983 (May-August). They indicate that the advections of air from South Africa were unusually intense at this time. The CO₂ mean concentration measured at Amsterdam Island was slightly increased by these rapid invasions of continental air. Therefore, it has been necessary to correct our results, by considering only those CO₂ values which corresponded to low ²²²Rn concentrations: practically less than 1 pCi m⁻³. These CO₂ values, which represent only 70% of all preceding results, are shown in the same Fig. 2. It is clear that the two curves, B (whole data) and C (CO₂ data when ²²²Rn is less than 1 pCi m⁻³), are practically superposed during the whole period under study, except in January and February 1983. For both these months, a small difference appears which could be attributed to a small but significant influence of South-Africa.

4. Conclusion

In conclusion, we can observe in Fig. 3 that, after subtracting out the local variations, the average seasonal cycle, and regional variations correlated with the radon concentration, the CO₂ concentration increased from October 1980 to April 1982 at a mean rate of 0.8 ppm per year. This figure shows that the CO₂ increase rate was again very similar since August 1983. Therefore, despite slower than normal CO₂ increases at the beginning and the end of the 1982–1983 El Niño, this event resulted in the whole in a 1 ppm upward shift of the CO₂ increase curve.

This shift was seen in the record at Amsterdam Island, even with only a short record, because of the near absence of local or regional influences on the interannual trend in atmospheric CO2. Even these small effects were to a considerable degree eliminated from the record by correlation with radon as a measure of the continental influence. so as to reveal a time series roughly representative of the atmosphere over much of the southern hemisphere. Both the hemispheres having been influenced by the El Niño events and its climatic consequences, it is reasonable to assume that such a 1 ppm shift affected the whole troposphere. In contrast, owing to the long time necessary for troposphere-to-stratosphere exchanges, the air mass to consider is therefore only 4.10¹⁸ Kg. This, corresponding to a global effect of the 1982-19083 El Niño, could therefore have been a rapid supplementary injection into the atmosphere of about 6 billion tons of CO₂, i.e. 1.6 billion tons of Carbon. Note that this amount of Carbon is only 30% of the annual input due to industrial activities. Moreover, whether or not this supplementary input was injected into the atmosphere from continental biomass, the ∂^{13} C of which is about -25%, the 1 ppm shift mentioned above should correspond to a mean ∂^{13} C of about -0.05%. Such an order of magnitude has been determined, in both the hemispheres, by Heimann, Keeling and Mook at the 1985 Kandersteg Symposium (private communication).

5. Acknowledgements

The authors thank all the people having contributed to data collection on the field. They are

particularly grateful to Dr J. C. Duplessy for his useful advice. This study was supported by the "Administration des Terres Australes et

Antarctiques Françaises" and by the "Programme Interdisciplinaire de Recherches sur l'Environnement" (CNRS).

REFERENCES

- Ascensio-Parvy, J. M., Gaudry, A. and Lambert, G. 1984. Year-to-year-CO₂ variations at Amsterdam Island in 1980-83. *Geophys. Res. Lett. 11*, 1215-1217.
- Bacastow, R. 1979. Dip in the atmospheric CO₂ level during the mid 1960's. J. Geophys. Res. 84, 3108-3114.
- Gaudry, A., Ascencio, J. M. and Lambert, G. 1983. Preliminary study of CO₂ variations at Amsterdam Island (Territoire des Terres Australes et Antarctiques Françaises). J. Geophys. Res. 88, 1323-1329.
- Gaudry, A. Conway, T. J. and Waterman, L. S. 1985.
 Report on the intercomparison between the atmospheric CO₂ concentrations obtained at Amsterdam Island by the National Oceanic and Atmospheric Administration and the Centre des Faibles Radioactivités. Internal report of the Centre des Faibles Radioactivités.
- Komhyr, W. D., Gammon, R. H., Harris, T. B., Waterman, L. S., Conway, T. J., Taylor, W. R. and Thoning, K. H. 1985. Global atmospheric CO₂ distribution and variations from 1968-1982

- NOAA/GMCC CO2 flask sample data. J. Geophys. Res. 90, 5567-5596.
- Machta, L., Hanson, K. T. and Keeling, C. D. 1977. Atmospheric carbon dioxide and some interpretation. In: *The fate of fossil fuel CO₂ in the oceans*, ed. by N. R. Anderson and A. Malahoff. New-York: Plenum, pp. 131–143.
- Monfray, P., Gaudry, A., Polian, G. and Lambert, G. 1987. Seasonal variations of atmospheric CO₂ in Southern Indian Ocean. *Tellus* 39B, 67-71.
- Newell, R. E., Navato, A. R. and Hsiung, J. 1978. Long-term global sea surface temperature fluctuations and their possible influence on atmospheric CO₂ concentrations. *Pure Appl. Geophys.* 116, 351-371
- Polian, G., Lambert, G., Ardouin, B. and Jegou, A. 1986. Long-range transport of continental radon in subantarctic and antarctic areas. *Tellus 38B*, 178-
- Rasmusson, E. M. and Wallace J. M. 1983. Meteorological aspects of the El Niño/Southern Oscillation. *Science* 222, 1195-1202.